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INTRODUCTION 
 
The recent hype cycle in artificial intelligence (AI) 
resulted in substantial investment in machine learning and 
increase in available talent in almost every industry and 
country. This wave of increased attention to AI was fueled 
by the many credible advances in deep learning that 
allowed machines to outperform humans in multiple 
tasks, including image and text recognition and as well as 
in the strategy board game, of Go. The advantage of deep 
learning (DL) systems is in their ability to learn and 
generalize from a large number of examples [1]. DL 
methods rapidly propagated into the many biomedical 
applications, starting primarily with the imaging, text, and 
genomic data [2, 3]. The availability of large volumes of 
data and new algorithms made it possible to use deep 
learning to start making predictions about the activity and  

 

pharmacological properties of small molecules [4], 
identify mimetics of the known geroprotectors [5, 6], 
and discover new ones [7]. The new techniques in deep 
learning converging with the advances in chemo-
informatics enable the creation of completely novel 
molecular structures with the desired properties for the 
protein targets of interest in record time [8–12]. Many 
efforts are underway to apply deep learning techniques to 
predict the outcomes of clinical trials [13, 14]. However 
slowly, the artificial intelligence technologies started 
propagating into aging and longevity research and are 
rapidly increasing in popularity resulting in the formation 
of dedicated conference sessions and entire conferences 
[15] and focused reviews [16]. 
 
Over many generations humans have evolved to 
develop from a single-cell embryo within a female 
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ABSTRACT 
 
Multiple recent advances in machine learning enabled computer systems to exceed human performance in many 
tasks including voice, text, and speech recognition and complex strategy games. Aging is a complex multifactorial 
process driven by and resulting in the many minute changes transpiring at every level of the human organism. 
Deep learning systems trained on the many measurable features changing in time can generalize and learn the 
many biological processes on the population and individual levels. The deep age predictors can help advance 
aging research by establishing causal relationships in non-linear systems. Deep aging clocks can be used for 
identification of novel therapeutic targets, evaluating the efficacy of the various interventions, data quality 
control, data economics, prediction of health trajectories, mortality, and many other applications. Here we 
present the current state of development of the deep aging clocks in the context of the pharmaceutical research 
and development and clinical applications.  
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organism, come out, grow with the help of other 
humans, reach reproductive age, reproduce, take care of 
the young, and gradually decline. Due to the relatively 
short lifespans early in the evolutionary process, the 
natural age of peak and optimal performance closely 
follows puberty and lasts approximately one generation. 
Considering the average age of the Olympic athlete, the 
age of optimal performance can be safely defined as 
20–30. Human aging is a complex multifactorial 
process associated with and leading to the gradual 
decline in all body functions, productivity, psycho-
logical changes, multiple diseases and inevitably ending 
in death (Figure 1).  
 
Lifestyle and behavioral modifications may help slow 
down the decline and keep the organism in the best 
possible state for its chronological age, a term 
commonly referred to as “healthy aging”. To understand 
the differences between the “healthy aging” and 
“unhealthy aging”, evaluate the effects of the many 
lifestyle choices and a variety of emerging longevity 
interventions, it is essential to be able to track the rate of 
aging and develop a comprehensive set of aging 
biomarkers. 
 
The advent of the aging clocks  
 
There are many biological features that demonstrated 
correlation with the chronological age such as telomere 
length [17, 18], racemization of amino acids in proteins 
[19], and others. The epigenetic age predictors were 
proposed in 2011 [20]. But it was not until 2012 when 
the first epigenetic aging clock was published by 
Hannum [21]. Hannum group used profiled the 
methylomes  derived  from  peripheral blood samples of  

 

 

 

 

 

 

 

 

 

 

healthy individuals to develop the first epigenetic clock 
consisting of 71 CpG sites and demonstrated the root 
mean squared error of 4.9 years on independent data. A 
more precise and comprehensive multi-tissue aging 
clock was then published in 2013 by Steven Horvath 
[22] who coined the terms “DNAm clock” and 
“epigenetic aging clock” and rapidly gained popularity 
in the aging research community. Horvath used 353 
CpG sites and achieved a median error of 3.6 years on 
the testing set. These clocks were developed using 
traditional machine learning approaches -- notably 
linear regression with regularization and the use of a 
limited number of samples. Similar methylation aging 
clocks were developed for mice [23, 24]. 

While the epigenetic aging clocks demonstrate 
spectacular performance in predicting the chronological 
age, the epigenetic data is not as actionable for target 
identification or geroprotector discovery. Another 
abundant and actionable data type is gene expression 
data. The first transcriptomic aging clock developed on 
blood-based transcriptomic data was published by 
Peters et al. in 2015 [25] and extended to other tissues 
by Yang et al. [26]. 
  
In addition to predicting the chronological age and 
establish the biological relevance of the predictor, it is 
possible to introduce additional metrics of health status 
and use the dependent variable. Levine et al. introduced a 
notion of phenotypic are derived from clinical data [27].  
 
Deep aging and longevity clocks  
 
Age is a universal feature present in all biological and 
non-biological material objects and is one of the most   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. The general course of human life in the health and performance context. Preventative strategies may increase lifespan 
and healthspan. Potential restorative interventions reversing the many biological clocks back to the young productive healthy state may 
help prevent loss of function and possibly result in future performance gains.  
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abundant features present in almost every data set. 
While the more traditional machine learning methods 
were employed to develop aging clocks on multiple data 
types where the many markers are statistically 
correlated with chronological age, the advent of deep 
learning lead to the emergence of next-generation of 
deep aging and longevity clocks. The deep learning 
models trained on the large numbers of examples 
manage to capture the highly non-linear relationships 
between the seemingly unrelated features.  
 
In addition, the realization that age is a universal feature 
present in all biological and non-biological objects 
triggered the interest of the artificial intelligence 
researchers interested in the study of causality and 
making the deep neural networks (DNNs) more 
interpretable. This leads to the convergence of aging 
research and deep learning [3, 16, 28, 29].  
 
Many of the early works in deep learning for aging 
research stemmed from the simple thought experiments in 
how humans perceive age with the various sensory 
organs. A human can guess with reasonable accuracy the 
age of another human, other species, material and non-
material objects using low- and high-resolution imaging 
data, movement patterns, even scent and touch. When 
these data types can be featured and used for training and 
test in abundant quantity, the deep neural networks should 
be able to learn the features contributing to age prediction 
and outperform human accuracy. Most humans can 
describe the most important features they need to predict 
someone’s age. For example, the number of wrinkles, 
grey hair, color of the teeth and many others. The deep 
neural networks in theory should be able to do it even 
better and may be used to identify the most important 
features and reconstruct biological pathways implicated in 
aging (Figure 2A).  
 
This same thought experiment can be extended to 
disease-specific biomarkers and disease-specific target 
identification. A human can quickly recognize that the 
other person is not feeling well just by looking at the 
person. A trained physician can make educated guesses 
about the person’s health status by examining the visual 
appearance. Many genetic diseases manifest in the very 
obvious phenotypes and can already be identified using 
simple imaging data using the deep neural networks 
[30]. Training to predict age and disease at the same 
time (Figure 2B) may not only enable more accurate 
diagnosis and training on fewer disease samples but it 
may be possible to compare the features and pathways 
between the age groups, disease stages and predictors 
trained to predict only age.  
 
These though experiments help generate new hypotheses 
in inferring causality, multi-target processes and 

understand the progression of diseases better. This 
approach also helps combine the multiple data types, 
understand the relationships between the data types and 
control the quality of the data [31] and possibly assess its 
biological relevance [32]. Moreover, it may be possible to 
use this approach to develop “disease clocks” and track 
the changing importance in the molecular targets in the 
context of age and disease. For example, the many 
diseases (e.g. scleroderma) may start as an autoimmune 
reaction and then progress into sclerosis, fibrosis and 
other directions and the importance of the addressable 
targets may change. The techniques developed to identify 
the most important features and establish causality using 
age predictors can be used to identify the most important 
targets in a specific stage of the disease and personalize 
interventions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
With the first DNN-based aging clocks published in 
2016 by Zhavoronkov laboratory [33], significant 
progress has been made the past few years in deep 
learned biomarkers of human aging [28, 29]. The first 
DL clock was constructed using 41 blood test values of 

 

Figure 2. Training the deep neural networks on multimodal 
longitudinal data to predict (A) age of the individual and (B) age 
and health status of the individual and using the feature 
importance and selection approaches to infer causal 
relationships, pathways, and targets.  
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over 50,000 individuals. Making use of DNN abilities to 
capture nonlinear dependencies between input data and 
target variable, the initially proposed method was able 
to achieve mean absolute accuracy of 5.5 years on 
previously unseen 12,000 individuals. Additionally, this 
study demonstrated how the deep clock can be used for 
further interpretations of relations between aging and 
blood parameters. By employing feature importance 
analysis they identified top parameters related to age 
changes. 
 
Later, Mamoshina el al. continued the work and validated 
the approach on several million anonymized subject 
records of healthy individuals from three populations: 
South Korean, Canadian, and Eastern European [34]. The 
analysis showed that DNNs trained to predict age either 
on Canadian or Eastern European sample sets predict 
South Korean samples younger than they chronologically 
are. Further, for each sample with information on 
mortality status, the authors observed that subject with 
slowed aging or predicted younger have a higher life 
expectancy. Equally, subjects predicted older hence with 
accelerated aging have a lower life expectancy. 
 
Further validation showed that deep hematological 
clocks can also be used to evaluate the impact of 
lifestyle choices on aging. In this manner, Mamoshina 
et al. demonstrated that tobacco smokers are predicted 
older than they chronologically are with individuals 
chronologically younger 55 years predicted twice as old 
[35]. In addition to age prediction, the authors showed 
the DNNs can also predict smoking status potentially 
replacing the error-prone self-reporting. 
 
The rapid development of high-throughput methods 
enables the advances of DL omics-based aging clocks. 
While transcriptional data is among the most abundant 
data types, a large scale transcriptomic analysis remains 
a challenge [36]. Nevertheless, early in 2018, the first 
deep transcriptomic aging clock was presented for gene 
expression profiles of skeletal muscle healthy 
individuals [37]. The best model achieved mean 
absolute error of 6.24 years on unseen testing samples. 
To explore the age-related expression changes and 
evaluate the potential of age predictor to select 
therapeutic targets, authors compared a comprehensive 
set of ranking methods to identify protein-coding genes 
related to muscle aging.  
 
While most of the progress has been made in the 
development of deep molecular aging clocks, the facial 
aging prediction is also a promising diagnostic tool. A 
research lab of the computer vision company Haut. AI 
proposed a deep photographic aging clock, 
PhotoAgeClock, developed using a set of over 8,000 
anonymized high-resolution eye corner images [38]. 

Achieving a mean absolute error 2.3 years on the 
previously unseen by the model testing set, this age 
predictor is yet the most accurate. The proposed approach 
also was able to identify facial areas exposing age the 
most, with the skin around eye being the most age-
relevant area. 
 
Most of the practical results and most impressive 
achievements in deep learning are in imaging [2] and 
medical imaging is not an exception. Imaging-based 
human age predictors were developed for a variety of 
applications and as early as the estimation of gestational 
age [39]. 
 
Many deep aging clocks are being developed with the 
practical forensic applications in mind. Forensic age 
predictors were developed using femoral bone mineral 
density [40]. Age predictors utilizing deep learning 
were also developed for the estimation of age of otoliths 
of fish [41]. 
 
Magnetic Resonance Imaging (MRI) data is commonly 
used to train the deep neural networks to predict the age 
of the patient [42]. This technique may be used for early 
diagnosis and staging of a variety of neurological 
disorders. There are early signs that this approach may 
work in Multiple Sclerosis (MS) [43]. Most recently an 
attempt was made to correlate the predicted age by MRI 
and chronological age in people with depression [44]. 
While no meaningful correlation was found, other data 
types may be more applicable for this task. 
  
Physical activity data can be used to predict the 
person’s age. Age predictors were developed using the 
data collected for people walking on a sensor floor 
[45]. 
 
Applications of deep aging clocks in the 
pharmaceutical industry 
 
Recent advances in artificial intelligence are rapidly 
propagating into the pharmaceutical drug discovery and 
drug development practices. The intersection of recent 
advances in AI and aging research yields many new 
tools and applications for the pharmaceutical industry to 
exploit -- at every step of the research and development 
process, as well as in personalization, marketing, and 
real-world evidence. Deep aging and longevity clocks 
can be applied in many areas of pharmaceutical research 
and development starting from biological data quality 
control and management to age-personalized medicine, 
clinical trials enrollment analysis and marketing [28].  
 
One of the obvious applications of the deep aging 
clocks is evaluation of the sensitivity of a given data 
type to diseases and interventions. Some clocks trained 
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on a specific data type may be relevant to the health 
status of the individual. For example, if the patients are 
consistently predicted older or younger than their 
chronological age during a specific disease using the 
hematological or transcriptomic aging clocks, these 
clocks are relevant to that disease and may be used for 
predicting the onset and stage of the disease.  
Other aging clocks may consistently predict the patients 
older or younger than their chronological age in 
response to a drug, gene or cell therapy, or another 
intervention. These clocks may be deemed to be 
intervention-relevant (Figure 3).  
 
Some of the deep aging clocks may be very useful for 
predicting response or non-response to specific 
interventions. Many interventions in immuno-oncology 
rely on the state of patients’ immune system. The deep 
aging clocks may be used to track the immuno-
senescence levels, and identify and track new inter-
ventions designed to boost the immune system in the 
elderly. Biological age-personalization is another major 
potential application of the deep aging clock. The deep 
aging clocks can enable a way to track response rates. 
In clinical trials of meta-analysis that demonstrate 
patients predicted to be older than their chronological 
age respond better to an alternative dosage or 
vaccination protocol, necessary additional doses of the 
vaccine may be sold.  
 
Generation of synthetic data as a tool for target 
identification for aging  
 
In addition to expanding the scope of aging clocks, neural 
networks can be used to generate synthetic data in large 
volumes. Generative Adversarial Networks (GANs), a 
popular new machine learning technique first introduced 
by Ian Goodfellow in 2014 [46] commonly used in drug 
discovery [3], enable the generation of biologically 
relevant synthetic data with specified conditions. For   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

instance, breast cancer detection requires a large number 
of labeled mammograms to train convolutional neural 
network (CNN). Generally, this kind of requirement is 
infeasible for the collection of medicinal images 
especially for the mammographic tumor images. Hence, 
generation of synthetic data proposed a possibility to 
make the CNN classifier perform better [47]. Synthesizing 
new patient data using GANs trained on millions of 
samples, using only age as a generation condition, allows 
for massive anonymization of data while maintaining the 
most biologically relevant features. 
  
As an ideal augmentation method, GANs give a 
comprehensive application in both medical and 
biological field. It also enables the identification of 
potential targets driving aging and disease-related 
processes [16]. Many diseases related to aging can be 
diagnosed using multiple omics data sets in different 
dimensions including transcriptomics data, which is 
usually used in targets identification process. Recently, 
a universal transcriptomic signature of age performed in 
Caenorhabditis elegans identified a handful of 
molecules which extend up to 30% of mean lifespan 
[48]. Combining the synthetic data of different age with 
other various data sets provides a novel approach to 
create an aging clock model with pathogenic or aging-
related targets identified. 

 
Multi-modal aging clocks obscure the difference 
between aging and disease status, essentially turning the 
many aging clocks into a marker of the health status of 
an individual. Since all living beings change over time, 
multi-modal aging clocks and clock ensembles trained 
on all accessible data types can act as a digital twin for a 
patient. This likeness can be moved forward and 
backward in time using GANs with multiple defined 
generation conditions including lifestyle choices and 
interventions.  These  clocks may also be embedded into  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Disease-relevant aging clocks and Intervention-relevant aging clocks. The disease-relevant clock may indicate the 
presence or onset of a specific disease (e.g. the patient consistently "looks" older to the system then the chronological age). Intervention-
relevant clocks may change in response to the intervention (e.g. the patient is consistently predicted younger than the chronological age in 
response to intervention). 
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field-trainable mobile devices that learn on the 
individual and help maintain an optimal biological age.  
 
Aging clocks for wellness programs 
 
Discussions about the practicability to apply analysis of 
aging biomarkers [49] and data-driven behavior-
tracking to health insurance risk control have been 
prevailing in the past decade. Meanwhile, regulations 
have left some room for preliminary innovations. The 
Affordable Care Act 2010 (ACA) and HIPAA generally 
interdict any means of discriminative pricing of group 
health plans to similarly situated individuals based on 
health factors such as health status, medical condition, 
medical history and etc. Nonetheless, HIPAA and ACA 
allow an exception for wellness programs under certain 
requirements [50]. 
 
Health insurers started to reward their members for 
better health habits. For instance, Oscar Health started 
to collect movement data through wearables, and offer  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

$1 Amazon gift card every day to its member for hitting 
his or her step goal, up to $240 a year. However, the 
relationship between movement data and health has not 
been clinically established, and Oscar’s attempt to 
control or assess health risk with wearable data fell 
short of expectation [51].  
 
A similar reward approach was proposed by 
VitalityHealth [52]. In addition to activity tracking, 
VitalityHealth also introduced a concept of Vitality Age 
providing rewards and benefits to individuals who 
chronologically are over 70, but predicted younger by 
simple survey-based test. 
 
While different wellness programs are gaining 
popularity, identifying true healthy behavior with 
clinically established health risk mitigation or pre-
vention remains a challenge. More fundamentally, 
insurers need a rigorous overall measure of human’s 
health risk and aging clocks can greatly benefit and 
strengthen current approaches. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Using age predictors within specified age groups to infer causality and identify therapeutic interventions. 
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Deep aging and longevity clocks for preventative and 
therapeutic interventions in aging 
 
Given a sufficient number of samples for training, 
DNN-based systems can be trained to predict age and 
health status on population-level multi-modal 
longitudinal data within specific age groups (e.g. 
decades 20–30, 30–40, 40–50). These DNNs can be 
used to identify the most important features, reconstruct 
the biological pathways, evaluate the state change in the 
pathways [7], and identify biological targets (Figure 4). 
This same process can be applied on the individual level 
by continuous retraining of the age and health status 
predictors on the individual's longitudinal data.  
 
The causal targets and networks identified using this 
approach may be used to develop interventions for 
keeping the state of the network as close to the age 
group with optimal performance (20–30) as possible. 
These interventions may be used for prevention of the 
age-related pathological changes.  
 
This approach of incremental age- and health-status 
prediction may be used to identify pathological changes 
transpiring during aging and identifying therapeutic 
interventions required to return the individual to the 
state resembling the optimal biological age. 
 
CONCLUSIONS 
 
The deep biomarkers of aging and longevity have a 
broad range of applications in research and develop-
ment, medical, insurance, and many other areas. 
Developing comprehensive granular multi-modal aging 
clocks will help get a better understanding of the aging 
processes, establish causal relationships, and identify 
preventative and therapeutic interventions. One of the 
many promising applications of the deep aging clocks 
built into the generative adversarial networks is 
generation of synthetic biological data with age as a 
generation condition. The deep aging clock research is 
expected to increase in popularity. Recent workshops at 
the National Institutes of Health (NIH) [53] and at the 
leading industry conferences [15] highlighted the need 
for development of the comprehensive deep age 
predictors. The authors expect this trend to continue 
with the inevitable commercialization in the insurance 
and consumer wellness industries. 
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