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INTRODUCTION 
 
Cancer stem cells niche  
 
Tumor tissues consist of heterogeneous cancer cells, 
including stem-cell-like subsets of cancer stem cells 
(CSCs), characterized by self-renewal and long-term 
clonal maintenance [1]. Thus, CSCs are not only 
responsible for initiating the tumor process, but they 
have  long-term   repopulation   capacity   in  recurrent  

 

tumors. Also, CSCs show significant DNA repair 
capability and resistance to current chemo, radio, and 
immune therapies [2]. 
 
Based on the revised CSCs model, several genetically 
different subclones of CSCs may co-exist and expand 
according to their own hierarchy within the tumor bulk, 
and contribute to overall cancer heterogeneity [3]. The 
first evidence for CSCs came from the observation of a 
small subset of clonogenic cancer cells in acute 

www.aging-us.com AGING 2019, Vol. 11, No. 23 

Review 

Cancer stem cells-driven tumor growth and immune escape: the Janus 
face of neurotrophins 
 
Viviana Triaca1, Valentina Carito2,*, Elena Fico2,*, Pamela Rosso2, Marco Fiore2, Massimo Ralli3, 
Alessandro Lambiase3, Antonio Greco3, Paola Tirassa2 
 
1Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-
Traverso, Monterotondo Scalo, Rome, Italy 
2Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, 
University of Rome La Sapienza, Rome, Italy 
3Department of Sense Organs, University of Rome La Sapienza, Rome, Italy 
*Shared authorship 
 
Correspondence to: Viviana Triaca, Paola Tirassa; email: viviana.triaca@cnr.it, paola.tirassa@cnr.it 
Keywords: cancer stem cells, NGF, immune surveillance, tumor microenvironment, cancer innervation 
Received: September 12, 2019 Accepted: November 17, 2019  Published: December 7, 2019 
 
Copyright: Triaca et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 
 
ABSTRACT 
 
Cancer Stem Cells (CSCs) are self-renewing cancer cells responsible for expansion of the malignant mass in a 
dynamic process shaping the tumor microenvironment. CSCs may hijack the host immune surveillance resulting 
in typically aggressive tumors with poor prognosis.  
In this review, we focus on neurotrophic control of cellular substrates and molecular mechanisms involved in 
CSC-driven tumor growth as well as in host immune surveillance. Neurotrophins have been demonstrated to be 
key tumor promoting signaling platforms. Particularly, Nerve Growth Factor (NGF) and its specific receptor 
Tropomyosin related kinase A (TrkA) have been implicated in initiation and progression of many aggressive 
cancers. On the other hand, an active NGF pathway has been recently proven to be critical to oncogenic 
inflammation control and in promoting immune response against cancer, pinpointing possible pro-tumoral 
effects of NGF/TrkA-inhibitory therapy.  
A better understanding of the molecular mechanisms involved in the control of tumor growth/immunoediting 
is essential to identify new predictive and prognostic intervention and to design more effective therapies. Fine 
and timely modulation of CSCs-driven tumor growth and of peripheral lymph nodes activation by the immune 
system will possibly open the way to precision medicine in neurotrophic therapy and improve patient’s 
prognosis in both TrkA- dependent and independent cancers. 
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myeloblastic leukaemia (AML) [4]. CSCs were 
subsequently identified in other tumor types, including 
multiple myeloma, breast, brain, prostate, and lung 
cancers. CSCs are tumorigenic even when transplanted 
in low numbers in experimental models [5, 6]. They 
carry the neural stem cells marker CD133, which was 
identified first in human brain tumors, and then in many 
other solid tumors, like prostate, colon, and pancreas 
tumors [7].  
 
Tumor aggressiveness is strictly linked to a process 
known as Epithelial-Mesenchymal Transition (EMT). 
Subpopulations of tumor cells that undergo EMT [8] 
induce apoptosis of neighboring non-cancerogenic 
endothelial cells [9] and disrupt epithelial junctions, 
becoming metastatic as Circulating Tumor Cells 
(CTCs). Above described events have been found to be 
common in distinct types of carcinoma, like head and 
neck cancer, esophageal cancer, breast cancer, lung 
cancer and melanoma.  
 
In hematological malignancies the disease reinitiates from 
microscopic residual tumor, known as minimal residual 
disease (MRD), routinely analyzed through a technique 
called “liquid biopsy” [10]. Maintenance of 
undifferentiated and self-renewing CSCs relies on the 
“stem cell niche”, a microenvironment mainly represented 
by dendritic cells (DCs), tumor associated macrophages 
(TAMs), fibroblasts, tumor-specific T cells, and 
neutrophils [11, 12]. The niche is enriched in factors 
promoting CSCs self-renewal, angiogenesis, tumor 
invasion and metastasis, as reviewed in [13, 14]. To avoid 
tumor relapse and improve patient prognosis, several 
molecular targets and biomarkers have been suggested. 
The nuclear factor-kB (NF-kB), Notch, and 
phosphatidylinositol 3-kinase/AKT/mammalian Target of 
Rapamycin (PI3K/AKT/mTOR) pathways are the most 
relevant signaling platforms targeted for their involvement 
in CSCs metabolism, survival, proliferation, growth, 
invasion, and resistance to therapy [15, 16]. Notch 
pathway is also involved in the immune surveillance 
process, promotes M1 macrophage polarization [17] and 
CD8+ T cells activation, and acts as a tumor-suppressor 
[18]. Furthermore, activation of the Interleukin-6 (IL-6)/ 
Signal transducer and activator of transcription 3 
(STAT3)/Aldehyde Dehydrogenase 1 (ALDH1) pathway 
by adipose tissue-derived vesicles, cytokines, and 
circulating factors has been recently implicated in tumor 
stemness and aggressiveness, particularly in breast cancer 
[19–21]. 
 
Several inhibitors preferentially targeting CSCs have 
been tested in vitro and in preclinical studies, like the 
pan-PI3K inhibitor B591 [22] and the dual 
PI3K/mTOR inhibitor VS-5584 [23]. However, novel 
therapies are still demanding, because of the limited 

efficacy and side effects of currently available CSCs-
based targeting approaches.  
 
Nowadays, immunotherapy represents the latest frontier 
of CSCs-based cancer therapy due to its broader range 
application over different cancer types. Here below, we 
will focus on the role of immune system attempted control 
against cancer growth and spreading, highlighting the 
double-edged sword of neurotrophins in cancer immunity 
and inflammation, of interest for the design of novel and 
efficient therapies targeting CSCs-driven tumors and 
metastasis.  
 
CSCs and tumor immune surveillance 
 
The immune surveillance hypothesis  
The immune surveillance hypothesis states that the 
immune control of cellular homeostasis is the first line 
of host defense against carcinogenesis. The host 
immune system-tumor interplay consists of three 
essential phases: elimination, equilibrium and escape 
(reviewed in [24, 25]).  
 
Elimination. Exposure of immunogenic antigens by 
mutated or dying cells activates Natural Killer (NK) 
receptors NKGD and promotes proliferation of infiltrating 
CD8+ T cells by induction of major histocompatibility 
complex (MHC) class Ia, resulting in their clearance. In 
particular, a subset of high Interferon -γ (IFN-γ) secreting 
NK cells is at the forefront of innate response against 
cancer and it is responsible for Tumor Necrosis Factor 
(TNF)-related apoptosis-inducing ligand (TRAIL)-
dependent lysis of tumor cells in mice [26]. Stress or 
necrosis induced signals, like Danger Associated 
Molecular Patterns (DAMP), are crucial for stimulating 
Pattern recognition receptor (PRR), like Toll-like receptor 
(TLR) and Nod-like receptor (NLR), elective effectors of 
innate immunity. Equilibrium. Premalignant stem cells are 
maintained in equilibrium with the adaptive immune 
response, which selects low-dividing and immune tolerant 
emerging subclones in a process called immunoediting 
Tumor stem cells are still dependent upon their niche and 
cancer metastasis is unlike to occur. Escape. The immune 
escape mainly relies on immune system aging and 
expansion of less immunogenic (immuneselection) and/or 
less immunosuppressive (immunesubversion) CSCs 
subclones (reviewed in [25]), resulting in overt tumors.  
 
CSCs driven immuneselection and immunesubversion 
CSCs may escape the active clearance by hiding 
themselves to the immune system via the down-
regulation or lack of MHC class I (MHC-I) molecules, 
as observed in melanoma, prostate cancer, bladder, and 
colorectal carcinoma (CRC). In particular, CSCs 
undergo a switch in the MHC-I expression, reducing 
immune-activator MHC class Ia (HLA A-C) in favor of 
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immune-inhibitory MHC class Ib (HLA E-G) 
molecules, and suppressing MHC class II (MHC-II) and 
costimulatory molecules, like CD40, B7-1 and B7-2. 
Moreover, CSCs lack the expression of ligand for 
activator NK receptors (NKp44, NKp30, NKp46 and 
CD16) and in turn upregulate ligands for inhibitor NK 
receptors (HLA-G), resulting in innate immunity 
repression. 
 
Overall, immune escaping CSCs subclones hijack the host 
immune system response. They are able to 1) reduce the 
expression of M1 macrophages inhibitors CD200 and 
CD44 blocking macrophage M2 polarization and 
phagocytic activity, 2) produce several cytokines in the 
TME, like Transforming Growth Factor β (TGF-β), IL-4, 
IL-6, IL-10, paralyzing the immune system responses, 3) 
convert a subset of immature myeloid DCs into TGF-β-
secreting cells, thus driving expansion of immuno-
suppressive regulatory T cells (Tregs) in lymphoid organs 
of tumor bearing mice [27, 28], and 4) attract Tregs and 
Myeloid-Derived Stem Cells (MDSC), facilitating CSCs 
spreading and metastatization [29]. Further, mutations 
promoting CSCs survival outside the CSCs niche favor 
CSCs spreading and cancer metastasis. Tumor variants 
emerging after lymphocyte and cytokines selection are the 
first cause of mortality, because of their resistance to both 
chemo/radiotherapies and adoptive cell therapies. 
 
Immunotherapy 
Accumulating results indicate that CSCs may develop 
resistance to standard cancer therapies, including 
chemo-radiotherapy and molecular targeted therapy, 
making more difficult to fight cancer with available 
clinical approaches. A recently adopted treatment is 
immunotherapy, stimulating the immune system 
surveillance against the tumor, and combining 
monoclonal antibodies, immune response modifiers, 
and vaccines. Unlike conventional chemotherapy 
resulting in secondary resistance, the co-inhibitory 
immune checkpoints (ICI) therapy revealed a significant 
long-lasting clinical effect in melanoma, non-small cell 
lung cancer, renal and bladder cancers, HNSC, CRC, 
and Hodgkin lymphoma [30–32]. ICI therapy with 
monoclonal antibodies anti-PD-1 and anti-Cytotoxic T-
Lymphocyte Antigen 4 (anti-CTLA-4) promoted T cells 
migration and intratumoral invasion, thus supporting 
effective tumor elimination. Nowadays, the design of 
novel therapies facilitating tumor immunoediting by 
immune cells and/or exposing CSCs to the host 
immune response represent promising prospective 
treatments in solid tumor therapy. 
 
CSCs in oncogenic and therapeutic inflammation 
 
The induction of chronic oncogenic inflammation by 
CSCs favors the release of pro-tumorigenic chemokines 

by innate immune cells, thus resulting in tumor cell 
growth, survival, and angiogenesis [33–35]. Indeed, the 
tumor itself has the chance to promote cancer metastasis 
taking advantage of oncogenic inflammation. The same 
chemokines, like INF-γ or TGF-β, seem to be involved in 
both immune surveillance and pro-oncogenic inflam-
mation. Indeed, tumor promoting inflammation and 
tumor-suppressive immunity co-exist, rendering it more 
difficult to distinguish two phenomena with common 
patterns of immune cells and cytokines. A further level of 
complexity is introduced by therapeutic inflammation 
induced by chemotherapic drugs and radiotherapy. It 
subserves the effective eradication of the tumor mass by 
helping antigen-immune system cross-talk [24]. The 
deeper comprehension of the inflammosome regulation in 
CSCs metabolism and cancer might improve efficacy of 
molecular and cellular targeting in current therapy. 
 
Neurotrophins in CSCs-driven tumor growth 
 
Neurotrophins and neurotrophins receptors 
expression in cancer  
 
Neurotrophic signaling has been strongly implicated in 
cell survival, proliferation and apoptosis (Figure 1). 
Unbalanced expression of neurotrophins Nerve Growth 
Factor (NGF), Brain-Derived Neurotrophic Factor 
(BDNF), Neurotrophin3 (NT3), and/or their receptors 
Tropomyosin related kinase A (TrkA), Tropomyosin 
receptor kinase B (TrkB), Tropomyosin receptor kinase 
C (TrkC), and common Neurotrophin Receptor p75 
(p75NTR) have been reported in cancer [36, 37]. 
Increased evidence pinpoints a central role of the 
neurotrophic pathways in cancer growth and progression. 
In particular, NGF and BDNF are considered diagnostic 
biomarkers for hepatic cancer (HC) and CRC. NGF level 
is 57.3 times higher in CRC than in normal colon tissue 
[38] and significantly correlates with esophageal 
squamous cell carcinoma (ESCC) and CRC growth and 
metastasis [39]. Moreover, NGF overexpression is 
sufficient per se to induce gastric cancer (GC) in rodent 
animal models [40]. In line with this, anti-NGF based 
therapies have been demonstrated to be a promising 
approach in tumor treatment, as well as in tumor 
associated cancer pain [41]. Further, inhibition of TrkA 
blocked tumor growth and reinforced chemotherapy in 
pancreatic ductal adenocarcinoma (PDAC) [39].  
 
TrkA, TrkB, and TrkC proteins derive from NTRK1, 
NTRK2 and NTRK3 genes, respectively. Genetic 
aberrations of the NTRK genes, like point mutations, 
gene fusions, constitutively active splice variants are the 
most well validated oncogenic events in both infantile 
and adult cancers [42–44]. NTRK1 genetic variants 
occur in tumors of neuronal type (neuroblastoma and 
medulloblastoma), but also in non-neuronal cancers, 
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like thyroid, breast, lung, prostate, ESCC, PDAC, GC, 
HC, and CRC (reviewed in [39, 45–48]).  
 
Constitutively active TrkA isoforms generated by 
alternative splicing rearrangement, like TrkAIII (spliced 
exons 6, 7 and 9), lack the extracellular signal for 
membrane localization, induce sustained PI3K/AKT/ 
NF-kB signaling, and cause DNA instability [49]. 
Oncogenic TrkA fusion products [50] potentiate NGF-
dependent carcinogenesis in CRC, thyroid cancer, and 
AML, leading to the concept of NTRK1 functioning as 
an oncogene [39]. Treatment of cancers presenting 
TrkA fusion proteins with selective Trk inhibitors 
resulted in a better prognosis [51, 52]. Further, over-
expression of the NGF specific receptor TrkA is 
considered a reliable index of tumorigenicity, 
invasiveness, and chemotherapy resistance in several 
types of squamous cancers [53].  
 
NTRK2 variants have been observed in glioblastoma and 
HNSC [54]. Also, TrkB overexpression has been observ- 

ed in ESCC and GC, associated to anoikosis caused by 
decreased E-cadherin in GC, and to higher chemo-
resistance in ESCC, being thus considered a metastasis 
predictor and a strong indicator of bad prognosis [55].  
 
On the contrary, TrkC is a conditional tumor suppressor 
acting as a dependence receptor and able to induce the 
caspase cascade in absence of its ligand NT3. NTRK3 is 
a conditional tumor suppressor epigenetically or 
genetically downregulated in CRC [56]. Thus, CRC 
cells characterized by the loss/dysfunctional mutation in 
the NTRK3 gene acquire a selective advantage and 
contribute to CRC expansion. 
 
As for the common neurotrophin receptor, p75NTR 
belongs to the tumor necrosis factor family of receptors. 
The expression studies on p75NTR led to conflicting 
results, with p75NTR demonstrated to be a tumor 
suppressor and a good prognostic factor in digestive 
cancers or a valuable index of tumor aggressiveness in 
ESCC and prostatic cancers [39, 57–59].

 

 
 

Figure 1. Neurotrophins signaling pathways in cell survival and death. NGF binds TrkA and p75 in a trimeric complex and mediates 
proliferation, differentiation, and survival via activation of different pathways, like PI3K/AKT, Ras/MAPK and PLC-γ. Upon p75NTR homo-
dimerization, NGF is also able to activate NF-κB or JNK, resulting in RIP2 and NRAGE/NRIF signalings, respectively. On the contrary, 
proneurotrophins, and proNGF in particular, complex with p75NTR and sortilin, leading to activation of pro-apoptotic pathways and cell death. 
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 In fact, p75NTR expression is negatively regulated and 
sometimes null in HC and GC as compared to normal 
mucosa [60], while its re-activation induces apoptosis 
through cell cycle arrest, as observed in vitro in HC 
cells [61]. Moreover, p75NTR is specifically 
overexpressed in prostate cancer cells, where its level 
correlates with high-risk prostate tumors with a poor 
prognosis (Gleason score >7), but not in normal and 
benign hyperplastic prostate epithelial cells [62]. On the 
other hand, p75NTR is a marker of chemo-resistant 
CSCs population in ESCC [59].  
 
Neurotrophins signaling pathway promoting CSCs 
survival/proliferation 
 
Neurotrophins are regulators of developmental neuronal 
survival, growth and differentiation and mediate higher-
order functions, like synaptic plasticity, learning, memory 
and behavior in adulthood, after injury, and in age-related 
neurodegeneration. NGF, BDNF, NT-3, and NT-4/5 are 
members of the neurotrophin family of growth factors 
[63, 64]. Neurotrophins have preferential binding for 
specific receptors of the Trk family of receptor tyrosine 
kinases: NGF binds to TrkA, BDNF and NT-4 to TrkB, 
and NT-3 to TrkC. All neurotrophins are able to bind the 
common p75NTR. Further, the association of p75NTR 
with Trk receptors stabilizes Trk binding to its 
neurotrophin. Neurotrophin signaling includes Ras, PI3K, 
Phospholipase C-γ (PLC-γ), and mitogen-activated 
protein kinase (MAPK) activation leading to survival, 
proliferation and/or differentiation of target cells. 
Opposite, activation of p75NTR stimulates NF-κB and c-
Jun N-terminal kinase (JNK), promoting inflammation 
and apoptosis, respectively [65]. In many cancers TrkA 
activates prosurvival downstream pathways upon NGF 
binding, while p75NTR binding to its preferred ligand 
proNGF and co-interactors, like sortilin, instructs pro-
apoptotic signaling leading to cell death [66]. In 
particular, proNGF/p75NTR activates cell death in 
prostate cells, while their loss in prostate cancer allows 
tumor expansion and spreading [36]. However, ligand 
neurotrophins also show ambiguous behavior in 
carcinogenesis. In line, proNGF binds TrkA and sortilin in 
breast cancer, inducing the Sex Determining Region Y-
box 2 (Sox2) and conferring higher invasiveness to CSCs 
in a p75NTR-independent manner [67]. Of note, both 
precursor and mature neurotrophins have been reported to 
promote tumor growth in breast cancer [68], where 
p75NTR has been also associated to a pro-survival effect 
[69].  
 
NGF, BDNF and NT3 pathways represent survival and 
proliferation signals in CSCs, by activating the Son of 
Sevenless (Sos)-Ras-MAPK and Fibroblast growth 
factor receptor substrate 2 (Frs2)/Ankyrin Repeat-Rich 
Membrane Spanning (ARMS)-Crk pathways, leading to 

cAMP response element-binding protein (CREB) and 
NF-kB stimulation, and finally controlling key cellular 
check-points implicated in CSCs proliferation in 
glioma, HNSC, melanoma, and breast cancer [37]. 
BDNF/TrkB and NT3/TrkC signaling complexes have 
been shown to promote CSCs survival via AKT and 
Extracellular signal–Regulated Kinases (ERK) 
pathways in glioma [70]. Further, TrkB deletion in 
CSCs prevents tumor reappearance in recurrent triple 
negative breast cancer [71].  
 
NGF survival signaling through the TrkA pathway 
follows three main routes of intracellular second 
messengers: 1) Src homology 2 domain containing 
(Shc)/PI3K/AKT leading to survival of breast and 
prostate cancers, 2) the Ras/MAPK induced 
proliferation and invasion in breast and prostate cancer, 
and cell death by autophagy in medulloblastoma and 
glioblastoma, 3) PLC-γ/PKC signaling involved in 
metastasis [36]. Interestingly, signaling via p75NTR 
strongly depends on binding to its interactors sortilin, 
Leucine Rich Repeat and Ig Domain Containing 1 
(LINGO1),  and Neurite outgrowth inhibitor (NOGO), 
switching from survival to cell death pathways, growth 
regulation and macrophage clearance, respectively. 
Indeed, p75NTR via Tumor necrosis factor receptor 
type 1-associated DEATH domain-dependent (TRADD-
dependent), NF-kB and Brain expressed X-linked 
(BEX) drives a prosurvival effect in breast cancer and 
schwannoma, while being anti-cancerogenic via JNK-
mediated apoptosis in prostate cancer cells and neurons 
[72–74]. Constitutive active TrkAIII variant induces an 
undifferentiated stem-like phenotype through increased 
expression of stemness genes like Nanog, Nestin, Sox2 
and CD117, leading to the formation of larger 
neurospheres in SH-SY5Y neuroblastoma cell line [75]. 
The NGF-TrkA pathway induces p75NTR proteolytic 
processing and the release of the soluble p75NTR 
intracellular domain (ICD), which is central to AKT 
signaling and CSCs sustained proliferation in several 
tumor types [76, 77], suggesting that the generation of 
the ICD domain is crucial for the NGF/TrkA pro-
oncogenic pathway [39]. Of note, Rho GTPase-
mediated recruitment of CD44 to the cell membrane by 
NGF-TrkA further contributes to CSCs stemness 
maintenance and survival, resulting in higher tumor 
aggressiveness [78]. According to this, pharmacological 
TrkA inhibition prevents p75NTR shedding and the 
proliferative effect of NGF observed in CSCs. 
Interestingly, the p75NTR has been observed in the 
mitotically quiescent CSCs population of the basal 
epithelia [59, 79, 80], and activates intracellular signals 
regulating cell survival, proliferation, and DNA 
stability, through key oncogenic molecules, like NF-κB 
[81] and p53 [82]. Furthermore, p75NTR regulates the 
expression of pluripotency transcription factors, 
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including Sox2, Nanog, and MYC, promotes CSCs self-
renewal in breast cancer, and facilitates symmetric 
divisions in slow-proliferating or quiescent CSCs [83]. 
The p75NTR neutralization with a specific monoclonal 
antibody prevents CSCs survival signaling mediated by 
ERK in HNSC, and genetic loss of p75NTR in 
melanoma cells completely inhibits tumorigenicity in 
the xenograft model [84].  
 
Insulin and NGF signalings cross-talk in CSCs 
metabolism  
 
CSCs expansion and spreading strictly depend on the 
energy intake by glucose uptake. The insulin/ insulin-like 
growth factor (IGF) pathway is well known to control 
glucose uptake in the peripheral organs, as well as in the 
nervous system. Disturbances in the insulin/IGF pathways 
have been linked to the pathogenesis of cancer [85]. CSCs 
stemness maintenance depends on the IGF-1 receptor 
activation in HNSCC [86]. Accordingly, metformin, the 
most used drug against insulin resistance in Type 2 
Diabetes, has been shown to reduce CSCs reservoir in 
breast cancer [87]. In particular, the insulin receptor 
substrate 1 (IRS1)/PI3K/AKT pathway leads to Glycogen 
synthase kinase 3β (GSK3β) inactivation by serine 9 
phosphorylation, thus preventing Snail and Slug 
proteasome targeting, and activating the NF-kB 
transcription factor, which in turn increases Snail and Zinc 
finger E-box-binding homeobox (ZEB) 1 transcription for 
EMT (reviewed in [88]). Thus, the insulin/IGF pathway 
induces EMT transcription factors by cross-talking with 
the signaling platforms implicated in cell proliferation and 
pluripotency. NGF has been demonstrated to control 
insulin signaling and improve insulin resistance by 
promoting glucose uptake in degenerating neurons [89]. 
Noteworthy, the insulin receptor (IR) signaling has been 
demonstrated to be transactivated by the NGF receptor 
TrkA via the IR or the IRS1 in neurons and in the pheo-
chromocytoma cell line PC12 [89, 90], and by oncogenic 
fusion protein Trk-T1 from thyroid carcinoma triggering 
the IRS-Growth factor receptor-bound protein 2 (IRS-
Grb2) complex [91]. Of note, Grb2 and Shc signalings are 
sufficient per se to induce transformation of fibroblasts 
[92] and intestinal epithelial cells [93], suggesting Grb-
Shc as a crucial molecular hub for common downstream 
pro-oncogenic pathway. These findings pinpoint a role for 
the NGF-TrkA/Shc and insulin/IR-IRS axes and 
reciprocal interplay in the regulation of CSCs glucose 
metabolism and tumor expansion, highlighting a novel 
target for precision medicine. 
 
Neurotrophins contribution to CSCs Epithelial-
mesenchymal transition  
 
Neurotrophins have been implicated in EMT, a process 
of genetic reprogramming and morphological shift from 

elongated epithelial cells to migrating mesenchymal-
like cells, with further conversion to CSCs, leading to 
CSCs enrichment in the tumor microenvironment 
(TME). Three different transcription factors protein 
families, the Snail (including Snail and Slug), ZEB 
(ZEB1, ZEB2), and basic helix–loop–helix (including 
TWIST1, TWIST2, and TCF3) induce the EMT 
program by chromatin rearrangement and/or promoter 
regulation [8]. As a result, proteins of epithelial origin, 
like E-cadherin, are downregulated and N-cadherin, 
fibronectin, and vimentin are upregulated to facilitate 
cell motility and autonomy from niche signals [8, 94]. 
Other EMT transcription factors are common regulator 
of both CSCs proliferation and EMT commitment, like 
CD44, Sox2, Sox9, Nanog [8].  
 
In breast cancer, NGF/p75NTR affects epithelial 
markers like keratin 18, keratin 19 and E-cadherin, 
while promoting mesenchymal markers, like SLUG, to 
sustain CSCs migratory behavior [37]. NGF stimulates 
the expression of SNAIL1, SNAIL2 and TWIST1 in 
breast cancer cells [68]. Indeed, p75NTR knock-out 
induces loss of stemness markers, like Sox2 and Sox10, 
and reconverts spindle-shaped melanoma cells in 
epithelial-like cells [84]. The p75NTR appears to be 
involved in EMT phenotypic acquisition and 
invasiveness. The p75NTR is developmentally 
expressed in the nervous system and in the neural crest, 
where it guides fine migration of neural crest cells to 
form the neural tube. Interestingly enough, the same 
p75NTR/sortilin signaling system is involved in neural 
cell migration and cancer metastasis in several tumor 
types [95]. 
 
BDNF/TrkB signaling through AKT and MAPK 
downstream effectors stimulates the expression of the 
TWIST-SNAIL axis in rat kidney epithelial cells 
inducing EMT and CSCs spreading [96]. BDNF 
through p75NTR activates PI3K/AKT pathway 
interfering with the RhoA pathway, causing cytoskeletal 
rearrangement, and promoting CSCs invasiveness in 
lung cancer, ESCC [97], and head and neck cancer [98]. 
siRNA silencing or Trk inhibitors prevented BDNF-
mediated expression of EMT transcription factors and 
affected melanoma sphere-forming potential [99]. 
 
Angiogenesis in tumor immune evasion  
 
Sufficient blood supply to the tumor comes from 
neoformation of vessels through endothelial cells 
angiogenesis and vasculogenesis, as well as by 
vasculogenic mimicry. CSCs have been observed to be 
involved in both mechanisms [100]. Interestingly, 
angiogenic factors overexpressed in many cancers, like 
Vascular Endothelial Growth Factor (VEGF), 
Cyclooxygenase 2 (COX-2), and Prostaglandin E2 
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(PGE2) have an immunosuppressive action, supporting 
tumor immune evasion. VEGF also inhibits T cell 
development and is associated with high metastatic 
potential and poor prognosis in ovarian cancer. COX-2 
is implicated in the production of immunosuppressive 
prostaglandins, like PGE2 and Prostaglandin D2 
(PGD2). PGE2 downregulates TNF-α, inhibits T and B 
cells proliferation, and NK-mediated tumor clearance, 
while PGD2 favors T helper 2 cells activation at the 
expenses of tumor eradicating T helper 1 immune 
response. Also, proangiogenic microRNA (miRNA), 
like miR-126 sustain cancer metabolism through the 
IRS1-mediated pathway of glucose uptake [101]. 
Overall, angiogenesis favors tumor growth by a dual 
mechanism: on one side facilitating blood supply, on 
the other side through active suppression of innate and 
adaptive immune responses. Neurotrophins released by 
stromal or immune cells in the TME are known to exert 
a strong proangiogenic effect in in vitro models and in 
vivo [102–104]. In particular, NGF is known to induce 
angiogenesis in endothelial cells of several origins 
through VEGF expression. In line, NGF promotes 
angiogenesis by TrkA-mediated activation of PI3K and 
matrix metalloproteinase 2 (MMP2) in breast [105], 
ovarian [106], hepatocellular [107] cancers. Opposite, 
proNGF has a net anti-angiogenic effect, increasing 
angiostatin and thrombospondin-1, and decreasing 
angiopoietin and angiopoietin-like 1. 
 
Neurotrophins in cholinergic nerve-cancer interplay 
 
Cancer cells growth around nerve terminals and 
subsequent neural invasion is a process known as 
perineural invasion (PNI). The presence of nerve 
endings within the tumors has been described for GC, 
colon, prostate, breast, pancreatic, bladder, eye cancers 
[108–112] (reviewed in [113]). Also, neoneurogenesis 
with the ex novo formation of axons within the tumor 
has been observed in prostate cancer [114]. Opposite, 
denervation is known to positively impact on cancer 
dissemination and patient’s outcome since 1940 in both 
human and animal studies [115–117]. PNI results from 
a crosstalk between cancer cells releasing neurotrophins 
and neuropeptides, and nerve ends expressing TrkA and 
p75NTR receptors. CSCs respond to NGF by TrkA-
mediated autocrine proliferation [118, 119] and 
neurotransmitter release leading to axonal growth 
around the tumors, tumor expansion and long distance 
CSCs spreading through the nerves (reviewed in [113]). 
The neurotrophin family of Trk receptors is well known 
to support neuron survival and axonal growth in the 
nervous system, during development and after injury. 
Similarly to Schwann cells induced axonal regeneration 
upon nerve injury, NGF, BDNF, NT3 or IGF-II 
produced by cancer cells sustain cancer growth and PNI 
through the expression of neurites chemoattractant and 

guidance molecules associated with poor prognostic 
outcome (netrin, semaphorins, ephrins, and Slits) [120, 
121]. NGF, in its precursor or mature form, has been 
strongly implicated in PNI and neoneurogenesis in 
prostate cancer [62, 122]. Cathecolaminergic, dopa-
minergic, serotoninergic, glutammatergic, gabaer-gic, 
and cholinergic tumor infiltrating nerves have been 
described so far [123]. In particular, cholinergic nerves 
within the stem cell-niche help regulate stem cell 
dynamics in both normal and neoplastic condition [124–
126] (reviewed in [40]). 
 
Acetylcholine (Ach) is one of the most important 
neurotransmitters targeted by cancer pharmacotherapy 
and its metabolism is dependent upon NGF supply [40]. 
Nicotine has been indicated as a key driver of tumor cells 
growth in mesothelioma and colon cancer, and of 
proliferation, cell migration, and angiogenesis in GC 
[127]. Nicotine and nicotinic agonists, like 4-
(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK), 
lead to human small cell lung cancer (SCLC) 
proliferation, while the Ach functional antagonist 
isoproterenol induced growth of lung adenocarcinoma 
cells [128]. Cholinergic stimulation through muscarinic 
receptors induces neurotrophic molecules expression 
[129–131]. Among neurotrophins, NGF was specifically 
upregulated (20 times higher) by the cholinergic agonist 
carbachol in GC mouse models, as well as in human GC 
[40]. A cholinergic/NGF interplay has been reported in 
GC, with tuft cells-derived Ach inducing NGF release by 
CSCs expressing the muscarinic receptor 3 (M3R). In 
turn, the NGF released in the TME promotes nerve 
growth and further Ach release in a feedback loop 
sustaining tumor growth and metastasis. In a similar 
manner, PNI and lymph node spreading is sustained by a 
catecholamine/NGF axis in PDAC [132]. On the other 
hand, M3R antagonists inhibited cell growth of non-small 
cell lung carcinoma (NSCLC) both in vitro and in vivo 
[133]. Indeed, the increase of cholinergic parasympathetic 
fibers by neurogenesis and axonogenesis in prostate 
cancer xenografts model correlates with metastasis [134]. 
Similarly, proNGF favors tumor infiltration and affects 
patient’s survival in human prostate cancer [62]. 
 
Taken together, these findings strongly pinpoint the 
neurotrophin/Trk signaling as messengers between 
nerves and cancer cells, driving peritumoral innervation 
and consequent tumor growth and dissemination.  
 
Neurotrophins and exosomes-driven tumorigenesis  
 
Tumors release extracellular vesicles, called 
exosomes, regulating the TME and promoting disease 
progression by induction of tumor tolerance and 
spreading, and axonogenesis (reviewed in [135]). 
Exosomes are 30–150 nm vesicles expressing marker 
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proteins, such as CD63, Alix, Tsg, CD9, and CD81, 
and delivering cargo of intercellular messenger 
proteins, mRNA, non-coding RNA like long non-
coding RNA (lncRNA), miRNA, DNA, and lipids 
[136]. Exosomes facilitate intratumoral axon growth 
by releasing axonal guidance molecule, like EphrinB1 
[136]. Indeed, tumors compromised in exosome 
release are less innervated than controls and 
pharmacological blockade of exosome release by the 
multi-vesicular body (MVB) inhibitor GW4869 is 
effective in diminishing tumoral innervations by β-III 
tubulin positive “nerve twigs” [136]. Opposite, 
exosomes from “non-metastatic” melanoma are able to 
trigger NK and TRAIL-driven macrophage clearance of 
tumor cells, reinforcing immune surveillance at the pre-
metastatic niche and exerting a pro-apoptotic effect on 
lung carcinoma cells [137]. Of note, neuronal exosomes 
are enriched with p75NTR [138], and prostate cancer 
exosomes carry tyrosin kinases, such as Src tyrosine 
kinase and IGF-1R, promoting tumor expansion and 
angiogenesis [139, 140]. Furthermore, the BDNF 
receptor TrkB transfers glioblastoma aggressiveness to 
recipient cancer cells [141]. CSCs exosomes from a 
CSCs clonal line transfer SLUG and Sox2 and induce 
EMT through lnc-Regulator of Reprogramming (lnc-
ROR) [142]. Plus, exosomal transfer of miRNA-142 
from bone marrow-derived mesenchymal stem/stromal 
cells (BM-MSCs) stimulates colon CSCs proliferation 
by NUMB-mediated activation of Notch signaling 
[143]. Thus, active signaling molecules are transported 
by cancer exosomes contributing to CSCs communica-
tion with the TME and modulating cancer outgrowth 
metastasis and immune cells evasion. Additionally, 
CSCs exosomes are potential nano-carriers for drugs 
and vaccines, and their cargos provide potential 
biomarkers for early diagnosis and improved prognosis 
in cancer.  
 
Evidence of neurotrophins actions in tumor 
immune surveillance 
 
Nowadays, a deeper comprehension of neurotrophins 
involvement in cancer immune surveillance is of foremost 
relevance. In fact, neurotrophins and their receptors are 
key molecules in survival and functions of cells of both 
the innate and adaptive immune system. NGF is produced 
in an autocrine manner by cells of the immune system, 
such as B and T cells, monocytes/macrophages, 
eosinophils, granulocytes, and mast cells [144–146]. NGF 
is a growth and survival factor also for B cells [147]. 
During inflammation, NGF synthesis is induced by 
inflammatory cytokines (IL-1β, TNF-α, IL-6) in different 
cell types. Both NGF receptors TrkA and p75NTR are 
expressed by immune cells, the first being anti-apoptotic 
and survival stimulating [148, 149], the latter transmitting 
pro-apoptotic signals [144].  

Nonetheless, it is not clear whether and through which 
mechanisms neurotrophins, and especially NGF, may 
eventually be implicated in the modulation and 
refinement of tumor editing/escape.  
 
Indeed, the most relevant known effects of NGF and its 
receptors on key cellular substrates and molecular 
mechanisms of the tumor immune surveillance are 
reported here below (Table 1). 
 
Innate immunity  
 
NK cells  
NK cells show the ability to selectively kill human colon-
derived CSCs, melanoma, and glioblastoma without any 
pharmacological pretreatment in vitro [150–153]. Mouse 
resting NK cells express physiological level of TrkA, 
which is dramatically upregulated upon activation of NK 
cells by IL-2 [154], suggesting an immune stimulatory 
and anti-tumoral effect of the NGF-TrkA path-
way mediated by NK cells. A NK subpopulation 
expressing the neural adhesion molecule (N-CAM) and 
driving local response to IL-2 has been proposed to be 
crucial for immune surveillance of neoplasia.  
 
Dendritic cells  
The activation of human DCs requires signaling 
driven by Toll-like Receptor 4 (TLR4). Noteworthy, 
NGF has been shown to promote TLR4 expression 
following Lipopolysaccharide (LPS) treatment by 
p75NTR-dependent activation of p38 MAPK and NF-
κB pathways [155]. On the other hand, neurotrophins 
have been shown to promote release of several growth 
factors reducing the effectiveness of DCs for immune 
surveillance of tumors, like IL-6, IL-10, macrophage 
colony-stimulating factor (MCSF), VEGF, and PGE2 
[156].  
 
Patrolling monocytes  
Non-classical patrolling monocytes are known to be 
early interactors of metastasizing tumor cells and to 
promote NK cells recruitment and activation [157, 158], 
thus contributing to cancer immune surveillance and 
representing putative targets for cancer immunotherapy. 
Human monocytes have been reported to respond to an 
immunogenic stimulus by increasing TrkA mRNA 
expression [159].  
 
γδ T cells  
Unlike the αβ T cells commonly used in Chimeric 
Antigen Receptor Therapy (CAR-T), γδ T cells play a 
role in the innate immune response, which constitutes 
the first, faster line of defense of the immune system. 
The γδ T cells are major players in the “lymphoid stress 
surveillance,” i.e., by early activation following 
infections or non-microbial stress. This peculiar type of 
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T cells does not require clonal expansion or 
differentiation, as it occurs in the prototypic innate 
immunity [160]. Tumor-infiltrating γδ T cells are an 

important subset of “unconventional” T lymphocytes as 
they have the ability to recognize a broad range of 
antigens without the presence of MHC. The γδ T cells 

 

Table 1. Main findings on the role of neurotrophin NGF and its receptors TrkA and p75NTR in tumor surveillance by innate and 
adaptive immune cells. 

Neurotrophins and 
receptors 

Target immune cells Function/effect References 

NGF NK cells negative influence on NK cell degranulation [161] 

 CD4+ T-cells regulation of immune response [153, 156] 
 CD8+ T cells regulation of immune response [153, 156] 
TrkA NK cells anti-tumoral effect [161] 
 Monocytes anti-inflammatory effect (by blocking NF-kB 

proinflammatory pathways and inducing anti-
inflammatory cytokines) 

[169] 

 CD4+ T cells activation and NGF synthesis and release [155] 

p75NTR Dendritic cells activation and induction of TLR4 expression [162] 

 γδ T cells regulation of γδ T cells activation in autoimmune 
inflammation 

[169, 170] 

 CD8+ T cells activation by TCR stimulation [178] 
 Monocytes/Macrophages increased calcium spiking, phagocytosis, TGF-β 

secretion, and reduced M2 marker CD206 by 
NGF binding; proNGF increased migration 
through podosome formation and neurotoxin 
secretion by proNGF binding 

[173] 

have been demonstrated to be the most favorable 
prognostic immune population among many cancer  
types, in agreement with their killing capacity against 
leukaemia, neuroblastoma, and carcinoma. By applying 
CIBERSORT, a computational method for inferring 
leukocyte representation in bulk tumors, the most 
favorable predictor gene is CD161, a surface molecule 
associated to tumor infiltration by γδ T cells [161]. They 
produce IL-17, IFN-γ and TNF-α, leading to DCs 
maturation, and prime CD4+ and CD8+ T cells.  
 
The p75NTR has a regulatory effect on immune cells 
activation during autoimmunity [162] and, noteworthy, 
it is involved in control of γδ T cells activation in 
inflammation [163].  
 
Innate lymphoid cells 
Innate lymphoid cells (ILCs) represent a constitutive 
patrolling immune unit aimed at tissue homeostasis 

maintenance at the mucosal barriers. Three main 
distinct ILCs subpopulations have been described, 
based on their phenotype and functions. ILCs type 1 
produce IFN-γ; ILCs type 2 secrete IL-5 and IL-13; 
ILCs type 3 release IL-17 and/or IL-22 [164, 165]. 
ILCs play an essential role in tissue inflammation and 
remodeling, and in cancer as well [166, 167].  
 
Of note, the localization of ILCs at cholinergic, 
adrenergic, and nociceptor sensory neuronal terminals 
in several tissues led the hypothesis of a key role in 
neuro‐immune interactions in normal tissue physiology 
and in the perineural cancer niche. In line with this, 
ILCs express receptors for neurotransmitters and 
neuropeptides, like β2‐adrenergic receptor (β2‐AR), 
muscarinic cholinergic receptor, vasoactive intestinal 
peptide receptor (VPAC1/2), and calcitonin 
receptor‐like for CGRP [168]. 
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Acquired immunity 
 
The γδ T cells, NK cells, and Cytotoxic T Lymphocytes 
(CTLs) are important players in the eradication of 
CSCs. However, only effector cells of the adaptive 
immunity system may specifically recognize CSCs.  
 
Disabled antigen presenting cells  
The presence of MHC proteins at the CSCs membrane 
surface is crucial for T cells-dependent anti-cancer 
immunity [25]. Lack or de novo mutation in the 
antigen presentation machinery may result in immune 
escape of malignant cells. Indeed, MHC-I down-
regulation has been reported in around 40% of 
common solid malignancies (melanoma, lung, breast, 
renal, prostate, and bladder cancers). Accordingly, 
alterations in MHC expression have been found to 
correlate with the clinical outcome in cancer patients. 
Although CD8+ CTLs are deficitary in targeting CSCs 
with low MHC-I expression, recent in vitro findings 
suggest that human γδ T cells are able to target CSCs 
upon CSCs sensitization by bisphosphonate zole-
dronate [169]. Noteworthy, TrkA-positive neuro-
blastoma cells have higher amount of MHC-I 
complexes and a less malignant phenotype, pin-
pointing the role of TrkA in neuroblastoma spon-
taneous regression [170].  
 
While M1 macrophages are implicated in eradication of 
the foreign cell during acute phase inflammation, their 
polarization switch to an anti-inflammatory tumor-
permissive phenotype (M2) allowing metastatic 
spreading is typical of TAMs and it is associated with 
poor prognosis. Noteworthy, cultured human macro-
phages express both TrkA and p75NTR receptors and 
differently respond to NGF and proNGF by augmenting 
calcium spiking,  phagocytosis, TGF-β secretion and by 
a slight reduction of the M2 marker CD206 in the first 
case, while increasing migration by podosome 
formation and neurotoxin secretion, in the latter [171].  
 
Cell dysfunction/tolerance  
Main effectors of cellular acquired immunity against 
cancer are CD8+ and CD4+ T cells [172]. Tumor 
infiltration by CD8+ T cells is associated with 
prolonged patient survival [172, 173]. Malignant cells 
elimination by CD8+ CTLs has been considered for 
decades as a master regulator of anti-tumor immunity, 
confining CD4+ T cells to a supportive action.  
 
Nonetheless, CD4+ T cells have been recently found to 
exert a broad range of action in tumor rejection. They 
show cytotoxic effects on tumor cells, upregulate MHC 
molecules expression, are anti-angiogenic, and are able 
to promote tumor dormancy. By partnering with NK 
cells, CD4+ T cells maximize their ability to eliminate 

tumors resistant to CD8-mediated rejection, even in 
case of MHC-II negative tumors [174]. Noteworthy, 
CD4+ T cells are critical for expansion, trafficking and 
functioning of cytotoxic CD8+ and memory T cells, an 
effect known as “CD4+ T-cell help” fostering tumor 
destruction through cytokine signaling, especially IFN-γ 
and TNF-α [175]. Of note, CD4+ T-cell line 9/6 express 
the NGF receptor TrkA after TCR-mediated activation 
by the antigens and/or the antigen presenting cells 
(APC; [148]). Activated CD4+ T-cell clones not only 
express TrkA but they also produce NGF, further 
pinpointing the NGF/TrkA system in an autocrine/  
paracrine loop modulating the maturation and activity 
of T cells [146, 149]. As for the common neurotrophins 
receptor, p75NTR is implicated in antigen-driven T cell 
responses in vivo and contribute to T cell activation 
upon stimulation [176]. p75NTR genetic ablation in 
vivo leads to an hypoproliferative response to TCR 
agonists, decreased expression of the activation markers 
CD25 and CD69, of IL-2, and IFN-γ [176]. Moreover, 
activation threshold CD8+ CTLs upon TCR stimulation 
depends on p75NTR and increases following p75NTR 
deletion [176].  
 
However, CD8+ CTLs are often unable to eradicate the 
tumor because of inhibition by other, immunosuppressive 
cells in the TME, such as Tregs. Tregs are a specialized 
subpopulation of CD4+CD25+ T cells producing IL-17, 
also called T helper 17 cells. Their induction of self-
tolerance and inhibition of both natural and induced anti-
tumor immunity are considered key events in cancer 
immune evasion. Consequently, there is considerable 
interest in therapeutic Tregs blockade to treat cancer 
[177]. Noteworthy, NGF anti-inflammatory effect 
through IL-6 and IL-10 down-regulate Tregs homeostatic 
responses and reduces IL-17 level in airway allergy 
[178]. It would be interesting to find out whether a 
similar mechanism under the control of neurotrophins 
takes place to counteract Tregs immune tolerance in 
cancer. 
 
Neurotrophins control of oncogenic inflammation  
 
NGF increase at the sites of inflammation and in 
systemic circulation is a common event in different 
inflammatory and autoimmune diseases, and in cancer. 
Inflammatory cytokines, like IL-1β, IL-6, and TNF-α 
stimulate production of NGF in several cell types. In 
turn, NGF induces IL-10 and IL-1 receptor antagonist 
via the PI3K/AKT pathway and facilitates TLR4-
mediated inhibition of NF-kB, leading to resolution of 
the inflammation [179]. The findings reported above 
on the role of neurotrophin signaling in the activation 
of immune surveillance mechanisms could be in 
apparent contradiction with their role in oncogenic 
inflammation and their classic anti-inflammatory 
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effect reported in the Central Nervous System in vitro 
and in vivo [179–181]. On the contrary, NGF exerts a 
dual role by activating immune responses following 
acute insult, while concomitantly avoiding tumor 
growth sustained by chronic inflammation via a timely 
resolution of the immune response.  
 
CONCLUSIONS  
 
Taken together, the experimental findings here reported 
suggest opposite pro-oncogenic and anti-oncogenic 
actions of the NGF signaling pathway in the control of 
CSCs growth and cancer evasion from the host immune 
system (Figure 2). NGF/TrkA signaling and cholinergic 

innervation of the tumor niche take central stage in 
tumor initiation and progression, as well as metastatic 
spreading. In line with this, the targeting of 
neurotrophic growth factors in cancer has been 
suggested to halt tumor progression through direct 
CSCs targeting, to achieve control of nerve infiltration 
and angiogenesis, and minimize cancer pain [182–184]. 
Accordingly, selective and in situ treatment with potent 
Trk kinase inhibitors, clinical development of drugs 
targeting NTRK genetic rearrangement combined with 
canonical cancer therapy, and/or novel encouraging 
CAR-T immunotherapy are all promiseful 
neurotrophin-based strategies to improve cancer 
patients outcome.  

 

 
 

Figure 2. The pro-oncogenic and anti-oncogenic effects of the NGF signaling pathway in CSC metabolism and EMT. Schematic 
model illustrating the opposite pro-oncogenic (left) and anti-oncogenic (right) actions of NGF signaling pathway in the control of CSCs growth 
and cancer evasion from the host immune system. Pro-oncogenic pathway. CSCs promote tumor growth, perineural invasion, CSCs 
proliferation and spreading through vessels and nerves by NGF release. In fact, tumor-released NGF attracts cholinergic endings and 
promotes cancer expansion and neoangiogenesis through neuronal-derived Ach and VEGF. Further, CSCs inhibit the host immune response 
and facilitate metastatic spreading through IL-10, IL-6, and TGF-β. Excess amount of proNGF stimulates macrophages polarization toward the 
M2 phenotype, giving rise to TAMs, which are unable to phagocytize cancer cells. Moreover, MDSCs induce Tregs expansion by TGF-β release 
and contribute to dismount the T-cells mediated immune response. Anti-oncogenic pathway. On the other hand, increasing evidences 
pinpoint a role for NGF pathway in promoting tumor surveillance by both natural and adaptive immune cells. The NGF-TrkA signaling system 
induces phagocytic M1 macrophages, thus resolving cancerogenic inflammation. Moreover, NGF receptors allow membrane exposure of 
activatory NK receptors. The p75-expressing γδ T cells are phagocytic T cells of the so-called “lymphoid stress surveillance” system. NGF-TrkA 
promotes MHC-I and MHC-II expression by cancer cells and CSCs, and allow recruitment of IL-2 activated T cells in lymph- , promoting the 
tumor mass eradication. The illustration includes images modified from “freevector.com”, distributed under the Creative Commons 
Attribution 4.0 license (CC BY 4.0). 
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Nonetheless, increasing evidences pinpoint the 
involvement of neurotrophins, and specially NGF, in 
tumor immune surveillance through cytokines-driven 
modulation of the innate and acquired immune system 
cells. In particular, given the Tregs and PD1 control by 
p75NTR and NGF, NGF pathway inhibition would 
result in immune tolerance induction, thus challenging 
the use tout-court of TrkA inhibitors to dampen tumor 
growth. Moreover, the activation of the neurotrophic 
pathway is fundamental in order to downregulate 
oncogenic inflammation during self-promoted tumor 
growth. To overcome this dichotomy, fine under-
standing of the molecular targets and cellular substrates 
of NGF/TrkA involved in tumor growth on one side and 
immune surveillance on the other side is demanding 
nowadays in order to design selective and coordinated 
therapies against tumor characterized by uncontrolled 
overactivation of the NGF pathway as oncogenic driver. 
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