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INTRODUCTION 
 
Cervical squamous cell carcinoma (CSCC) is a serious 
threat to women's health that causes about 273,200 deaths 
each year [1]. Surgery is recommended for early stage 
disease, while surgery plus chemotherapy and 
radiotherapy improves survival in patients with advanced 
disease [2]. But despite these treatments, the 5-year 
overall survival remains unsatisfactory, ranging from 
55% to 82% [3–5]. The International Federation of 
Gynecology and Obstetrics (FIGO) stage is the most 
important prognostic factor for CSCC. However, the 
FIGO stage does not reflect the biological heterogeneity 
of CSCC. Patients with the same FIGO stage may have 
distinctly different treatment outcomes. Thus, identifying 
prognostic biomarkers that reflect the biological 
heterogeneity of CSCC could lead to better interventions 
for patients with an otherwise poor prognosis. 

 

The microenvironment of malignant tumors consists of 
immune cells, stromal cells, extracellular matrix 
molecules and inflammatory mediators [6]. The various 
components of the microenvironment play central roles 
in the onset, progression and metastasis of CSCC, and 
therefore have an important impact on clinical outcomes 
[7–11]. For example, high levels of immune cell 
infiltration are reportedly associated with better survival 
[12, 13], and it has been suggested that the activities of 
both immune and stromal cells may be predictive of 
prognosis [12–14].  
 
Estimation of STromal and Immune cells in MAlignant 
Tumor tissues using Expression data (ESTIMATE) was 
designed to provide scores for the levels of immune 
cells infiltration and stromal cells within the tumor 
microenvironment based on the specific gene expres-
sion signatures of immune and stromal cells [9]. Several 
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studies have used ESTIMATE to assess immune, 
stromal and ESTIMATE scores with overall survival 
[14, 15]. However, previous studies reported conflict 
results. Whether ESTIMATE algorithm could be used 
to investigate prognosis in CSCC is still unclear. In the 
present study, we used the ESTIMATE algorithm to 
explore potential genetic factors in the tumor 
microenvironment of CSCC with the aim of identifying 
prognostic genes of CSCC. 
 
RESULTS 
 
Immune, stromal, and ESTIMATE scores were not 
correlated with T stage, N stage or tumor grade 
 
Calculated using the ESTIMATE algorithm, stromal 
scores ranged from -2318.19 to 804.22 (-806.92 ± 
606.45), immune scores ranged from -1209.74 to 
3419.33 (950.10 ± 834.53), and ESTIMATE scores 

ranged from -3262.05 to 4002.00 (143.18 ± 1283.43). 
The distributions of immune, stromal, and ESTIMATE 
scores did not vary with T stage (Figure 1A–1C), N 
stage (Figure 1D–1F), or tumor grade (Figure 1G–1I). 
 
Elevated immune scores correlate with a better 
prognosis 
 
This study included 253 CSCC patients. Based on their 
immune, stromal, and ESTIMATE scores, they were 
divided into high and low score groups to explore the 
potential correlation between the scores and prognosis. 
For immune scores, 127 patients were in the low score 
group, while 126 were in the high score group. Kaplan-
Meier survival curves revealed that elevated immune 
scores correlated with better overall survival (P = 0.029) 
(Figure 2A). By contrast, stromal scores (P = 0.396) and 
ESTIMATE scores (P = 0.064) were not associated with 
overall survival (Figure 2B, 2C). Further evaluation

 

 
 

Figure 1. Immune, stromal, and ESTIMATE scores were not correlated with T stage, N stage, or tumor grade. Distribution of 
immune scores plotted against T stage (A), N stage (D), and tumor grade (G). Distribution of stromal scores plotted against T stage (B), N 
stage (E), and tumor grade (H). Distribution of ESTIMATE scores plotted against T stage (C), N stage (F), and tumor grade (I). 
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revealed that T4 stage (P < 0.01) and N1 stage (P 
< 0.01) were associated with poor overall survival in 
the low immune score group, whereas there was no 
association between overall survival and T stage, N 
stage or tumor grade in the high immune score group 
(Figure 3). 
 
Differentially expressed genes with immune and 
stromal score 
 
Figure 4A shows a heat map of 920 genes differentially 
expressed between patients with high or low immune 
scores, while Figure 4B shows a heat map for 884 genes 
differentially expressed between patients with high or 
low stromal scores. For immune scores, 685 genes were 
upregulated and 235 were downregulated in the high 
score group as compared to the low score group. For 
stromal scores, 874 genes were upregulated and 10 were 
downregulated in the high score group as compared to 
the low score group. Venn diagrams showed that 380 
intersection genes were upregulated (Figure 4C) and 4 
were downregulated (Figure 4D) in both the immune 
and stromal groups. 
 
Functional analysis of intersection genes 
 
Biological enrichment analysis, including KEGG 
pathways and GO analyses, were performed to further 
evaluate the biological functions of the 384 intersection 
genes. These genes were mainly involved in several 
biological processes (BP) that are closely related to T 
cell activation. The cellular component (CC) process 
revealed that the target genes are mainly involved in the 
region of the cell membrane. The molecular functions 
(MF) process revealed that the target genes are 
significantly related to carbohydrate binding (Figure 5). 

The KEGG pathways were mainly enriched for 
cytokine-cytokine receptor interaction (Figure 6). 
 
PPI of intersection genes 
 
To investigate hub genes among the intersection genes 
and develop a thorough picture of the intersection genes 
at the systems level, all 384 intersection genes were 
uploaded to the STRING database to construct a PPI 
network (Supplementary Figure 1). By applying the 
MCODE tool in Cytoscape software, the most highly 
connected intersection genes were identified. In total, 269 
intersection genes were found to be connected with other 
genes. Among these, ITGAM, PTPRC, ITGAX, TYEOBP, 
and C3AR1 were the top 5 with 57, 56, 45, 45, and 44 
nodes, respectively. The connected nodes for each 
intersection gene are listed in Supplementary Table 1. 
 
Survival analysis of intersection genes 
 
To assess the relationship between each intersection 
gene and overall survival, we constructed Kaplan-Meier 
survival curves using the TCGA database. Using the 
log-rank test, we found that among the 384 intersection 
genes, 149 were predictive of overall survival (P < 0.05) 
(Supplementary Table 2). Kaplan-Meier survival curves 
illustrating the effect of nine random genes on overall 
survival are shown in Figure 7. 
 
DISCUSSION 
 
In this era of precise medicine, identification of effective 
biomarkers for cancer-specific prognoses is urgently 
needed to enhance decision making for patient 
management. In the present study, we used bio-
information analysis to screen for prognostic immune 

 

 
 

Figure 2. Association of immune, stromal, and ESTIMATE scores with overall survival. (A) Elevated immune scores correlated with 
a better prognosis. (B) Stromal scores were not associated with overall survival. (C) ESTIMATE scores were not associated with overall 
survival. 
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Figure 3. Association of T stage, N stage and tumor grade with overall survival in the low and high immune score groups. T 
stage was associated with overall survival in the low immune score group (A), but not the high immune score group (B). N stage was 
associated with overall survival in low immune score group (C), but not in high immune score group (D). Tumor grade was not associated with 
overall survival in low (E) or high (F) immune score group. 
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related genes in CSCC. The results showed that high 
immune scores were associated with better overall 
survival. Moreover, we detected 149 immune-related 
genes in the tumor microenvironment that may have the 
potential to serve as prognostic biomarkers for CSCC. 
 
We used ESTIMATE to output immune scores, which 
reflected the level of immune cells infiltration into the 
tumor tissue [9]. We found that high immune scores 
were associated with better overall survival. Similarly, 
Heeren et al. [16] reported significantly lower CD4(+) 
T-cell frequencies in lymph node-positive samples than 
lymph node-negative ones. In addition, Punt et al. [17] 
reported that B cell expression of TCL1A correlated 
with improved survival (P = 0.007) in CSCC. These 
results may indicate that immune cells infiltrating tumor 
tissue act to inhibit cancer cells. Consistent with that 
idea, we observed that T4 stage and N1 stage were 
associated with poor overall survival in the low immune 
scores group but that T stage and N stage were not 

associated with overall survival in the high immune 
scores group. 
 
Immune scores were calculated based on a 
comprehensive score for all genes in the tissues [9]. 
Although the immune score is related to prognosis, the 
immune-specific genes are not necessarily related to 
prognosis. Similarly, although the stromal score is not 
directly related to prognosis, this does not mean that 
stroma-specific genes are not associated with prognosis. 
We attempted to identify a group of intersection genes 
that were differentially expressed in both immune and 
stromal cells. Because the intersection genes are the 
most highly conserved, we suggest they are the most 
likely to be associated with prognosis. 
 
Finally, 380 upregulated intersection genes and 4 
downregulated intersection genes were detected 
between the immune and stromal score groups. These 
384 intersection genes were associated with biological

 

 
 

Figure 4. Comparison of the gene expression profile with immune and stromal scores. In the heat maps, genes with higher 
expression are shown in red, and lower expression are shown in green; genes expressed at the same level are in black. (A) Based on immune 
score comparisons, 685 genes were upregulated and 235 genes were downregulated in the high score group as compared to the low score 
group. (B) Based on stromal score comparisons, 874 genes were upregulated and 10 genes were downregulated in the high score group as 
compared to the low score group. (C) A total of 380 genes were commonly upregulated in the immune and stromal score groups. (D) A total 
of 4 genes were commonly downregulated in the immune and stromal score groups. 
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Figure 5. Gene Ontology (GO) analysis of the 384 intersection genes. 
 

 
 

Figure 6. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the 384 intersection genes. 
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processes in the tumor microenvironment, including T 
cell activation, regulation of leukocyte activation, 
leukocyte differentiation, and regulation of lymphocyte 
activation. These processes may inhibit tumor 
progression and metastasis [16], which could in turn 
improve survival [6]. Among molecular functions, the 
384 intersection genes were mainly involved in 
cytokine receptor binding, cytokine receptor activity, 
and cytokine activity. Cytokines are usually secreted in 
response to an activating stimulus and induce responses 
through binding to specific receptors on the surface of 
target cells [18]. It has been reported that the cytokine-
cytokine receptor interaction gene set could potentially 

induce cancer [19]. The upregulation of genes involved 
in cytokine-cytokine receptor interactions were 
consistently detected in tumor cell lines. These genes 
may thus be potential biomarkers for early diagnosis. 
However, further investigation into the function of the 
384 intersection genes is needed. 
 
A PPI network was constructed to reveal the 
relationship and function of the 384 intersection genes. 
ITGAM, PTPRC, ITGAX, TYEOBP, and C3AR1 were 
the top 5 genes, with 57, 56, 45, 45 and 44 nodes, 
respectively. Among these genes, only PTPRC was 
associated with overall survival. PTPRC encodes the 

 

 
 

Figure 7. Kaplan-Meier survival curves showing the impact of expression level of 9 random genes with overall survival. 
Comparison of overall survival in the high (red line) and low (blue line) gene expression groups. P < 0.05 was used to assess differences in Log-
rank test. 
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first known and prototypical receptor-like protein 
tyrosine phosphatase. PTPRC enzyme functions as a 
central regulator of phosphotyrosine levels in 
hematopoietic cells by modulating the activity of Src 
family kinases. Its importance is highlighted by 
observations in both mice and humans that its absence 
leads to severe combined immunodeficiency, while 
dysregulation of its activity correlates with auto-
immunity [20, 21]. It was also found that a higher 
percentage of tumor occupied by PTPRC+ cells was 
strongly associated with enhanced tumor-infiltration 
by Tbet+ cells and Foxp3+ cells [22]. The area 
occupied by preferentially type I-oriented PTPRC+ 
cell infiltrate was associated with longer disease-free 
and disease-specific survival. This suggests PTPRC is 
a prognostic factor for recurrence-free and disease-
specific survival in CSCC. Similarly, our study 
revealed that high levels of PTPRC expression are 
associated with better overall survival.  
 
In this study, ITGAM, ITGAX, TYEOBP, and C3AR1 
were not associated with overall survival. ITGAM and 
ITGAX are mainly involved in systemic lupus 
erythematosus [23, 24], while TYEOBP and C3AR1 
have been studied in the context of breast cancer  
[25, 26]. To the best of our knowledge, however, no 
association between these four genes and CSCC has 
been reported until now. Several genes known to be 
prognostic did not appear in our PPI network, which 
indicates that further studies are needed to identify 
novel prognostic genes for CSCC. 
 
The present study identified 149 prognostic genes. 
Among these genes, Toll-like receptors (TLRs) are 
recognition receptors presented on the cell membrane 
and in the cytoplasm that specifically recognize 
pathogen-associated molecular patterns. TLRs are 
abundantly expressed on innate immune cells, including 
mast cells, dendritic cells, macrophages, endothelial 
cells, neutrophils, and natural killer cells [27]. 
Moreover, in CSCC samples, TLRs appear to regulate 
the local immune microenvironment [28–31]. Our study 
showed that high levels of TLR7 and TLR10 are 
associated with better overall survival. This suggests 
that our big data-based analysis using TCGA cohorts 
has prognostic value. 
 
This study has a major limitation. The 149 prognostic 
genes in the tumor microenvironment were identified 
from TCGA database using the ESTIMATE algorithm. 
These genes need to be independently validated before 
they can be useful for evaluating the prognosis of CSCC 
patients. To exclude bias, we plan to assess their 
effectiveness in clinical experiments. We anticipate that 
the results of these clinical experiments will enable us 
to determine whether combinations of these genes are 

more predictive of prognosis than any of the individual 
genes alone. 
 
In conclusion, this study provides a more comprehensive 
understanding of the tumor microenvironment as well as 
a list of prognostic immune-related genes in CSCC. 
These genes need to be investigated further to gain 
additional insight into the association between the tumor 
microenvironment and prognosis in CSCC. 
 
MATERIALS AND METHODS 
 
Data 
 
Gene expression profiles of CSCC were downloaded 
from The Cancer Genome Atlas (TCGA) dataset 
(https://tcga-data.nci.nih.gov/tcga/). Clinical data, 
including age, T stage, N stage, tumor grade, and 
survival, were also downloaded from TCGA. Inclusion 
criteria were (1) pathology confirmed CSCC, (2) 
complete RNA expression data from the patients were 
available, and (3) patents were ≥ 18 years of age. 
 
Transcriptional expression profile 
 
The ESTIMATE algorithm was used to calculate 
immune and stromal scores using the estimate package 
at http://r-forge.r-project.org [9]. ESTIMATE is an 
algorithm developed to assess the purity of cancer cells 
within a tumor, and the numbers of stromal and immune 
cells present within cancer tissues using TCGA gene 
expression matrix as an input. ESTIMATE outputs 
stromal, immune and ESTIMATE scores using the 
Illumina HiSeq RNA Sequencing platform from the 
University of North Carolina TCGA genome charac-
terization center. Gene expression values were rank-
normalized and rank-ordered. The cumulative 
distribution functions of the genes in the signature and 
the remaining genes were calculated. A statistic was 
calculated through integration of the difference between 
the cumulative distribution function, which is similar to 
the one used in gene set-enrichment analysis, but based 
on absolute expression rather than differential 
expression. Immune and stromal scores were obtained 
by applying the above method. The scores were used to 
reflect the level of immune cell infiltration of in tumor 
tissue. Similarly, stromal scores were also obtained by 
applying the above method and used to estimate the 
number of stromal cells present. 
 
T stage, N stage, and tumor grade were analyzed and 
displayed according the immune, stromal and 
ESTIMATE score. One-way ANOVA was utilized to 
assess differences between groups. X-tile software was 
utilized to determine cut-off values for the immune 
score, stromal score and ESTIMATE scores. The cut-

https://tcga-data.nci.nih.gov/tcga/
http://r-forge.r-project.org/
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off values were then used to divide total participants to 
two groups [32]. The primary end point was overall 
survival, which was evaluated from the date of first 
therapy to the date of death or last follow-up. 
 
Differentially expressed gene analysis 
 
Fragments Per Kilobase Million (FPKM) was used to 
count the reads of a fragment for paired-end RNA-seq 
dataset, which produced two mapped reads [33]. The 
first steps used to process DNA microarray were 
preprocessing and normalization of raw biological data, 
which removed bias to ensure uniformity and integrity 
of the data. We then performed background correction, 
propensity analysis, normalization and visualization 
output of probe data using a robust multi-array average 
analysis algorithm in the Limma package in R. Fold 
changes > 1.0 and P < 0.05 were set as the cut-offs used 
to screen for differentially expressed genes. Heat maps 
were also generated using the Limma package in R. 
 
Intersection genes among the upregulated genes were 
identified as genes that are upregulated or downregulated 
in both high immune and stromal score groups as 
compared to the corresponding low score groups.  
 
Functional analysis 
 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analyses and Gene Ontology (GO) were used to assess 
the functional role of intersection genes. GO and KEGG 
pathway enrichment analyses were performed through 
the DAVID (http://david.ncifcrf.gov/, Version 6.8) 
online analysis tool. P < 0.05 was the cut-off value.  
 
Protein-protein interaction (PPI) network and 
intersection genes 
 
To further investigate intersection genes, a PPI network 
was constructed using the STRING online database 
(http://string-db.org) [34]. Validated interactions with a 
combined score > 0.7 were considered statistically 
significant. The network graph was visualized and 
analyzed using Cytoscape software (http://www. 
cytoscape.org/) [35]. The Cytoscape plug-in and 
Network Analyzer were applied to analyze the degree 
distribution. The functional modules of the network 
were detected using the Molecular Complex Detection 
MCODE plug-in. 
 
Correlation between intersection genes and overall 
survival 
 
Kaplan-Meier plots were generated to illustrate the 
relationship between patients’ overall survival and 
intersection genes. Expression levels of intersection 

genes were identified as binary variables (high vs. low) 
using the median expression as the cut-off value for 
each intersection genes. The log-rank test was used to 
assess differences between survival curves. 
 
Statistical analysis 
 
R software (version 3.3.3) and GraphPad Prism 5 were 
used construct the plots shown in the figures. Statistical 
analyses were conducted using R software (version 
3.3.3) and SPSS 24.0 (SPSS, Inc., Chicago, IL, USA). 
A two-tailed P values < 0.05 were considered 
statistically significant. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figure 

 
 

 

 
 

Supplementary Figure 1. Protein-protein interactions network for the 384 intersection genes. ITGAM, PTPRC, ITGAX, TYEOBP, 
and C3AR1 were the top 5 genes, with 57, 56, 45, 45, and 44 nodes in the network, respectively. 
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Supplementary Tables 
 

 

Please browse Full Text version to see the data of Supplementary Tables 1 and 2. 
 
Supplementary Table 1. Connected nodes of intersection genes in the protein-protein interaction network. 

Supplementary Table 2. Relationships between intersection genes and overall survival in cervical squamous cell 
carcinoma. 


