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INTRODUCTION 
 
Population aging is unexpectedly increasing throughout 
the world, and it has also been a major focus of research 
in the neuroimaging field [1]. Over the past decades, a 
large body of research has indicated that typical aging is 
characterized by localized degeneration in brain 
structure and widespread changes in functional brain 
activity, which have been associated with cognitive 
decline, such as attention, executive function, and 
memory [2–6]. Increasing evidence has suggested that  

 

age-related cognitive decline was related to the 
multiscale network of complex activity patterns instead 
of an ensemble of an isolated brain region [7–9]. 
Meanwhile, with the development of neuroimaging 
techniques, resting-state functional magnetic resonance 
imaging (rs-fMRI) has become an important approach 
to investigate intrinsic brain activity in the human brain 
because of its simplicity (e.g., no particular task) and 
the reliability of fMRI data acquired at rest [1, 10, 11]. 
Thus, rs-fMRI is a promising way to investigate brain 
functional network changes in typical aging.  
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ABSTRACT 
 
Normal aging is known to be accompanied by decreased segregation across the whole-brain functional 
network, which is associated with cognitive decline. Although compelling evidence supports reduced 
segregation and increased integration in whole-brain functional connectivity with aging, the age effect on the 
reorganization of large-scale functional networks at the hemispheric level remains unclear. Here, we aimed to 
examine age-related differences in inter-hemispheric interactions and intra-hemispheric integration by using 
resting-state functional MRI data of a healthy adult lifespan sample. The results showed that age-related 
decreases in inter-hemispheric integration were found in entire functional networks in both hemispheres, 
except for the sensorimotor network (SMN) and posterior default mode network (DMN). Specifically, aging was 
accompanied by increasing inter-hemispheric segregation in the left frontoparietal network (FPN) and left 
ventral attention network (VAN), as well as right-brain networks located in the auditory network (AN), visual 
network (VN), and temporal parts of the DMN. Moreover, aging was associated with increasing intra-
hemispheric integration within the bilateral VN and posterior DMN while decreasing intra-hemispheric 
integration within the right VAN. These remarkable changes with aging confirm that there are dynamic 
interactions between functional networks across the lifespan and provide a means of investigating the 
mechanisms of cognitive aging.  
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A common finding among rs-fMRI studies has indicated 
that aging is associated with decreased resting-state 
functional connectivity (rsFC) in some brain networks  
[1, 9, 12] and the topological properties of the entire 
brain network [13]. In general, older adults showed 
decreased modularity and local efficiency compared to 
young and middle-aged adults [2, 4, 12, 13]. Remarkably, 
these brain networks (e.g., default mode network and 
executive control network) supporting high-order 
cognitive functions showed a considerably decreased 
connectivity with normal aging. For example, most 
studies have documented severely disrupted functional 
connectivity in the default mode network in older adults 
compared with younger adults and has also been 
considered as a neural marker in Alzheimer's disease 
[14–16]. Although it has been commonly reported that 
rsFC declines with aging, several studies have shown that 
the primary systems (e.g., sensorimotor network and 
visual network) that are responsible for the processing of 
sensory input and motor output show increased 
functional connectivity with aging [13, 17]. In addition, 
some studies have found that increased inter-network 
connectivity, especially in prefrontal regions, was 
associated with better cognitive performance in older 
adults [18], indicating that functional connectivity 
changes with aging are not always straightforward. 
 
Regarding the decreased and increased functional 
connectivity in aging, several theories aim to provide an 
integrative interpretation for brain function and 
cognition changes in aging, in which one classical 
view—the hemispheric asymmetry reduction in old 
adults (HAROLD) model—has pointed out a 
compensatory function between hemispheres in older 
adults in that a less lateralized pattern of activity can 
counteract age-related neurocognitive decline [19]. In 
fact, hemispheric lateralization or asymmetry between 
the two hemispheres is viewed as an evolutionarily 
conserved mechanism in the human brain that is 
implemented in the dominant processing of specific 
cognitive tasks, allowing fast and efficient information 
processing [20–22]. In aging research, symmetrical 
activation and homotopic rsFC changes have been 
typically interpreted as compensation [23]. One 
remarkable study using rs-fMRI data found that global 
homotopic rsFC increased in older adults [24], which to 
some extent supports the compensation hypotheses that 
aging is associated with decreased hemispheric 
asymmetry resulting in bilateral cooperation or less 
inhibition from homotopic regions. However, further 
exploration of intra- and inter-hemispheric functional 
connectivity changes across healthy aging remains 
lacking. It is necessary to investigate the functional 
connectivity changes with aging at the hemispheric 
level to more deeply understand the neural basis of 
aging and neurodegenerative diseases.  

In sum, typical aging will weaken the rsFC in particular 
functional networks (i.e., attenuation segregation) and 
enhance the interaction between other functional 
networks (i.e., increased integration). However, it 
remains unclear whether intra- and inter-hemispheric 
segregation and integration occur across the healthy 
adult lifespan and whether there are distinguishing 
patterns between two hemispheres. Accordingly, in this 
cross-sectional study, we aimed to examine age-related 
differences in the interactions of inter- and intra-
hemispheric resting-state functional networks based on 
the symmetrical cortical template of the human brain.  
 
RESULTS 
 
The group-level network partition across two 
hemispheres detected by the Louvain algorithm resulted 
in 11 functional networks (Figure 1) corresponding to 
the sensorimotor network (SMN), auditory network 
(AN), salience network (SN), visual network (VN), 
fronto-parietal network (FPN), dorsal attention network 
(DAN), ventral attention network (VAN), and four sub-
networks of the default mode network (DMN), 
including the medial temporal lobe (MTL) and parts of 
the superior temporal cortex (DMN1), the posterior 
cingulate cortex and supramarginal gyrus (DMN2), the 
medial prefrontal cortex (DMN3), and the inferior 
parietal lobule, parts of lateral temporal cortex and 
superior medial prefrontal cortex (DMN4).  
 
To explore whether distinct patterns of age-related 
differences in inter-hemispheric segregation exist, we 
examined the linear relationships between hemispheric 
segregation of each community and age. As shown in 
Figure 2, this general pattern depicts that inter-
hemispheric segregation increased with aging. 
Specifically, age was positively associated with inter-
hemispheric segregation in the FPN (r = 0.24, P < 0.001) 
and VAN (r = 0.28, P < 0.001) in the left hemisphere, 
whereas age was positively associated with inter-
hemispheric segregation of brain networks in the right 
hemisphere mainly located in the DMN1 (r = 0.30, P < 
0.001), AN (r = 0.35, P < 0.001), and VN (r = 0.15, P = 
0.002). After controlling for sex and mean FD, consistent 
relationships were found between age and inter-
hemispheric segregation in these systems (Supplementary 
Table 1). 
 
Increasing inter-hemispheric segregation with age may 
reflect age-related decreases in inter-hemispheric 
functional communication. Thus, we further examined 
the linear relationships between inter-hemispheric 
integration of each community across the two 
hemispheres and aging. Figure 3 illustrates that aging is 
associated with the decreasing inter-hemispheric 
integration between most homotopic networks except the 
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DMN2 and SMN, regardless of the direction of the 
connectivity. To investigate whether the age-related 
decreases in inter-hemispheric integration existed only 
between homotopic networks or also occurred between 

non-homotypic systems, we also explored the 
relationship between whole brain functional connectivity 
of a given network and age, and the results are consistent 
with preceding findings (Supplementary Figure 1). 

 

 
 

Figure 1. The group-level community structure. The default mode network (DMN) is divided into four major subdivisions: superior 
temporal cortex and medial temporal cortex (DMN1); precuneus, posterior cingulate cortex and lateral parietal cortex (DMN2); dorsal medial 
prefrontal cortex (DMN3); and ventral medial prefrontal cortex and lateral temporal cortex (DMN4). The remaining networks include the 
sensorimotor network (SMN), auditory network (AN), salience network (SN), visual network (VN), dorsal attention network (DAN), ventral 
attention network (VAN) and fronto-parietal network (FPN). 
 

 
 

Figure 2. Age is associated with increasing inter-hemispheric segregation of brain networks after controlling for the 
participant’s sex and mean FD. The blue fitted line indicates that a given network in the left hemisphere is segregated from the right 
hemisphere; the orange fitted line indicates that a given network in the right hemisphere is segregated from the left hemisphere. All 
significant results survived Bonferroni correction at p <0.05. 
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Given the findings of age-related differences in inter-
hemispheric interactions, it is inevitable to raise the 
question of whether aging also impacts the intra-
hemispheric interaction. To this end, we examined 
intra-hemispheric integration changes with aging using 
the mean participation coefficient of the brain network 
within hemispheres. We assumed that functional 
integration within the hemisphere increased with age, as 
compensation for decreasing inter-hemispheric con-
nectivity. As expected, age was positively associated 
with intra-hemispheric integration in the DMN2 (left: r 
= 0.19, P < 0.001; right: r = 0.23, P < 0.001) and VN 
(left: r = 0.27, P < 0.001; right: r = 0.24, P < 0.001) in 
both hemispheres. Additionally, age was negatively 
associated with intra-hemispheric integration in the 
right VAN (r = -0.16, P < 0.001) after controlling for 
sex and mean FD (Figure 4). Furthermore, validation 
analyses showed similar results: increasing intra-
hemispheric integration in the bilateral DMN2 and VN, 
as well as decreasing intra-hemispheric integration in 
the right VAN with age across a range of edge densities 
(1-10%, see Supplementary Figure 2). 
 
To expand on the observations regarding the 
dynamics of intra-hemispheric integration with aging, 

we used an alluvial diagram to illustrate changes in 
community assignments of brain regions in each 
hemisphere across three age groups. As shown in 
Figure 5, the community number decreased with 
increasing age in both hemispheres. In early adults, 
the default system consisted of 3 sub-components in 
the left brain and 4 sub-components in the right brain, 
while in the elderly group, parts of the default system 
(e.g., DMN3 and DMN4) merged into the DMN2 and 
then generated a classical DMN, including the pos-
terior cingulate cortex, supramarginal gyrus, medial 
prefrontal cortex, inferior parietal lobule, parts of the 
lateral temporal cortex, and superior medial prefrontal 
cortex. Notably, the community assignments of the 
DMN1 (including the medial temporal lobe and parts 
of the superior temporal cortex) remained stable 
across the three age groups. For the sensory-motor 
system, parts of regions within the SN were taken into 
the AN and SMN, while the VN remained highly 
stable across age groups. For the executive control 
system (including the FPN, DAN, and VAN), 
community assignments of brain regions dynamically 
changed across age groups only in the bilateral 
hemisphere, which was merged entirely into the FPN 
in the late adult.  

 

 
 

Figure 3. The relationship between age and inter-hemispheric functional connectivity between homotopic networks after 
controlling for the participant’s sex and mean FD. The blue fitted line indicates a given network in the left hemisphere interacted with 
the homotopic network in the right hemisphere; the orange fitted line indicates a given network in the right hemisphere interacted with the 
homotopic network in the left hemisphere. 
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DISCUSSION 
 
This study used cross-sectional resting-state fMRI data 
to characterize age-related effects in inter-and intra-
hemispheric brain functional connectivity across the 
healthy adult lifespan. The present findings indicated 
that increased age is related to less inter-hemispheric 

functional connectivity between homotopic networks, 
which seemed to be a result of increased inter-
hemispheric segregation with age in most networks. 
However, the age effect on inter-hemispheric 
segregation showed distinct patterns in the two 
hemispheres: the FPN and VAN in the left hemisphere 
and the AN, DMN1, and VN in the right hemisphere. In  

 

 
 

Figure 4. The relationship between age and intra-hemispheric integration for each network after controlling for the 
participant’s sex and mean FD. The blue box indicates the left hemisphere network, and the yellow box indicates the right hemisphere 
network. A significant correlation with the threshold of FDR-corrected p < 0.05. 
 

 
 
Figure 5. Network assignment across three age groups. The left alluvial diagram indicates community reorganization of the left brain 
regions with age; the right alluvial diagram indicates community reorganization of the right brain regions with age. Each block represents a 
network, and each line corresponds to a brain region. 
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addition, increasing age was accompanied by 
increasing intra-hemispheric integration of brain 
networks located in the bilateral VN and posterior 
DMN, as well as decreasing intra-hemispheric integ-
ration in the right VAN. Further analysis showed that 
decreasing the number of communities with age in this 
process that the sub-components of the DMN 
gradually merged into a whole, parts of nodes in the 
SN were taken into the SMN, and the AN and VAN 
were integrated into the FPN. These findings provide 
hemisphere-level evidence of age-related functional 
degeneration of the brain across the adult lifespan. 
Below, we discuss the implications concerning these 
observations for understanding the functional 
reorganization of brain networks and cognition decline 
with aging. 
 
First, most networks had less inter-hemisphere 
communication with aging except for the SMN and 
DMN2, which means aging is accompanied by the 
intensive attenuation of functional connectivity. 
Consistent findings have provided evidence that 
typically aging people present disrupted connectivity 
[23, 25]. It may usually be explained by the 
dedifferentiation hypothesis, which claims that the 
human brain will decrease functional connectivity and 
lose functional specificity in the aging process [26, 27]. 
This phenomenon may be a consequence of a decline in 
dopaminergic neuromodulation, which increases neural 
noise and reduces distinctive cortical representations 
[28]. However, the distinctive cortical representations 
may be implicated in cognitive abilities such as working 
memory and executive control abilities [28]. The 
decreased functional connectivity between the 
hemispheres may imply a disrupted whole-brain net-
work and a reduced efficiency of information transfer 
between different brain regions. Regarding the SMN 
and DMN2, the unchanged interactions between the two 
hemispheres can be explained using a compensatory 
mechanism. The SMN is involved with motor tasks, and 
its altered functional connectivity has typically been 
associated with aging [29]. Previous studies have 
suggested that the segregation of the SMN is an age-
related decrease, which is highly correlated with 
sensorimotor performance [29, 30]. Additionally, the 
DMN2, including the posterior cingulate cortex and 
supramarginal gyrus, is a region necessary for episodic 
memory and working memory that are vulnerable to 
aging [31–33]. The unchanged inter-hemispheric 
integration of SMN and DMN2 may be helpful to 
complete the sensorimotor and memory tasks during 
healthy aging. Collectively, there are large-scale 
decreases in the functional connectivity with typical 
aging; however, there is also a compensatory mecha-
nism in the regions serving sensorimotor performance 
and episodic memory performance. 

Although the communication between the hemispheres 
decreased in general, the networks with increasing 
functional segregation were not symmetrical in the two 
hemispheres. This study found that with aging, the FPN 
and VAN in the left hemisphere had reduced inter-
hemispheric connectivity, while the DMN1, AN, and VN 
in the right hemisphere decreased functional connectivity 
with the opposite hemisphere. This asymmetric dis-
tribution of networks with increasing segregation may 
have been associated with lateralization-related changes in 
aging. The HAROLD claims that an age-related decrease 
in lateralization may result from the non-dominant 
hemisphere increasing activity as a compensatory 
mechanism. However, our findings seem to be 
inconsistent with an account based on the HAROLD 
model. Converging studies have proposed that the FPN is 
a right-hemisphere–lateralized network [34, 35]. In this 
study, the non-dominant hemisphere of the FPN did not 
show increased communication towards the opposite 
hemisphere as a compensatory effect; conversely, it 
decreases the connectivity between hemispheres. 
Therefore, we think that the increase in inter-hemispheric 
segregation in the left FPN cannot be explained by the 
HAROLD model. The decreased inter-hemispheric 
connectivity in the FPN may be a mechanism underlying 
executive control and working memory functional 
declines [36, 37]. In addition, the VAN is also right-
hemisphere lateralized and associated with “top-down” 
attention control [38]. More specifically, the right VAN 
can control the attention shift to both sides, whereas the 
left VAN only controls the attention shift to the right side 
[39]. Corbetta et al. proposed that the output of the VAN 
may serve as a “circuit-breaker” for the automatic 
processing of the DAN, such that the attention is 
reoriented to the object that is significant for individuals 
[40]. Therefore, the increased inter-hemispheric segrega-
tion in the left VAN, i.e., decreased communication 
between the bilateral VAN, may imply decreased top-
down attention control to the right side.  
 
The DMN1 shows left lateralization and contains key 
regions for long-term memory and auditory processing 
[41]. The dominant hemisphere of the MTL is involved 
with verbal memory, and the non-dominant hemisphere 
is involved with non-verbal memory [42]. It was 
discovered that the bilateral superior temporal cortex 
was involved in processing when the environmental 
noise did not overwhelm the auditory object, although 
the individuals relied on the left hemisphere since 
background noise was too high [42].Therefore, the 
disruptions in the right DMN1 may reflect cognitive 
decline in non-verbal memory instead of verbal 
memory, as well as the ability to acquire target auditory 
information from a noisy background. Although 
HAROLD is the prevailing theory regarding decreased 
hemispheric asymmetry in aging, James et al. 
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challenged this assumption by finding that lower 
asymmetry in aging was associated with less activation 
in the lateralized hemisphere instead of a compensatory 
effect of the contralateral hemisphere [43]. A previous 
study suggested that the AN is right-hemisphere 
lateralized and that the right AN is better integrated 
with the opposite hemisphere [44]. According to the 
proposal of James et al., we believe that the increased 
inter-hemispheric segregation of the right AN may 
imply a decrease in the integration ability of the 
dominant hemisphere of the AN. Similarly, there is 
evidence that the VN is strongly right-hemisphere 
lateralized and shows decreased right-hemisphere 
lateralization with age [45]. The increase in inter-
hemispheric segregation of the right VN may indicate a 
disruption in the dominant hemisphere of the VN. These 
findings confirmed that there is a hemispheric 
difference in the impact of age on network interaction 
patterns. Distinguishing the aging effect on brain 
network interaction patterns between the two 
hemispheres is helpful for understanding the brain 
network foundation of cognitive aging. 
 
On the other hand, some evidence has suggested that the 
whole-brain networks become more integrated with 
aging, which seems to contradict our findings [4]. These 
seemingly inconsistent findings may be because this 
study examined the age-related brain network 
interactions based on the hemispheric level instead of 
the whole-brain level. That is, the increased integration 
of whole-brain networks is the combination of the 
decreased integration of inter-hemispheric networks and 
increased integration of the intra-hemispheric networks. 
The further analysis of the results suggested that the 
intra-hemispheric integration in the DMN2 and VN 
increased with age, which also supports this hypothesis. 
Previous studies have shown that the FC between the 
anterior and posterior portions of the DMN might be a 
sensitive indicator of aging and are decreased in the 
elderly [46]. However, in this study, we divided the 
DMN into four sub-networks and calculated the intra-
hemispheric integration. The connectivity between the 
DMN2 and other networks may have compensated for 
the decreased FC between the DMN2 and DMN4. The 
increased intra-hemispheric integration in the VN and 
DMN with ageing may be explained by a com-
pensatory mechanism: the decreased inter-
hemispheric communication led to a decreased 
efficiency in information transfer between different 
brain networks, thus the increased intra-hemispheric 
connectivity is required. In addition, in the aging 
process, the right VAN showed decreased intra-
hemispheric integration, i.e., a disconnection between 
the right VAN and other networks, which correlated 
with the age-related decline in flexible attentional 
control [47]. 

Of additional interest, typical aging was accompanied 
by dynamic changes in community assignments within 
the two hemispheres. Concretely, the tendency for 
changes in the community assignments was similar 
between two hemispheres: the sub-components of the 
DMN gradually merged into a whole, parts of the nodes 
in the SN merged into the SMN and AN, and the VAN 
disappeared and blended into the FPN. First, we found 
that a decreased number of modules across age groups 
was in line with compelling evidence of age-related 
decreases in modularity due to decreased connections 
within specific functional networks or global changes 
throughout the networks [4, 13, 48]. Second, these 
results further support and provide more details about 
intra-hemispheric integration, especially the increasing 
intra-hemispheric integration in the DMN2, which 
means that other special functional regions within the 
default network (i.e., DMN3 and DMN4) were integrated 
with aging. Most aging-related fMRI research has focused 
on the DMN given that some disability-related regions are 
contained within it, such as the posterior cingulate cortex 
and the hippocampus, which have been viewed as critical 
neuro-pathological origins of Alzheimer’s disease [49, 
50]. Consistent with this, the two networks—DMN1 
(involved in the hippocampus) and DMN2 (including the 
posterior cingulate cortex)—maintained their own 
functional modularity with age but simultaneously needed 
to integrate other sub-components to maintain specific 
functions, such as memory performance [51]. Regarding 
functional modularity in the AN and SMN compensating 
by integrating the SN with age, one possible reason is that 
adjacent regions may be easily assimilated because of the 
spatial distance, which is consistent with increasing short-
range functional connectivity density hubs in the 
somatosensory network with age [17]. Similar functional 
dedifferentiation in the executive control system, for 
example, the VAN involvement in detecting unattended 
or unexpected stimuli, was integrated into the FPN and 
implicated in top-down attention control and guided 
allocation of attention [52]. It is noteworthy that the 
modularity in the VN remained stable with age, which 
may represent high-level functional segregation with a 
specialized role in the human brain. Overall, these 
preserved networks have been critically implicated in 
primary information processing, executive functions, 
and memory, which supports basic cognitive 
requirements for daily life in older people. 
 
Although our study extended the knowledge of brain 
functional connectivity in the aging process, the following 
limitations and considerations should be noted. First, we 
only explored the age-related effects in hemispheric 
functional interactions using resting-state fMRI data; 
however, the resting-state functional connectivity is 
constrained by the brain structural architecture (e.g., white 
matter streamlines [14, 53]). Thus, it is a promising topic 
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to investigate whether the changes in hemispheric 
functional patterns with aging are also associated with 
changes in structural connectivity. Furthermore, no 
conclusion could be drawn regarding the functional 
significance of the hemispheric interactions with aging in 
view of the lack of assessment of cognitive function 
indicators, such as executive function and fluid 
intelligence. Researchers are urged to determine the 
functional role of these hemispheric interactions in the 
aging process, such as the brain mechanism of cognition 
decline or adaptation to aging. Third, the symmetrical 
template used in this study was derived from the AAL 
atlas that was based on anatomic landmarks and may not 
fully represent the functional diversity in the brain cortex 
[54]. Overall, we believe that adopting a hemispheric-
level analysis to observe brain network interactions, along 
with examining multimodal MRI data and behavioral 
indicators, has the potential to greatly deepen our 
understanding of brain aging and its relationship to 
cognition decline in typical aging. 
 
MATERIALS AND METHODS 
 
Participants 
 
This sample was acquired from the Southwest University 
Adult Lifespan Dataset (SALD) exploring the 
developmental trajectories of brain structural and 
functional changes in healthy adults [55]. The SALD is 
available from http://fcon_1000.projects.nitrc.org/indi/ 
retro/sald.html. The dataset contains 494 participants (308 
females, aged 19 to 80 years), in which 60 participants 
were excluded according to a rigorous criterion for 
framewise displacement (FD > 0.2 mm; [7, 56]). Thus, the 
final sample was composed of 434 subjects (269 females; 
mean age = 44.44, SD = 17.28; age range = 19–80). All 
participants met the MRI-related exclusion criteria and did 
not have a history of psychiatric disorders, neurological 
disorders and psychiatric drug use (within the three 
months before scanning). This project was approved by 
the Ethics Committee of the Brain Imaging Center 
Review Board of Southwest University, and written 
informed consent was obtained for each participant. 
 
Image acquisition and preprocessing 
 
The MRI data were collected from a 3-T Siemens 
Magnetom Trio scanner (Siemens Medical, Erlangen, 
Germany) at the Brain Imaging Research Central in 
Southwest University. The resting-state functional 
images were acquired using gradient echo-planar 
imaging (GRE-EPI) sequences with the following 
parameters: repetition time (TR)/echo time 
(TE) = 2000/30 ms, slices = 32, flip angle = 90 degrees, 
field of view = 220× 220 mm2, resolution matrix = 
64×64, thickness = 3 mm, interslice gap = 1 mm, and 

acquisition voxel size = 3.4 × 3.4 × 4 mm3. During 
resting-state scanning, the subjects were instructed to 
remain awake with eyes closed and rest without 
thinking of anything in particular. Additionally, high-
resolution T1-weighted structural images were obtained 
using a magnetization-prepared rapid gradient echo 
(MPRAGE) sequence: TR = 1900 ms, TE = 2.52 ms, 
inversion time = 900 ms, flip angle = 9°, resolution 
matrix = 256 × 256, slices = 176, thickness = 1.0 mm, 
and voxel size = 1 × 1 × 1 mm3. 
 
Image preprocessing was performed using the Data 
Processing and Analysis for Brain Imaging (DPABI, 
[57]) implemented in the MATLAB 2016a (Math Works, 
Natick, MA) platform. Preprocessing steps included 
discarding the first 10 functional images, correcting for 
slice timing and head motion, co-registering functional 
data to the Montreal Neurological Institute (MNI) space 
via T1 image unified segmentation, spatially smoothing 
with a 4-mm full-width at half-maximum Gaussian 
kernel, bandpass filtering (0.01–0.1 Hz), and regressing 
out the confounding signals (white matter and 
cerebrospinal fluid) and 24 motion parameters [57]. 
Global signal correction was not employed considering 
that inter-hemispheric segregation and integration were 
computed using the functional connectivity between 
homotopic regions [58]. 
 
Functional network construction and community 
detection 
 
An absolutely symmetrical template excluding the 
cerebellum with 512 regions in each hemisphere was 
applied to calculate intra- and inter-hemispheric 
functional connectivity [59, 60]. First, region-wise SNR 
was measured via mean time series divided by the s.d. of 
the time series, and 25 paired regions were excluded due 
to inadequate signal (SNR > 2 s.d. above or < 2 s.d. below 
the group mean). Subsequently, a correlation matrix was 
calculated by correlating the time series of the remaining 
ROIs in each hemisphere for each subject. The Louvain 
method for community detection was adopted using 
relevant functions from the Brain Connectivity Toolbox 
[61]. First, the correlation matrix was Fisher z-
transformed, resulting in data that were normally 
distributed, and then empirical thresholding (0.2) was 
used to remove negative and weak functional connectivity 
values. Second, the optimal partitioning of all nodes in 
each hemisphere was detected by using the Louvain 
community detection algorithm with 150 repeated times 
in each subject to produce a stable and consensus matrix 
and avoid a stochastic partition [62]. Finally, the sum of 
the agreement matrices of the two hemispheres was 
calculated using a consensus algorithm (100 repetitions) 
to obtain more accurate partitions [63]. This method 
resulted in symmetrical networks in the two hemispheres. 

http://fcon_1000.projects.nitrc.org/indi/retro/sald.html.
http://fcon_1000.projects.nitrc.org/indi/retro/sald.html.
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Hemispheric segregation and integration 
 
In this study, we defined a measure of inter-hemispheric 
segregation as a way of quantifying the differences in 
within-hemisphere connectivity for a given network in 
relation to its between-hemisphere connectivity. 
Specifically, for a given network, within-hemisphere 
connectivity was estimated by summing the z-values of 
the correlations between nodes within the network to 
nodes in the same hemisphere. Conversely, between-
hemisphere connectivity was calculated by summing the 
z-values of the correlations between nodes within the 
network and nodes located in the contralateral network. 
The inter-hemispheric segregation was computed with 
the differences in the within-hemisphere summed 
magnitudes and the between-hemisphere summed 
magnitudes as a proportion of the within-hemisphere 
summed magnitudes, as noted in the following formula: 

 ll lr

ll

hemispheric segregatio
Z

Z
n

Z
=

−∑ ∑
∑   

where  llZ∑ means the summed Fisher z-transformed 

correlations between nodes within a given network with 
all nodes in the left hemisphere, and lrZ∑  means the 

summed Fisher z-transformed correlations between 
nodes within a given network in the left hemisphere 
with all nodes in the contralateral network. Higher 
values for inter-hemispheric segregation indicated that 
the network was connected to intra-hemispheric nodes 
to a greater extent, whereas lower values in hemispheric 
segregation indicated that the network was largely 
connected to nodes in the contralateral hemisphere. In 
addition, lrZ∑  also indicated the inter-hemispheric 

interaction for a given network located in the left 
hemisphere towards the right side. 
 
In addition, intra-hemispheric integration was evaluated 
by extending the measure of participation coefficient, 
which reflects the extent to which a node interacts with 
nodes in other networks. In this study, the intra-
hemispheric integration of a network was calculated as 
the mean participation coefficient [64] across all nodes 
in this network within each hemisphere. Higher values 
indicated that the network was more likely to take in 
other nodes from other networks to reorganize its 
system, whereas lower values indicated less 
communication with other networks within the same 
hemisphere. 
 
Statistical analysis 
 
First, we examined the Pearson correlation between 
inter-hemispheric segregation and age after controlling 
for the participant’s sex and mean FD. Then, we 

estimated the relationship between age and intra-
hemispheric integration after controlling for the 
participant’s sex and mean FD using Pearson 
correlation. For all analyses, the Bonferroni correction 
was used for multiple comparison corrections at α = 
0.05. Finally, we explored dynamic brain interactions at 
the system level across the lifespan by community 
detection. More specifically, we calculated the 
differences in the community assignments of nodes 
across the three age groups (early and middle adult: 
19-40 years; late adult: 41-60 years; and old: 61-80 
years).  
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 

 
 

 

 

 
 

Supplementary Figure 1. The relationship between age and inter-hemispheric functional connectivity for each network after 
controlling for the participant’s sex and mean FD. The blue fitted line indicates a given network in the left hemisphere interacted with 
all regions within the right hemisphere; the orange fitted line indicates a given network in the right hemisphere interacted with all regions 
within the left hemisphere. 
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Supplementary Figure 2. The relationship between age and intra-hemispheric integration in the left hemisphere (up) and 
right hemisphere (bottom) across a range of edge densities (1–10%). 
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Supplementary Table 
 
Supplementary Table 1. Correlation coefficients of age and inter-hemispheric segregation in each hemisphere for 11 
identified brain systems after controlling for the participant’s sex and mean FD. 

Brain system 
Left hemisphere Right hemisphere 

r p r p 
DMN1 0.08 0.102 0.30* <0.001 
DMN2 0.10 0.041 0.15 0.002 
DMN3 0.15 0.001 0.15 0.001 
DMN4 0.17* <0.001 0.12 0.01 
SMN 0.08 0.107 0.17* <0.001 
AN 0.03 0.501 0.37* <0.001 
SN 0.11 0.017 0.09 0.07 
VN 0.12 0.010 0.16 <0.001 
DAN 0.19* <0.001 0.19* <0.001 
FPN 0.30* <0.001 0.16 <0.001 
VAN 0.31* <0.001 0.15 0.001 

Note: * Bonferroni correction (p<0.01). 


