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INTRODUCTION 
 
The proportion of the population that is aging has been 
increasing yearly worldwide, which is mainly attributed 
to improvements in healthcare and reductions in fertility 
rates. Hence, research on preventive medicine for a 
pathophysiological understanding of geriatric diseases 
has gradually been taken more seriously for disease 
prevention and health promotion of older populations. 
Physiological aging can be considered a natural process 
of functional decline or disorder from molecular to 
systemic levels. The free radical theory originally 
proposed by Denham Harman is one of the famous 
theories to explain possible causes of aging [1, 2].  

 

Intracellular reactive oxygen species (ROS) or free 
radicals are mainly produced by nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase or leak from 
the mitochondrial electron transport chain. The 
progressive accumulation of ROS can induce oxidative 
stress and damage normal functions of macromolecules, 
such as nucleic acids, proteins, and lipids, resulting in 
some detrimental effects, e.g., mutations of nucleic 
acids, deactivation or destruction of proteins, and lipid 
peroxidation. Cobalt dichloride (CoCl2) was found to 
promote oxidative stress by producing free radicals in 
vivo and in vitro as well as mimicking chemical hypoxia 
by preventing the degradation of the intrinsic hypoxia 
marker, hypoxia-inducible factor (HIF)-1α [3–5]. ROS-
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ABSTRACT 
 
The relationship between aging and restenosis are unclear. The purposes of this study were to investigate the 
possible pathological role and mechanism of aging on formation of restenosis. Our data indicated that cell 
proliferation and migration of the oxidative stress-induced senescent vascular smooth muscle cells were 
obviously desensitized to stimulation by platelet-derived growth factor (PDGF)-BB, which may have been 
caused by suppression of promoter activity, transcription, translation, and activation levels of PDGF receptor 
(PDGFR)-β. The analyzed data obtained from the binding array of transcription factors (TFs) showed that 
binding levels of eighteen TFs on the PDGFR-β promoter region (-523 to -1) were significantly lower in 
senescent cells compared to those of non-senescent cells. Among these TFs, the bioinformatics prediction 
suggested that the putative binding sites of ten TFs were found in this promoter region. Of these, 
transcriptional levels of seven TFs were markedly reduced in senescent cells. The clinical data showed that the 
proportion of restenosis was relatively lower in the older group than that in the younger group. Our study 
results suggested that a PDGFR-β-mediated pathway was suppressed in aging cells, and our clinical data 
showed that age and the vascular status were slightly negatively correlated in overall participants. 
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mediated DNA damage and signaling pathways were 
proven to be associated with damage-induced cellular 
senescence [6]. Accordingly, cobalt dichloride is used as 
a hypoxia-mimicking agent to create cellular hypoxia 
and senescence (aging) by promoting the dramatic 
accumulation of intracellular ROS levels. 
 
Some cardiovascular diseases, such as atherosclerosis, 
myocardial hypertrophy, and hypertension, are 
positively associated with aging progression, but the 
aging effect on restenosis prevalence is unclear. 
Restenosis (or neointimal hyperplasia) is a common 
complication after the surgical interventions of balloon 
angioplasty and vascular stenting, the pathological 
mechanisms of which were shown to be involved in 
abnormal proliferation and migration of vascular 
smooth muscle cells (VSMCs). The critical roles of 
platelet-derived growth factor (PDGF) and its receptor 
(PDGF receptor-β; PDGFR-β) have been well studied  
in VSMC proliferation and migration as well as  
the development of restenosis [7–9]. Therefore, we 
attempted to investigate differences between normal and 
senescent VSMCs in terms of PDGF-stimulated cell 
proliferation and migration, as well as to clarify whether 

these responses are associated with the regulation of 
PDGFR-β. In addition, a clinical prospective study was 
also conducted to determine if a relationship exists 
between aging and the prevalence of restenosis. 
 
RESULTS 
 
Cobalt dichloride induced VSMC senescence 
 
HIF-1α, a critical transcription factor involved in 
hypoxia-mediated gene expression, was markedly 
upregulated at an early time point (6 hr) after treatment 
with several concentrations (0, 150, and 300 μM) of 
cobalt dichloride. An increased level of HIF-1α could 
still be detected at 72 hr post-treatment (Figure 1A). To 
identify the production of cellular senescence, 
senescence-associated β-galactosidase (SA-β-gal) activity 
within cells was detected by cytochemical staining 
(Figure 1B). Experimental results revealed that 72 hr of 
treatment with cobalt dichloride dose-dependently 
induced blue-green staining of a portion of cells, a 
representative feature of senescent cells. This result 
suggested that cell senescence was promoted under 
incubation condition with 300 μM CoCl2 for 72 hr. 

 

 
 

Figure 1. Identification of cellular senescence. A10 cells were incubated with various doses of cobalt dichloride (CoCl2) for 6 and 72 hr. 
The protein level of hypoxia-inducible factor (HIF)-1α was analyzed using Western blotting (A). Senescent cells were detected by 
cytochemical staining of SA-β-gal activity which appeared as a blue-green color (B). * p < 0.05 compared to the group without CoCl2 
treatment. 
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Cell proliferation and migration were reduced in 
senescent VSMCs 
 
To understand the influence of CoCl2-induced cellular 
senescence on VSMC proliferation and migration, both 
normal and senescent cells were incubated with PDGF-
BB for 24 hr. Data from the cell growth analysis 
suggested that the growth capacity of senescent cells had 
obviously decreased compared to normal cells (Figure 
2A). Likewise, cell migration of senescent VSMCs was 
insensitive to PDGF-BB-mediated stimulation according 
to data from the wound-healing assay (Figure 2B). 
 
Expression and activation levels of PDGFR-β and its 
downstream signaling molecules were suppressed in 
senescent VSMCs 
 
Regulations of the PDGFR-β gene and protein were 
analyzed in VSMCs treated with various concentrations 
(0, 150, and 300 μM) of CoCl2 for 72 hr. Our data 
indicated that CoCl2 treatment diminished gene and 
protein expressions of PDGFR-β in a dose-dependent 
manner (Figure 3A, 3B). Moreover, the phenomenon of 

PDGFR-β activation (phosphorylation) induced by 25 
ng/ml of PDGF-BB was also obviously attenuated in 
VSMCs treated with 300 μM CoCl2, the repression of 
which was very similar to the inhibitory effect of AG-
1295, a PDGFR blocker (Figure 3B). Likewise, activation 
levels of downstream signaling molecules of PDGFR-β, 
such as AKT, mTOR, and ERK1/2, were increased after 
PDGF-BB incubation, which was reversed by adding 25 
μM of AG-1295 to normal cells. However, the PDGF-
stimulated increases in the activations of AKT, mTOR, 
and ERK1/2 proteins were obviously reduced in cells 
incubated with 300 μM CoCl2 for 72 hr (Figure 3C). 
 
Promoter activity of PDGFR-β was reduced in 
senescent VSMCs 
 
To further understand the mechanism of downregulation 
of the PDGFR-β gene in senescent cells, several lengths 
(0.5, 1.0, 1.5, and 2.0 kb) of PDGFR-β promoter 
segments were cloned into a luciferase-based reporter 
vector, pGL4.10[Luc2], to measure their individual 
promoter activities (Figure 4A, 4B). The analyzed data 
indicated that the proximal segment ranging -523 to -1 of

 

 
 

Figure 2. Influence of cellular senescence on the proliferative and migratory capacities of A10 cells. Senescence was produced in 
cells by a 72-hr incubation with 300 μM CoCl2. After that, platelet-derived growth factor (PDGF)-BB-stimulated cell proliferation and 
migration were respectively analyzed by an MTT assay (A) and wound-healing analysis (B). * p < 0.05 compared to the normal cell group. 
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the PDGFR-β promoter possessed the highest promoter 
activity among all promoter segments (Figure 4C). 
Therefore, the constructed reporter vector with the 
proximal segment (-523 to -1) of the PDGFR-β promoter 

was further transfected into both normal and senescent 
cells, and the experimental data demonstrated that 
promoter activity was significantly reduced in senescent 
cells compared to that of normal cells (Figure 4D). 

 

 
 

Figure 3. Changes in platelet-derived growth factor (PDGF) receptor (PDGFR)-β-mediated pathways in senescent vascular 
smooth muscle cells (VSMCs). Cells were treated with different concentrations of CoCl2 for 72 hr. Expression and activation levels of 
PDGFR-β were analyzed using an RT-PCR (A) and Western blotting (B), respectively. The phosphorylation levels of the downstream signaling 
molecules of PDGFR-β were examined after 15 min of stimulation with 25 ng/ml PDGF-BB under serum-free condition (C). * p < 0.05, ** p < 
0.01 compared to the group treated with 10% FBS or PDGF-BB alone. 
 

 
 

Figure 4. Promoter deletion assay of platelet-derived growth factor receptor (PDGFR)-β. Four lengths of the PDGFR-β promoter 
(A) were individually constructed in a luciferase-based reporter vector to produce four pGL4.10[Luc2]-rPDGFR-β vectors (B). Individual 
promoter activities were measured in normal cells at 24 hr after transfection with the different pGL4.10[Luc2]-rPDGFR-β plasmids (C). 
Differences in promoter activities between normal and senescent cells with the PDGFR-β segment (0.5 kb) were measured (D). The 
transcription start site was defined as +1. ** p < 0.01 compared to the group transfected with the reporter vector with the proximal 
promoter (0.5 kb) of PDGFR-β. ‡ p < 0.01 compared to the normal cell group. 
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TF-binding profile analysis of the rat PDGFR-β 
promoter 
 
To evaluate differences in the binding profiles of 96 TFs 
on the proximal segment of the PDGFR-β promoter 
between normal and senescent cells, nuclear extracts 
isolated from normal or senescent cells were incubated 
with the proximal segment of the PDGFR-β promoter 
and a fluorescence-labeled competitive oligonucleotide 
probe to identify possible TF-DNA interactions using a 
commercial TF-DNA-binding assay kit. Our results 
showed that binding levels of 18 TFs obviously de-
creased (>2-fold difference) in senescent cells compared 
to those of normal cells (Table 1). Of these, binding 
levels of four TFs, including NFAT, SATB1, FOXD3, 
and PPAR, were more than 10-fold lower in senescent 
cells than that in normal cells. 
 
Bioinformatics prediction of potential TFBSs on the 
PDGFR-β promoter 
 
To investigate whether these 18 TFs can possibly interact 
with the proximal segment (-523 to -1) of the PDGFR-β 
promoter, potential binding sites of these TFs were 
analyzed and predicted by two TRANSFAC®-based 
bioinformatics on-line software programs (PROMO and 
MatInspector). According to the prediction results, 
putative binding sites of the TFs, including NFAT, 
SATB1, FOXD3, PPAR, TFIID, NRF1, Stat5, GR/PR, 
USF-1, and Pbx1, were predicted to be within the 
proximal segment (-523 to -1) of the PDGFR-β promoter 
(Figure 5). 
 
Gene expressions of candidate TFs in senescent 
VSMCs 
 
To clarify whether decreases in TF-binding levels could 
be attributed to reductions in TF expressions in 
senescent cells, transcriptional levels of these ten TFs 
were further measured using a quantitative polymerase 
chain reaction (qPCR). The experimental data showed 
that gene expressions of seven TFs, viz., NFATc4, 
SATB1, PPAR-α, TFIID, PR, STAT5, and Pbx1, were 
markedly reduced (>2-fold change) in senescent cells 
compared to those in normal cells (Figure 6). 
 
 
Analysis of the relationship between age and in-stent 
restenosis 
 
To understand possible relationships between age and 
in-stent restenosis, clinical records of coronary artery 
disease patients with vascular stenting were collected 
and divided into younger (<45 years old; n=8) and older 
(>60 years old; n=36) groups. The data indicated that 
proportions of restenosis were 75.0% and 55.6% in the 

younger and older groups, respectively (Table 2). 
Moreover, younger men with vascular stenting had a 
relatively higher proportion of restenosis compared to 
that in older men (75.0% vs. 60.0%). In the older group, 
the proportion of restenosis in men was relatively higher 
than that in women (60.0% vs. 45.5%). However, 
Pearson’s correlation test showed that no significant 
correlation (r = -0.057, p = 0.725) existed between age 
and the vascular status (with or without restenosis) in 
overall patients who had been followed-up 6 months 
after vascular stenting. Similarly, there was also no 
statistical correlation when analyzing different gender 
groups (r = -0.064, p = 0.735 for males; r = 0.176, p = 
0.606 for females). 
 
DISCUSSION 
 
Accumulating ROS, important regulators in aging 
progression, have been reported in aged arteries. In 
human carotid specimens, higher ROS levels were found 
in the older age group (>70 years old) [10]. Similarly, 
results obtained from rodent studies also showed that 
arterial oxidative stress was significantly higher in aged 
groups [11–13]. Accumulating ROS in aged arteries may 
contribute to mitochondrial dysfunction as well as 
imbalances in expressions or activities of oxidant/  
antioxidant enzymes, e.g., NADPH oxidase, nitric oxide 
synthase (NOS), superoxide dismutase (SOD), and 
catalase (CAT). For example, NADPH oxidase activity 
was upregulated in carotid arteries of older patients (>70 
years old), but no significant difference in SOD or CAT 
activities was detected between older and younger groups 
[10]. Moreover, upregulation of endothelial NOS 
expression and activity, accumulation of superoxide and 
protein nitrotyrosination, as well as a reduction in SOD 
activity were also obviously observed in the aortas of 
aged rodents [11–13]. In addition, it was documented that 
positive regulatory mechanisms of ROS on cellular 
senescence, a crucial event of aging, can be carried out 
by different regulatory routes including mitochondrial 
DNA damage, autophagy, microRNA induction, specific 
signaling pathways, etc [14]. Hence, CoCl2 was applied 
in the present study to promote accumulation of 
intracellular ROS and subsequent cellular senescence for 
mimicking a diseased situation of VSMCs within aging 
arteries. 
 
Previous studies observed that cultured human arterial 
VSMCs harvested from the aorta of older donors had a 
lower growth capacity than those from younger donors 
[15, 16]. Likewise, age-related inhibition in wall damage-
induced cell proliferation of VSMCs was also confirmed 
in aortas of aged rabbits [17]. It has been found that the 
enzymatic activity of senescence-associated beta-
galactosidase, a specific marker in senescent cells, was 
significantly increased in primary aortic VMSCs isolated 
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Table 1. Transcription factor-binding profile analysis of the rat platelet-derived growth factor receptor-β promoter 
(523 bp). 

No. Transcription factor Binding ratio of normal cells to senescent cells 
1 NFAT (nuclear factor of activated T-cells) 29.6 
2 SATB1 (special AT-rich sequence-binding protein 1) 19.4 
3 FOXD3 (Forkhead box D3) 19.0 
4 PPAR (peroxisome proliferator-activated receptor) 17.4 
5 MEF1 (myocyte enhancer factor 1) 8.9 
6 SMUC (Snail-related transcription factor Smuc) 8.4 
7 HOX4C (Homeobox 4C) 7.2 
8 TFIID (TATA box binding protein) 6.6 
9 TCF/LEF (Runt-related transcription factor 2) 5.1 
10 NRF1 (nuclear respiratory factor 1) 5.0 
11 COUP-TF (nuclear receptor subfamily 2, group F) 3.9 
12 PXR (pregnane X receptor) 3.9 
13 OCT4 (POU class 5 homeobox 1) 3.7 
14 Stat5 (signal transducer and activator of transcription 5) 3.5 
15 GR/PR (glucocorticoid receptor/progesterone receptor) 3.4 
16 USF-1 (upstream transcription factor 1) 3.4 
17 FOXG1 (FOXbox G1) 2.5 
18 Pbx1 (pre-B cell leukemia transcription factor-1) 2.1 

 

 
 

Figure 5. Bioinformatics prediction of putative transcription factor-binding sites (TFBSs) on the platelet-derived growth 
factor receptor (PDGFR)-β promoter. The putative TFBSs were analyzed on the PDGFR-β promoter region (-529 to -1). The sequence of 
the PDGFR-β promoter is presented as white text on a black background. The locations of the predicted TFBS are labeled below the PDGFR-β 
promoter sequence. Transcriptional start site was defined as the +1 position. 
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from old Brown Norway rats, which indicated VSMCs 
exhibited senescent phenotype in aged arterial tissues 
[18]. The occurrence of cellular senescence in aged 
arteries can explain part of the reasons in decrease of 
growth capacity of VSMCs. Our study demonstrated that 
VSMCs with CoCl2-induced senescence were 
desensitized to PDGF-BB-stimulated cell proliferation 
(Figure 2A). Additionally, our clinical data also found that 
although the older group (>60 years old) had a higher 
prevalence of atherosclerosis, the prevalence of restenosis 
was lower in older group than that of the younger group 
(Table 2). The pathological mechanisms of a lower 
restenosis prevalence in the aged group may partly be 
attributed to downregulation and deactivation of PDGFR-
β (Figure 3) as well as consequent desensitization to 
PDGF-BB-mediated cell growth and migration in 
senescent VMSCs (Figure 2). Similarly, other studies also 
demonstrated that a significant reduction in balloon 
injury-induced neointimal hyperplasia was found in aged 
Wistar rats (18~27 months) [19, 20]. Nevertheless, some 
researchers also provided opposite evidences that the 
aging group had a higher prevalence of restenosis. 
Vazquez-Padron et al. mentioned that aging exacerbated 
wire injury-induced neointimal formation and increased 
VSMC proliferation in aged female C57BL/6 mice (18 
months) [21]. Increased neointimal thickening in the 
carotid artery after balloon angioplasty was also found in 
aged Fischer 344 rats (22~24 months) [22–24]. These 
controversial results of an aging effect on the restenosis 
prevalence may have been caused by differences in 
patient characteristics, such as race, gender, selection 
criteria (e.g., comorbidity status), surgical interventions 
(e.g., balloon angioplasty vs. vascular stenting), medicinal 
interventions, and lifestyle factors (e.g., smoking). 
 

 
 

Figure 6. Quantifications of gene levels of candidate 
transcription factors. Transcriptional expressions of candidate 
transcription factors in normal and senescent cells were analyzed 
by a real-time PCR. Gene expression is shown as the log2 
(multiple of change) of the transcription factors after senescence 
induction. 

Table 2. Demographic data of coronary artery disease 
patients with vascular stenting. 

 Younger  
(<45 years old) 

Older  
(>60 years old) 

Total participants 8 36 
Male 8 25 
Female 0 11 
Average age (years) 39.8 ± 4.0 73.3 ± 8.3 
Proportion with 
restenosis (%) 

6/8 (75.0%) 20/36 (55.6%) 

 Male (%) 6/8 (75.0%) 15/25 (60.0%) 
 Female (%) 0/0 (-) 5/11 (45.5%) 

* Vascular status (with or without restenosis) of patients 
was diagnosed at the first follow-up visit, and the follow-
up duration of patients was about 6 months. 
 

In the present study, a high-throughput binding array of 
TFs was used to recognize potential interactions between 
candidate TFs and the PDGFR-β promoter region (-523 
to -1) in normal VSMCs and those with CoCl2-induced 
senescence. Our analytical results suggested that binding 
levels of 18 TFs were significantly reduced in senescent 
VSMCs (Table 1). After further assessment by a 
bioinformatics analysis and gene quantification, putative 
binding sites of seven TFs were found to be in the 
analyzed region (-523 to -1) of the PDGFR-β promoter, 
and gene levels of these TFs were obviously reduced in 
CoCl2-induced senescent cells (Figures 6, 7). Of these, 
some TFs can be modulated by oxidative stress and play 
critical roles in cellular senescence as well as cell growth 
and migration. NFAT is a calcium-dependent TF 
involved in phenotypic modulation of VSMCs, which 
was demonstrated to promote VSMC motility by some 
agonists (e.g., PDGF-BB and thrombin) of receptor 
tyrosine kinases or G protein-couple receptors [25, 26]. 
Use of the NFAT inhibitor, A-285222, was demonstrated 
to decrease serum-induced cell proliferation of cultured 
VSMCs [27]. Peroxisome proliferator-activated receptor 
(PPAR)-α, a redox-sensitive TF, is involved in lipid 
metabolism, and its agonists, such as fibrates, have been 
used in the clinic to reduce hypertriglyceridemia. 
Moreover, clofibrate, a PPAR-α agonist, was also 
confirmed to protect the heart from myocardial ischemia-
induced oxidative damage by increasing expressions and 
activities of antioxidant enzymes, including SOD and 
CAT, as well as by decreasing expressions of angiotensin 
(Ang) II and the Ang II type 1 receptor [28]. In addition, 
the PPAR-α protein was expressed by various cardio-
vascular cells (e.g., human aortic smooth muscle cells 
and endothelial cells) and was found to participate in 
balloon angioplasty-induced restenosis [29]. Interes-
tingly, transcription levels of PPAR-α were found to be 
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reduced in aged rodents [30, 31]. Lena et al. mentioned 
that microRNA 191 can directly target the 3’ 
untranslated region of SATB1 mRNA to trigger 
keratinocyte senescence, which shows a possible role of 
SATB1 in the process of cellular senescence [32]. TFIID 
consists of the TATA-box-binding protein (TBP) and 
TBP-associated factors (TAFs), which form a pre-
initiation complex to enhance the recruitment of RNA 
polymerase II and subsequent gene transcription. In 
VSMCs, an oxidative stress-mediated increase in the 
binding of p53 to the TBP was shown to reduce 
associations of TBP-DNA and thus suppress gene 
transcription [33]. In leukemic and hematopoietic cells, 
STAT5 promoted cell proliferation and differentiation as 
well as antiapoptotic activities [34, 35]. Similarly, 
STAT5 also plays a critical role in promoting thrombin-
mediated VSMC growth and motility [36]. STAT5 
signaling has been applied as a therapeutic target for 
cancer therapy [37]. It was revealed that Pbx1 provides a 
beneficial effect of protecting against oxidative stress by 
increasing Nfe2l1 (also called NRF1), and decreasing 
levels of both TFs were found in midbrain dopaminergic 
neurons of Parkinson's patients [38]. Pathological 
mechanisms of Parkinson's disease have been partially 
linked as contributing to cellular senescence in 
dopaminergic neurodegeneration [39]. In VSMCs with 
CoCl2-induced senescence, transcriptional levels of Pbx1 
and NRF1 were also reduced. 

Epigenetic modifications, including DNA methylation 
and histone acetylation, were demonstrated to 
influence gene transcription by changing binding 
affinities of TFs to their specific cis-regulatory 
sequence [40, 41]. Some regulatory mechanisms of 
ROS-dependent epigenetic modifications in aging 
were also previously documented [42]. Thus, binding 
levels of TFs on the PDGFR-β promoter should be 
affected not only by the total amount of active TFs but 
also by epigenetic changes in the promoter region. 
However, epigenetic modifications did not affect 
changes in binding levels in the current experiment 
because the PCR-amplified promoter sequences had no 
epigenetic modifications. Hence, differences in TF-
binding levels between normal and senescent VSMCs 
should mainly be affected by the decrease of active 
TFs in the experiment of TF-binding array (Table 1). 
Gene quantification results of candidate TFs also 
supported this argument (Figure 6). So, the 
suppressions of gene expression and promoter activity 
of PDGFR-β should also be partially attributed to 
reductions of active TFs in CoCl2-senescent VSMCs 
(Figures 3A, 4). Although differences in TF-binding 
levels may mainly be affected by decreases in active 
TFs based on current data, epigenetic changes and 
related mechanisms of the PDGFR-β promoter in 
CoCl2-induced senescent VSMCs still need to be 
clarified in the future. 

 

 
 

Figure 7. Schematic overview of the possible pathological role and influence of vascular smooth muscle cell (VSMC) 
senescence on neointimal hyperplasia (restenosis). 
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PDGFRs, transmembrane tyrosine kinase receptors, 
have two isoforms named PDGFR-α and PDGFR-β, 
which are activated by the PDGF and then dimerized to 
trigger signaling pathways involved in cell proliferation, 
migration, and differentiation [43, 44]. The mitogen-
activated protein kinase (MAPK)-ERK1/2 and phospho-
inositide 3-kinase (PI3K)-AKT-mTOR axes are two 
critical downstream signaling pathways of the PDGFR 
that participate in PDGF-stimulated VSMC pro-
liferation and migration [45]. Numerous evidences have 
shown that PDGF-BB and PDGFR-β are upregulated in 
balloon angioplasty-injured arteries and are positively 
associated with neointimal formation [8, 46, 47]. Thus, 
PDGFR antagonists have been developed as therapeutic 
strategies to prevent neointimal hyperplasia [48]. Our 
data showed that PDGF-BB stimulated activations of 
the AKT, mTOR, and ERK1/2 proteins, which were 
markedly decreased in CoCl2-induced senescent 
VSMCs compared to those of normal VSMCs (Figure 
3C). These reductions in downstream signaling 
molecules may be partially attributed to deactivation of 
the PDGFR-β protein (Figure 3B). Summarizing these 
experimental results, the expression or activation 
changes of PDGF-β and its downstream signaling 
pathways in CoCl2-induced senescent VSMCs could 
provide some pathological mechanisms to support our 
clinical finding of why the prevalence of restenosis 
was reduced in the aged population (Figure 7, Table 
2). 
 
According to the newest statistical report from the 
American Heart Association, the prevalence of coronary 
heart disease (CHD) has an increasing trend with age 
and shows a significant difference between women and 
men [49], which suggests that CHD is an age-related 
disease and its prevalence has a gender difference. Data 
of this report were separated into four age groups 
(20~39, 40~59, 60~79, and ≥80 years), and results 
indicated that the CHD prevalence was positively 
correlated with age in both genders (0.6%, 6.1%, 
19.7%, and 30.6% in males; 0.7%, 5.4%, 11.0%, and 
21.7% in females). The female population aged more 
than 39 years always had a lower prevalence than that in 
males. Moreover, the difference in prevalence between 
two genders had a tendency to gradually increase with 
age, and the largest difference in CHD prevalence 
between genders was about 8.9% in the oldest group. 
Cardiovascular protection by female hormones may be 
part of the possible reason explaining CHD prevention 
in women [50]. Accordingly, the CHD prevalence 
should be relatively higher in older or male populations 
than that in younger or female ones. Our analyzed data 
also showed a similar trend of >81% of all participants 
(44 persons) belonging to the older group (>60 years 
old), and 69.4% of older participants were men (Table 
2). To date, the correlation between age and in-stent 

restenosis is unclear. Our data implied that there was  
a slight negative correlation between age and the 
prevalence of restenosis (r = -0.057, p = 0.725). In 
addition, our data showed that the female group might 
have a lower proportion of restenosis than the male 
group. A previous study also showed a similar finding 
supporting a gender difference in the prevalence of 
restenosis, and women presented a lower risk of 
restenosis after vascular stenting [51]. Estrogen may 
play a critical protective role in reducing the formation 
of restenosis by accelerating endothelial cell growth and 
inhibiting VSMC proliferation and migration [52, 53]. 
However, our study had few female participants with 
CHD in the younger group, which could have mainly 
been due to the following reasons. First, female 
hormones provide some cardiovascular effects to reduce 
the probability or prevalence of CHD in younger 
women. Second, participants with diabetes mellitus, a 
highly prevalent comorbidity in CHD patients and a 
major risk factor for in-stent restenosis, were excluded 
from our study to avoid confounding from diabetes 
mellitus [54]. 
 
The possible relationship between expression of the 
PDGF receptor and cellular senescence has been 
explored previously. Aoyagi et al. indicated that 
kinetics of PDGF-BB binding and the expression of 
beta-subunit of the PDGF receptor were prominently 
reduced during cellular senescence in human VSMCs 
from the three strains [55]. Furthermore, tyrosine 
phosphorylation of the PDGF receptor was also greater 
higher in young VSMCs than that in aged cells. 
Besides, it has also been demonstrated that RNA and 
protein expressions of PDGFR-β were significant 
diminished in replicative senescent cells and oxidative 
stress-induced premature senescent cells [56]. In our 
study, transcriptional, translational and activation levels 
of PDGFR-β have also been markedly suppressed in 
oxidative stress-induced senescent VSMCs (Figure 3). 
PDGF/PDGFR-β signaling pathway plays a critical role 
in the progression of neointimal hyperplasia (restenosis) 
through stimulating VSMC proliferation and migration. 
Thereby, multiple suppressions of PDGFR-β provided 
partial mechanisms to explain why senescent VSMCs 
was insensitive to PDGF-BB-mediated stimulation 
(Figure 2) and prevalence of restenosis was lower in 
aged population (Table 2). Despite previous studies 
have collectively linked the causality among senescent 
VSMCs, PDGFR-β suppression, and prevalence of 
restenosis in aged arteries. However, in the future, we 
can still use the rat’s model introduced with balloon 
angioplasty to further verify the changes of expression 
profiles in PDGFR-β and its downstream molecules as 
well as PDGFR-β expression-associated transcription 
factors within the balloon-injured region of arteries 
between younger and older rats 
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Our data from cellular studies suggested that oxidative 
stress-induced senescent VSMCs are insensitive to 
stimulation by PDBF-BB, a critical restenosis-promoting 
factor in cell proliferation and migration. This pheno-
menon could very possibly help prevent formation of 
neointimal hyperplasia (or restenosis). Although our 
clinical study provides some clues that the proportion of 
restenosis was relatively lower in the older population 
than in the younger population, the small sample size of 
eligible participants is a limitation restricting the 
evaluation of the statistical correlation between age and 
the prevalence of restenosis. In addition, this study also 
lacked experimental data from an in vivo study, such as 
an animal aging model, to verify the pathological 
mechanisms and findings obtained from cellular studies 
as well as to provide direct and reliable evidence linking 
the experimental results from the cellular level to the 
clinic. 
 
Taken together, decreases in binding levels and gene 
expressions of some TFs might play critical roles 
resulting in suppression of the PDGFR-β gene in 
senescent VSMCs. Subsequently, a desensitization 
phenomenon of senescent VSMCs to PDGF-BB-
stimulated cell proliferation and migration occurred. 
Although our clinical data indicated that the older 
population had a relatively low proportion of in-stent 
restenosis compared to the younger population, more 
participants and in vivo experiments are still needed to 
clarify the relationship between age and the prevalence of 
restenosis. 
 
MATERIALS AND METHODS 
 
Chemicals and reagents 
 
Dulbecco’s modified Eagle medium (DMEM; #12800-
017) was purchased from Gibco (Rockville, MD, USA). 
Hyclone™ Antibiotic Antimycotic solution 
(#SV30079.01) and fetal bovine serum (FBS; FetalClone 
III™, #SH30109.03) were procured from GE Healthcare 
Life Sciences (Chicago, IL, USA). Primary antibodies 
against phospho-AKT (#GTX50128), PDGFR-β 
(#GTX61115), phospho-PDGFR-β (#GTX61797), and 
HIF-1α (#GTX127309), as well as horseradish 
peroxidase (HRP)-conjugated secondary antibodies 
against mouse (#GTX213112-01) and rabbit 
(#GTX213110-01) immunoglobulin G (IgG) were 
purchased from GeneTex (Irvine, CA, USA). Antibodies 
detecting β-actin (#66009-1-Ig), phospho-extracellular 
signal-regulated kinase 1/2 (ERK1/2; #05-797R), and 
phospho-mammalian target of rapamycin (mTOR; 
#ab109268) were respectively obtained from Proteintech 
(Rosemont, IL, USA), Millipore (Bedford, MA, USA), 
and Abcam (Cambridge, MA, USA). Recombinant 
human PDGF-BB (#100-14B) and AG-1295 (#14529), a 

PDGFR-β inhibitor, were respectively bought from 
PeproTech (Rocky Hill, NJ, USA) and Cayman 
Chemical (Ann Arbor, MI, USA). Cobalt dichloride 
(#C8661) was obtained from Sigma-Aldrich (St. Louis, 
MO, USA). 
 
Cell culture 
 
A10 cells (#60082), a cell line of rat thoracic aorta 
smooth muscle, were obtained from the Bioresource 
Collection and Research Center (Hsinchu, Taiwan) and 
maintained in DMEM supplemented with 10% (v/v) 
FBS and a 100x-diluted antibiotic antimycotic solution. 
Cells were kept at 37°C in a humidified incubator with 
5% (v/v) CO2 and 95% (v/v) air. The culture medium 
was refreshed every 2~3 days. 
 
Induction and identification of cellular senescence 
 
Cellular senescence of A10 cells was induced by 72 hr 
of incubation with cobalt dichloride at a concentration of 
150 or 300 μM, and was identified by detecting 
intracellular senescence-associated beta-galactosidase 
(SA-β-gal) activity according to previous reports [57, 
58]. Briefly, cells were washed twice with 1× phosphate-
buffered saline (PBS), fixed with a 2% (v/v) 
glutaraldehyde-PBS solution for 5 min at room 
temperature, washed three times in PBS for 1 min each, 
and then stained with a staining solution containing 40 
mM of citric acid/Na phosphate buffer (pH 6.0), 5 mM 
of K4[Fe(CN)6]·3H2O, 5 mM K3[Fe(CN)6], 150 mM 
sodium chloride, 2 mM magnesium chloride, and 1 
mg/mL X-gal. After overnight incubation at 37°C, cells 
were washed twice with PBS for 30 s each, rinsed with 
methanol, and air-dried. Subsequently, cells were 
photographed using ToupView™ image acquisition 
software (ToupTek Photonics, Zhejiang, China) at 40× 
magnification under an inverted microscope (#Eclipse 
TS100; Nikon, Melville, NY, USA) equipped with a 
digital camera (#E3ISPM06300KPA-IP106300A; 
Suzhou Vision Photonics, Jiangsu, China). 
 
Cell growth analysis by a 3-[4,5-dimethyl thiazol-2-
yl]- 2,5-diphenyl tetrazolium bromide (MTT) assay 
 
These experiments were carried out according to our 
previous study [59]. Briefly, cells (104 cells/well) were 
seeded on a 96-well plate for 24 hr of adaptation. After 
that, the culture medium was refreshed with serum-free 
medium with or without 25 ng/mL PDGF-BB. After 24 
hr of incubation, cells were treated with 5 mg/mL of 
MTT for 2 hr. Subsequently, cells were washed with 
PBS, and then 100 μL of dimethyl sulfoxide (DMSO) 
was added to each well. Absorbance values at 570 nm 
were determined for each well using 650 nm as the 
reference wavelength. Cell growth is presented as the 
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ratio (multiple of change) of the absorbance of cells 
treated with PDGF-BB to that without PDGF-BB 
treatment. 
 
Wound-healing assay 
 
This experimental procedure was according to a method 
described in our previous study [60]. Briefly, cells were 
seeded on 12-well plates (5 × 105 cells/well). After 24 hr 
of serum-free starvation, a pipette tip was used to create 
an original cell-free region on the confluent cell 
monolayer, which was then photographed at 0 hr under a 
microscope at 40× magnification. After that, cells were 
treated with 6 ng/mL of PDGF-BB. At 16 hr after 
treatment, the cell number within the original cell-free 
region was counted on photographic images using the 
particle analysis function of Image J analytical software 
(National Institutes of Health (NIH), Bethesda, MD, 
USA) according to the official web-based manual 
(https://imagej.net/Particle_Analysis). The extent of cell 
migration is shown as the multiple of change of 
migrating cell numbers compared to the normal cell 
group. 
 
Immunoblotting 
 
Immunoblot experiments were carried out as described 
previously [59]. Harvested cells were lysed using lysis 
buffer containing 25 mM Tris-HCl (pH 7.6), 150 mM 
NaCl, 0.1% (w/v) sodium dodecylsulfate (SDS),  
5 mM ethylenediaminetetraacetic acid (EDTA; pH 8.0), 1 
mM dithiothreitol (DTT), 1% (v/v) Triton X-100,  
20% (v/v) glycerol, a proteinase inhibitor cocktail 
(#4693159001; cOmplete™; Roche, Basel, Switzerland), 
and a phosphatase inhibitor cocktail (#04906837001; 
PhosSTOP™; Roche). Cell lysates were further 
centrifuged at 13,000 ×g and 4 °C for 10 min to collect 
the supernatants for SDS-polyacrylamide gel 
electrophoresis (PAGE). Protein concentrations were 
measured with a Bio-Rad protein assay kit (Bio-Rad, 
Hercules, CA, USA) according to the manufacturer’s 
instructions. Aliquots containing 30 μg of protein were 
electrophoresed using 10% slab SDS-PAGE gels and 
then transferred to polyvinylidene difluoride membranes 
(Immun-bot®; Bio-Rad). After blocking non-specific 
binding sites with 5% (w/v) non-fat milk at room 
temperature for 1 h, the membrane was incubated with 
primary antibodies overnight at 4°C, followed by HRP-
conjugated secondary antibodies at 4°C for 3 hr. 
Substrates were visualized using a T-Pro LumiLong Plus 
Chemiluminescent Substrate Kit (T-Pro Biotechnology, 
New Taipei City, Taiwan). The luminescence signal was 
acquired by the Azure C300 imaging System (Azure 
Biosystems, Dublin, CA, USA) and quantified using 
AzureSpot software (v14.0; Azure Biosystems). Results 
for each experiment were normalized to the band density 

of β-actin. The relative protein expression of the group 
without CoCl2 treatment was defined as 100%. 
 
Analysis of gene expressions 
 
The procedures examining gene expressions were 
conducted according to our previous study [61]. Briefly, 
1 mL of 3-Zol™ reagent (#2001; MDBio, Taipei, 
Taiwan) was added to harvested cells, which were then 
vortexed for 30 s and incubated on ice for 5 min. After 
that, 0.2 mL of chloroform was added to the cell lysate, 
vortex-mixed for 15 s, and incubated at room temperature 
for 3 min. After centrifugation at 12,000 ×g for 15 min, 
the aqueous phase was transferred to a clean tube, 
precipitated with 0.5 mL of isopropanol, and centrifuged 
at 12,000 ×g for 15 min. The pellet was then washed with 
1 ml of 75% (v/v) cold ethanol prepared with 0.1% (v/v) 
diethyl pyrocarbonate (DEPC)-treated water, centrifuged 
at 12,000 ×g at 4°C for 15 min, dried for 20 min at room 
temperature, re-suspended in 50 μL DEPC-treated water, 
and stored at -80°C. 
 
Complementary (c)DNA synthesis was carried out using 
the ReverTra Ace set (#PU-TRT-200; TOYOBO, Osaka, 
Japan) according to the manufacturer’s manual. Briefly, 1 
μg of total RNA was supplemented in a total reaction 
volume of 20 μL with 1× reverse-transcription buffer, 1 
mM dNTPs, 0.5 nM oligo(dT)20, 0.5 units of an RNase 
inhibitor, and 5 units of ReverTra Ace (reverse 
transcriptase). After incubation for 20 min at 42°C, the 
mixture was incubated for 5 min at 99°C to denature the 
products. Finally, the cDNA product was stored at -80°C. 
 
A traditional polymerase chain reaction (PCR) was 
conducted using the OnePCR™ HotStar system 
(#SM206-0100; GeneDireX, Miaoli, Taiwan) in a 
thermocycler (Labcycler™; SensoQuest, Gottingen, 
Germany). Briefly, the reaction mixture contained 1 μg 
cDNA, 0.2 μM primer (Table 3), and 25 μL of the 
OnePCR™ HotStar reagent in a total volume of 50 μL. 
After hot-start activation for 5 min at 94°C, 20~35 
cycles were carried out, each consisting of 30 s at 94°C, 
1 min at 60°C, and 2 min at 72 °C. PCR products were 
electrophoresed on a 2% agarose gel in 0.5× Tris-borate-
EDTA (TBE) running buffer at 100 V for 1 h. DNA 
bands were visualized with a fluorescent dye (Novel 
Juice™; GeneDireX, Taichung, Taiwan). The band 
signals were acquired and quantified with the Azure 
C300 imaging System and AzureSpot software (Azure 
Biosystems), respectively. The band intensity of 
PDGFR-β was normalized to that of the internal control 
(GAPDH), and the relative gene expression of the group 
without CoCl2 treatment was defined as 100%. 
 
A real-time PCR was performed using the Smart Quant 
Green Master Mix with dUTP and ROX (#SA-SQGR-

https://imagej.net/Particle_Analysis
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Table 3. Information of PCR primers. 

No. Gene name (accession no.) Sequences of primer pairs 

1 COUP-TF (NM_080778.2) 
CCAACCGGAACTGTCCCATC 
TGCAAACTGCCCGTGAGTAG 

2 FOXD3 (XM_008763960.1) 
GGGCAAGGGTAACTACTGGAC 
TAGGCTCCGAAGCTCTGCATC 

3 GAPDH (NM_017008.4) 
ATCAAGAAGGTGGTGAAGCAGGCG 
GGGATGGAATTGTGAGGGAGATGCTC 

4 NFATc1 (NM_001244933.1) 
CAGCTACCCGGTCATTGGAG 
CTTGCACAGGTCTCGGTCAG 

5 NFATc2 (NM_001107805.1) 
CAGTCAAACAGGAGCAGAACC 
AAGGCGTCGTGCGATACTG 

6 NFATc3 (XM_008772519.1) 
GTGGCCATCCTGTTGTGAAG 
TCCAGTAATGCGATGCACCTG 

7 NFATc4 (NM_001107264.1) 
GGATCCAACTTCCTGCCAGAC 
GGGATGGTCAGAGTCAGTGTC 

8 NRF1 (NM_001100708) 
CCGTTGGAGCACTTACTGGAG 
CATTACTTCCGCCATAATGAATCCC 

9 OCT4 (NM_001009178) 
GTGAAGTTGGAGAAGGTGGAAC 
GTGAAGTTGGAGAAGGTGGAAC 

10 Pbx1 (NM_001134862.1) 
GAAGTGCGGCATCACAGTCTC 
TTCCATGGGCTGACACATTGG 

11 PDGFR-β (XM_006254789) 
ATCCCAGATACACCCCACGATG 
TCCTTACTCCCCAGACACTTGC 

12 PDGFR-β promoter (2 kb; -2001 ~ -1) 
AGACTCGAGTGGGACTGGAGAAGAGGAAGG 
AAAGAGATCTGGGCCGATTCTGATTGGCCAAGCTTG 

13 PDGFR-β promoter (1.5 kb; -1526 ~ -1) 
GGCACTCGAGTGGGTGACCTCGGGCAATC 
AAAGAGATCTGGGCCGATTCTGATTGGCCAAGCTTG 

14 PDGFR-β promoter (1 kb; -1021 ~ -1) 
GCTTCTCGAGCTTGCTGCTTCTGGAGTCTAAGAATAC 
AAAGAGATCTGGGCCGATTCTGATTGGCCAAGCTTG 

15 PDGFR-β promoter (0.5 kb; -523 ~ -1) 
ACTACTCGAGGTATCAGCGCTTCGTTTACAGATG 
AAAGAGATCTGGGCCGATTCTGATTGGCCAAGCTTG 

16 PPAR-α (NM_013196) 
GCGAGCCAAGACTGAAGTTC 
TCTGCTTCAAGTGGGGAGAG 

17 PPAR-β (AJ306400) 
TATCCGCAAGCCCTTCAGTG 
GCAAGGTCTCACTCTCCGTC 

18 PPAR-γ (NM_013124) 
AGATCCTCCTGTTGACCCAGAG 
CCACAGAGCTGATTCCGAAG 

19 PXR (NM_052980.2) 
CCCTCACCCTTCAAAGTGGAC 
CATGGTTCCACCTCTCCTCAG 

20 SATB1 (NM_001012129) 
ATACAATTTCAGGGGAAGTCGC 
CAGATCACCTGCCAGAACAC 

21 STAT5 (NM_017064.1) 
GGCTCACTACAACATGTACCCA 
AGCGTTCAGGACAAGGAGCTT 

22 TFIID (NM_001004198) 
ACCGTACATCTCAGCTGCTTC 
ATCGTCACGCACCATGAAAC 

23 USF-1 (NM_031777.2) 
GGAAATTGGCGACTGAAGCG 
CTGTCCCCTCTTCGGTTTCG 
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V2-1ml; Protech, Taipei, Taiwan) in an ABI Prism 7300 
sequence detector (Applied Biosystems, Foster City, 
CA, USA) according to the procedure of our previous 
study with minor modifications [61]. The reaction 
mixture contained 1 μg cDNA, 2 μL of each primer (10 
μM), and 10 μL of the Master Mix in a total volume of 
20 μL. After hot-start activation for 15 min at 95°C, 40 
cycles were carried out, each consisting of 15 s at 95°C, 
15 s at 59°C, and 30 s at 72°C. The primer pairs used for 
the real-time PCR are listed in Table 3. The relative 
transcript expression was calculated using the equation 
2–∆∆Ct, and results are presented as multiples of change 
relative to the control group. 
 
Plasmid construction and promoter activity assay 
 
The sequence of the potential promoter region (ranging -
2001 to -1) of the rat PDGFR-β was identified by 
aligning sequences of PDGFR-β messenger (m)RNA 
(#XM_006254789) and a chromosome 18 fragment 
(#NC_005117) obtained from the GenBank genetic 
sequence database. Four promoter segments of different 
lengths, of 2001, 1526, 1021, and 523 bp, were 
individually amplified by a PCR using appropriate 
primer pairs with restriction enzyme recognition 
sequences (Table 3). Amplified promoter segments were 
further cloned into the pGL4.10[Luc2] plasmid (#E6651; 
Promega, Madison, WI, USA) using digestion of the 
restriction enzymes, XhoI (#R6161; Promega) and BglII 
(#R6081; Promega), to construct four complete reporter 
plasmids, pGL4.10[Luc2]-rPDGFR-β, with different 
PDGFR-β promoter regions. The promoter sequence 
within the recombinant plasmids was verified with 
Sanger sequencing conducted by Mission Biotech 
(Taipei, Taiwan). 
 
Cells seeded on 6-well plates (at ca. 80% cell 
confluence) were transfected with the four individual 
pGL4.10[Luc2]-rPDGFR-β plasmids using the 
TransIT®-LT1 transfection reagent (#2300; Mirus Bio 
LLC, Madison, WI, USA) according to the procedure in 
the manufacturer’s manual. In brief, 2.5 μg of plasmid 
DNA was mixed with 250 μL serum-free culture 
medium and then mixed with 7.5 μL of transfection 
reagent for a 30-min incubation at room temperature to 
form a stable complex of plasmid DNA/transfection 
reagent. After that, medium within the wells was 
refreshed with 2.5 mL of culture medium, and the 
mixture of plasmid DNA/transfection reagent complex 
was added drop-wise to different areas of the wells. 
After a 24-h incubation for cell transfection, PDGFR-β 
promoter activity was measured with a commercial 
luciferase assay system kit (#E4030; Promega) in 
accordance with the manufacturer’s instructions. Briefly, 
cells were washed twice with PBS, and then 200 μL of 
1× Reporter lysis buffer was added to each well. After a 

15-min incubation at -20°C, cell lysates were harvested, 
vortexed for 15 s, and then centrifuged at 13,000 rpm for 
5 min at 4°C. After that, 20 μL of supernatant was mixed 
with 100 μL of luciferase assay reagent. The luminescent 
signal (or relative light units; RLU) of cell supernatants 
was detected with a luminometer (Varioskan™ Flash; 
Thermo Scientific, Waltham, MA, USA) with the 
following parameters: a 2-s measurement delay followed 
by a 10-s measurement read. The RLU value was further 
normalized to the protein concentration from the same 
cell supernatant. Finally, the normalized RLU value of 
the pGL4.10[Luc2]-rPDGFR-β plasmid with the 0.5-kb 
promoter segment was defined as 100%. 
 
Analysis of a TF-binding array 
 
Nuclear proteins were extracted using the Nuclear 
Extraction Kit (#SK-0001; Signosis, Santa Clara, CA, 
USA) according to the manufacturer’s instructions. A rat 
PDGFR-β promoter segment (523 bp; -523 to -1) was 
amplified using a PCR, and PCR clean-up was 
conducted using a Plus DNA clean/Extraction kit 
(#DP034P; GMbiolab, Taichung, Taiwan). After that, 
binding profiles of 96 TFs on the rat’s PDGFR-β 
promoter segment were examined using Promoter-
Binding TF Profiling Plate Array II (#FA-2002; 
Signosis). Briefly, 8 μg of the nuclear extract, 0.3 μM of 
the PDGFR-β promoter segment, and a competitive 
biotin-labeled TF oligo probe were well mixed and then 
incubated in the TF binding buffer mixed solution for 30 
min at room temperature. Subsequently, the TF-bound 
oligo probes were separated using a membrane-based 
spin column (Isolation column) and then hybridized with 
complementary sequences labeled in different wells of a 
96-well plate. After that, the captured oligo probes were 
detected with streptavidin-HRP and a chemiluminescent 
substrate. Luminescent signals expressed as relative light 
unit (RLU) were quantified with a luminometer, and 
RLU values of <200 were considered background. Final 
data are presented as the ratio of the RLU value in 
normal cells to that in senescent cells. 
 
Bioinformatics prediction of binding motifs 
 
The rat PDGFR-β promoter sequence (ranging -523 to -
1) was analyzed using web-based bioinformatics tools 
(PROMO and MatInspector®) for predicting putative 
TF-binding sites (TFBSs) defined in the TRANSFAC® 
database [62–64]. In the promoter analysis with 
PROMO (ALGGEN, Barcelona, Spain), parameters 
were set up by restricting both factor species and site 
species as animals with a maximum matrix dissimilarity 
rate of ≤5%. In addition, putative TFBSs within this 
promoter segment were also analyzed by MatInspector 
(Genomatix AG, Munich, Germany) using default 
parameters. 
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Collection of clinical data 
 
Clinical studies (#201405019 and #N201603042) were 
approved by the Taipei Medical University (TMU) Joint 
Institutional Review Board (TMU-JIRB) and were 
performed from June 2015 to June 2017. In total, 104 
patients were recruited from TMU Hospital, Wan-Fang 
Hospital, and Shuang-Ho Hospital in Taiwan. Inclusion 
criteria were patients (≥30 years old) who had received 
vascular stenting, and patients suffering from diabetes, 
hepatitis, uremia, cancer, hemophilia, or autoimmune 
diseases were excluded. Restenosis was defined as 
>50% diameter stenosis within the vascular lesion with 
vascular stenting, and the vascular status (with or 
without restenosis) was diagnosed at the first follow-up 
visit (6 months after surgery). Finally, the medical 
records of 44 eligible patients were collected to analyze 
the relationship between age and vascular status (with or 
without restenosis). At the end of the clinical studies, 60 
patients who had been diagnosed with diabetes, a 
common comorbidity of restenosis, or who had 
withdrawn from the study were excluded. 
 
Statistical analysis 
 
All data are presented as the mean ± standard deviation 
(SD). The experiments were run in triplicate. Statistical 
significance among multiple groups was evaluated by a 
one-way analysis of variance (ANOVA). Pearson's 
correlation test was used to analyze the correlation 
between age and vascular status (with or without 
restenosis) of patients who had been followed-up 6 
months after vascular stenting. A value of p < 0.05 was 
regarded as statistically significant. 
 
Abbreviations 
 
AKT: v-akt murine thymoma viral oncogene homolog 1; 
Ang II: angiotensin II; CAT: catalase; COUP-TF: nuclear 
receptor subfamily 2, group F; ERK1/2: extracellular 
signal-regulated kinase 1/2; FOXD3: forkhead box D3; 
FOXG1: forkhead box G1; GR/PR: glucocorticoid 
receptor / progesterone receptor; HIF-1α: hypoxia-
inducible factor 1-alpha; HOX4C: homeobox 4C; MEF1: 
myocyte enhancer factor 1; mTOR: the mechanistic 
target of rapamycin; NFAT: nuclear factor of activated T-
cells; NOS: nitric oxide synthase; NRF1: nuclear 
respiratory factor 1; OCT4: POU class 5 homeobox 1; 
Pbx1: pre-B cell leukemia transcription factor-1; PDGF-
BB: platelet-derived growth factor-BB; PDGFR-β: 
platelet-derived growth factor receptor-beta; PPAR: 
peroxisome proliferator-activated receptor; PXR: 
pregnane X receptor; ROS: reactive oxygen species; SA-
β-gal: senescence-associated beta-galactosidase; SATB1: 
special AT-rich sequence binding protein 1; SMUC: 
snail-related transcription factor Smuc; SOD: superoxide 

dismutase; STAT5: signal transducer and activator of 
transcription 5; TFIID: TATA box binding protein; TFs: 
transcription factors; TCF/LEF: runt-related transcription 
factor 2; USF-1: upstream transcription factor 1; VSMCs: 
vascular smooth muscle cells. 
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