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INTRODUCTION 
 
As the leading cause of dementia, Alzheimer's disease 
(AD) poses significant challenges in the cost of medical 
care and associated societal burdens. The prevalence of  

 

AD is still increasing dramatically with ageing 
population worldwide, because the primary risk factor of 
AD is old age [1]. As several recent Phase 3 trials of 
mild-to-moderate AD have failed [2–4] and no effective 
disease-modifying treatments for AD patients are 
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ABSTRACT 
 
To realize an individual-level risk evaluation of progression of early Alzheimer’s disease (AD), we applied an AD 
resemblance atrophy index (AD-RAI) to differentiate the subjects at risk of progression from normal subjects (NC) 
to mild cognitive impairment (MCI) and from MCI to AD. We included 183 subjects with a two-year follow-up: 50 
NC stable (NCs), 23 NC-to-MCI converters (NCc), 50 MCI stable (MCIs), 35 MCI-to-AD converters (MCIc), 25 AD 
stable (ADs). ANCOVA analyses were used to identify baseline brain atrophy in converters compared with non-
converters. To explore the relative merits of AD-RAI over individual regional volumetric measures in prediction of 
disease progression, we searched for the optimal cutoff for each measure in logistic regressions and plotted the 
longitudinal trajectories of these brain volumetric measures in converters and non-converters. Baseline AD-RAI 
performed the best in differentiating NCc from NCs (odds ratio 26.35, AUC 0.740) and MCIc from MCIs (odds ratio 
8.91, AUC 0.771). The AD-RAI presented greater increase in the second year for NCc vs. NCs but not for MCIc vs. 
MCIs. Baseline AD-RAIs were also associated with CSF-based and PET-based AD biomarkers. These results showed 
the potential of AD-RAI in early risk estimation before progression to MCI/AD at an individual-level. 
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currently available, it is critical to identify biomarkers 
that specify early stages of AD and facilitate early 
interventions [5, 6] before significant neuronal damage. 
Among the biomarkers of prodromal AD, neuroimaging 
measures have been playing a central role in monitoring 
disease progression [7]. One of the more common  
types of neuroimaging data is structural magnetic 
resonance imaging (MRI) that identifies brain atrophy 
[8], which has been widely studied to predict disease 
progression for AD.  
 
To monitor the disease progression of AD with brain 
atrophy measures, most researchers focused on 
identifying the mild cognitive impairment (MCI) subjects 
at risk of progression to AD, and many achieved good 
classification performance in terms of individual 
diagnosis using machine learning models [8–14]. Some 
studies also investigated the probability of even earlier 
prediction of AD conversion, and they found that brain 
atrophy (e.g. in hippocampal volume) could even identify 
healthy subjects up to 10 years before their onset of AD 
[15, 16]. However, the findings of these studies were 
based on group comparisons between converters and 
non-converters, which could not be applied to classify 
specific healthy individuals at risk of AD. In fact, the 
sample sizes of the studies targeting at healthy subjects 
till AD conversion are generally small, due to the long 
period of follow-up to capture a sufficient number of 
converters. In this regard, it might be favorable to 
monitor disease progression of AD for individuals in two 
separate periods: identifying healthy subjects at risk of 
MCI and identifying MCI subjects at risk of AD. While 
there have been many studies targeting at the latter period 
(conversion of MCI to AD), few studies involved 
prediction of conversion in the earlier period (from NC to 
MCI), which might present better intervention effect for 
the subjects at risk of progression.  
 
To differentiate the target subjects at baseline, most 
studies used separate MRI features as predictors [9–12], 
while some others attempted to combine multiple MRI 
features in the form of a single severity index from 
machine learning [8, 13, 14]. In this study, we applied 
such a severity index, i.e. the AD resemblance atrophy 
index (AD-RAI), and tested its ability to identify normal 
subjects who converted to MCI and MCI subjects who 
developed AD over a two-year period. Also, we explored 
the relative merits of this index (which implies complex 
spatial atrophy pattern of multiple brain regions) over 
single MRI features (i.e. the regional volumes of 
individual AD-related structures) for differentiation 
between converters and non-converters, through group 
comparison of baseline measures and searching the 
optimal cutoff (threshold) of baseline measures in logistic 
regressions. In addition, we measured the longitudinal 
trajectory of the volumetric differences between 

converters and non-converters to evaluate the additional 
value of short-term follow-up for the prediction of 
progression to MCI or AD at the last visit spanning two 
years apart. 
 
RESULTS 
 
The subjects of different groups were matched in age, 
gender and education level (Table 1). The level of CSF 
biomarkers (Aβ42, t-tau and p-tau181), PET-based 
biomarker (average cortical uptake of Florbetapir) and 
cognitive measures (MMSE, MoCA and its subscores) 
were significantly different among the groups (Table 1, 
Supplementary Table 2). The AD resemblance atrophy 
indexes of the five groups were significantly different 
(p<0.001) at any timepoint over the two years, indicating 
the differentiative ability of this atrophy index for 
different diagnostic status of the subjects (Figure 1). 
However, the change of AD-RAI over the two years was 
not significantly different among the groups (p=0.175). 
 
In the partial correlation analyses, baseline AD-RAIs 
were significantly associated with CSF-based Aβ42, t-tau 
and p-tau181 at baseline (p<0.001) and two years 
(p<0.05), where the associations with CSF-Aβ42 were 
stronger (Table 2). There were even stronger associations 
between baseline AD-RAI and average cortical uptake of 
Florbetapir at baseline (R=0.495, p<0.001) and two years 
(R=0.480, p<0.001). Of note, the associations of baseline 
AD-RAI with the change of these biological markers 
were not evaluated due to the severe data missing of 
CSF-based biomarkers at two years (Supplementary 
Table 1) and the nonsignificant change of PET-based 
biomarker over the two years. In addition, baseline AD-
RAIs were significantly associated with MMSE and 
MoCA at baseline and two years as well as the 
deterioration of these two scores over the two years 
(p<0.001) (Table 3). Specifically, baseline AD-RAIs 
were also positively associated with the decline of 
domain scores of MoCA over the two years, including 
memory (p<0.001), visuospatial function (p=0.021), 
language (p<0.001) and attention (p<0.001). 
 
Difference of baseline brain volumetry between 
converters and non-converters 
 
NC-to-MCI converter (NCc) vs. NC stable (NCs) 
Comparing NCs and NCc converters, the converters had 
presented higher AD-RAI (p=0.004) as well as regional 
brain volume loss as identified by single regions (right 
temporal lobe, left insular and right insular, p<0.05) at 
baseline, as shown in Table 4. We further searched for 
the best cutoff of these four measures in logistic 
regressions and measured the AUC of the logistic 
regression models with the best cutoff. The left insular 
atrophy was not predictive of the conversion status with 
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Table 1. Characteristics of the subjects. 
 NCs (n=50) NCc (n=23)* MCIs (n=50)^ MCIc (n=35) ADs (n=25)# p 
Education (years), mean (SD) 16.46 (2.34) 16.04 (2.65) 15.92 (2.86) 16.25 (2.59) 15.48 (2.51) 0.598 
Male (n (%)) 30 (60%) 9 (39.10%) 30 (60%) 18 (51.40%) 14 (56%) 0.479 
Baseline age (years), mean (SD) 73.3 (6.11) 74.4 (6.76) 74.7 (7.51) 73.4 (5.68) 73.6 (9.81) 0.839 
CSF Aβ42 (pg/ml), mean (SD)       

Baseline 199.14 (51.39) 174.25 (46.07) 174.29 (45.78) 137.61 (25.29) 132.94 (41.88) <0.001 
24 months 190.63 (52.89) 169.00 (60.45) 174.03 (45.74) 129.94 (32.31) 113.59 (14.09) <0.001 

CSF t-tau (pg/ml), mean (SD)       
Baseline 75.23 (41.39) 71.09 (34.13) 81.85 (46.63) 143.20 (61.42) 138.83 (53.13) <0.001 
24 months 77.69 (54.67) 83.47 (46.83) 87.46 (55.34) 156.16 (85.28) 142.18 (59.44) <0.001 

CSF p-tau181 (pg/ml), mean (SD)       
Baseline 34.56 (15.85) 39.16 (25.00) 41.19 (23.75) 64.34 (28.49) 69.65 (35.15) <0.001 
24 months 44.40 (33.50) 41.95 (17.14) 51.97 (29.88) 66.40 (34.75) 74.62 (22.70) 0.025 

Cortical SUVR†, mean (SD)       
Baseline 1.08 (0.14) 1.19 (0.22) 1.19 (0.20) 1.43 (0.19) 1.40 (0.21) <0.001 
24 months 1.10 (0.17) 1.16 (0.22) 1.23 (0.23) 1.42 (0.19) 1.41 (0.23) <0.001 

MMSE, mean (SD)       

Baseline 28.98 (1.20) 29.08 (1.04) 27.9 (1.65) 26.60 (1.76) 22.68 (2.05) <0.001 
6 months 28.88 (1.45) 29.00 (0.94) 27.25 (1.85) 25.40 (2.10) 22.00 (3.01) <0.001 
12 months 28.60 (1.41) 28.28 (1.67) 27.47 (2.08) 25.49 (2.51) 21.44 (3.99) <0.001 
24 months 29.10 (1.23) 28.39 (1.49) 27.16 (2.26) 22.97 (3.29) 18.20 (4.58) <0.001 

AD-RAI, mean (SD)       

Baseline 0.140 (0.170) 0.355 (0.358) 0.430 (0.349) 0.741 (0.292) 0.837 (0.218) <0.001 
6 months 0.191 (0.248) 0.292 (0.302) 0.435 (0.347) 0.759 (0.293) 0.849 (0.201) <0.001 
12 months 0.192 (0.238) 0.328 (0.348) 0.470 (0.341) 0.775 (0.276) 0.895 (0.145) <0.001 
24 months 0.167 (0.205) 0.449 (0.372) 0.522 (0.341) 0.836 (0.235) 0.911 (0.161) <0.001 
Change over 24 months 0.026 (0.070) 0.092 (0.245) 0.091 (0.171) 0.094 (0.149) 0.074 (0.119) 0.175 

* Follow-up data was missing for six NCc subjects at 6 months, and five missing at 12 months; ^ Follow-up data was missing for two 
MCIs subjects at 6 and 12 months; # Follow-up data was missing for one ADs subject at 6 and 12 months. †Mean average cortical 
uptake (within frontal, anterior/posterior cingulate, lateral parietal, and lateral temporal cortex) of Florbetapir (F18-AV-45) PET with 
the whole cerebellum as the reference region. The available data (in terms of number of subjects) of CSF and PET biomarkers were 
shown in Supplementary Table 1 for each group. NCs, NC stable subjects; NCc, NC-to-MCI converters; MCIs, MCI stable subjects; 
MCIc, MCI-to-AD converters; ADs, AD stable subjects; SUVR, standard uptake value ratio. AD-RAI, AD resemblance atrophy index. 
 

any cutoff (p>0.05) and therefore was not shown in 
Table 5. Among the remaining volumetric measures 
(also shown in Figure 2A with ROC curves), the AD-
RAI presented the highest AUC (0.740) and odds ratio 
(OR=26.35, p=0.003) for prediction of conversion status 
(NCc vs. NCs), with 0.5 as the best cutoff value. 
 
MCI-to-AD converter (MCIc) vs. MCI stable (MCIs) 
There were more brain volumetric measures that had 
presented baseline differences between MCIc and MCIs 
(p<0.05) than NCc vs. NCs (Table 6). These baseline 
volumetric measures that provided clues for future 
progression included AD-RAI, volume ratios of bilateral 
hippocampus, bilateral amygdala and left inferior lateral 

ventricle, and atrophy degree of left occipital lobe, 
bilateral temporal lobe and right insular (Table 6). 
Among these volumetric measures, the AD-RAI with a 
cutoff of 0.5 achieved the highest AUC (0.771) with an 
odds ratio of 8.91 (p<0.001) (Table 7). The volumetric 
measures that achieved an AUC of >0.7 were also 
shown in Figure 2B with ROC curves plotted. 
 
Longitudinal volumetric changes of converters and 
non-converters 
 
To explore whether the brain volumetric measures that 
presented difference between converters and non-
converters at baseline would also have differed 
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longitudinal trajectory, we performed linear mixed effect 
model analyses, where the brain volumetric data at 6, 12 
and 24 months were additionally used. 
 
NC-to-MCI converter vs. NC stable 
Regarding the AD-RAI, it had slight but significant 
longitudinal increase (p=0.017) in NCc subjects 
compared with NCs subjects (especially during 12~24 
months), and it well differentiated the two groups  
at any timepoint (Figure 3A). The other volumetric 
measures did not present a significant group × time 
interaction (p>0.05). 
 
MCI-to-AD converter vs. MCI stable 
Although the AD-RAI (based on brain volumetry of 
multiple regions) differentiated MCIc vs. MCIs at any 
timepoint over the two years (Figure 3B), there were no 
significant group × time interaction (p=0.824), indicating 
that the longitudinal changes in AD-RAI of the two 
groups were similar. In contrast, there were many 

regional volumetric measures that presented significant 
group × time interactions (Figure 4), such as left 
amygdala (p=0.031), right amygdala (p<0.001), left 
inferior lateral ventricle (p=0.010), left temporal lobe 
(p=0.001), right temporal lobe (p=0.001) and right  
insular (p=0.028). The difference of longitudinal  
changes between groups was only obvious in the period 
of 12~24 months. 
 
Representative cases of converters and  
non-converters 
 
Also, we complemented with four typical real cases in 
Figure 5 (NCs vs. NCc) and Figure 6 (MCIs vs. MCIc) 
to illustrate the effect of AD-RAI in evaluation of 
disease progression (the characteristics of these subjects 
were provided on the figures). While the sample case of 
NCs (baseline AD-RAI=0.04) did not present 
significant atrophy over the two years, the sample case 
of NCc (baseline AD-RAI=0.62) showed increased 

 

 
 

Figure 1. Histogram of baseline AD resemblance atrophy index for different groups. 
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Table 2. Correlation of AD resemblance atrophy index and biomarkers. 

Biomarkers 
AD resemblance atrophy index (baseline) 

Partial correlation p-value 
CSF Aβ42 Baseline -0.453 1.13E-09 

24 months -0.472 1.18E-06 
CSF t-tau Baseline 0.371 1.23E-06 

24 months 0.324 0.001 
CSF p-tau181 Baseline 0.380 5.02E-07 

24 months 0.254 0.013 
Mean cortical SUVR* Baseline 0.495 1.05E-12 

24 months 0.480 7.47E-11 

Pearson partial correlation analyses were performed with age and gender as covariates. The data (number of subjects) 
available for analyses was shown in Supplementary Table 1. *Mean average cortical uptake (within frontal, anterior/posterior 
cingulate, lateral parietal, and lateral temporal cortex) of Florbetapir (F18-AV-45) PET with the whole cerebellum as the 
reference region. SUVR, standard uptake value ratio. 
 

Table 3. Partial correlation of AD resemblance atrophy index and neuropsychological tests. 

Neuropsychological tests 
AD resemblance atrophy index (baseline) 

Partial correlation p-value 
MMSE Baseline -0.570 8.41E-16 

24 months -0.637 2.01E-20 
Decline in 2 years  0.461 1.02E-10 

MoCA Baseline -0.394 1.39E-07 
24 months -0.538 6.16E-14 

Decline in 2 years  0.389 8.70E-08 
MoCA-memory Baseline -0.289 1.52E-04 

24 months -0.508 2.55E-12 
Decline in 2 years  0.323 1.13E-05 

MoCA-visuospatial Baseline -0.210 6.51E-03 
24 months -0.357 2.23E-06 

Decline in 2 years  0.174 0.021 
MoCA-language Baseline -0.124 0.110 

24 months -0.350 3.48E-06 
Decline in 2 years  0.258 5.30E-04 

MoCA-attention Baseline -0.260 6.82E-04 
24 months -0.405 5.82E-08 

Decline in 2 years  0.270 2.81E-04 
MoCA-executive Baseline -0.288 1.64E-04 

24 months -0.376 5.45E-07 
Decline in 2 years  0.127 0.092 

Pearson partial correlation analyses were performed with age, gender and education year as covariates. 
 

width of left choroid fissure and temporal horn  
(Figure 5). Similarly, the sample case of MCIs (baseline 
AD-RAI=0.02) did not present progressed atrophy 
during the two years, while the sample case of MCIc 

(baseline AD-RAI=0.88) showed increased width of 
right choroid fissure and temporal horn, enlargement of 
lateral ventricle, and increased frontal lobe atrophy 
(Figure 6). 
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Table 4. Comparison of baseline MMSE and brain volumetry in NC stable and NC-to-MCI converters.  

Measure NC stable (n=50) NC-to-MCI converter (n=23) p 

MMSE 28.98 (1.20) 29.08 (1.04) 0.355 

AD resemblance atrophy index* 0.141 (0.171) 0.356 (0.365) 0.004 

Brain parenchyma 75.284 (1.834) 74.783 (1.905) 0.668 

Hippocampus L 0.218 (0.018) 0.211 (0.020) 0.287 

Hippocampus R 0.225 (0.019) 0.219 (0.021) 0.532 

Amygdala L 0.114 (0.011) 0.114 (0.012) 0.622 

Amygdala R 0.138 (0.014) 0.132 (0.015) 0.409 

Ventricular system 10.034 (1.193) 10.527 (1.320) 0.295 

Lateral ventricle L 1.048 (0.440) 1.222 (0.651) 0.329 

Lateral ventricle R 0.977 (0.386) 1.244 (0.720) 0.061 

Inferior lateral ventricle L 0.011 (0.005) 0.016 (0.016) 0.103 

Inferior lateral ventricle R 0.008 (0.004) 0.012 (0.016) 0.164 

Frontal lobe (atrophy) L 41.996 (6.840) 42.204 (5.884) 0.777 

Frontal lobe (atrophy) R 43.138 (6.174) 44.243 (6.851) 0.872 

Occipital lobe (atrophy) L 14.936 (3.016) 15.089 (4.250) 0.951 

Occipital lobe (atrophy) R 11.335 (2.261) 11.423 (3.283) 0.891 

Temporal lobe (atrophy) L 25.890 (4.334) 28.204 (6.327) 0.144 

Temporal lobe (atrophy) R* 20.502 (3.596) 23.639 (4.218) 0.002 

Parietal lobe (atrophy) L 45.210 (9.082) 41.009 (12.357) 0.058 

Parietal lobe (atrophy) R 41.352 (8.441) 39.057 (10.553) 0.120 

Cingulate lobe (atrophy) L 10.216 (3.290) 11.156(5.656) 0.273 

Cingulate lobe (atrophy) R 17.298 (5.549) 18.260 (8.291) 0.346 

Insular (atrophy) L* 21.382 (6.552) 26.009 (11.128) 0.047 

Insular (atrophy) R* 14.210 (4.932) 18.239 (7.948) 0.017 

White matter hyperintensity 0.572 (0.776) 0.615 (0.503) 0.839 

The comparison was performed with ANCOVA with age and gender as covariates. The mean and SD of AD resemblance 
atrophy index and single regional volumetric measures in both groups are provided. *Measures that were significantly 
different between NC stable and NC-to-MCI converters (p<0.05). L, left; R, right. 
 

DISCUSSION 
 
In this study, we compared a synthetic atrophy index 
(AD-RAI) derived from multiple brain regions with 
single regional volumetric measures in differentiating at-
risk subjects two years before progression from NC to 
MCI and from MCI to AD. The findings of this study 
confirm the effectiveness of using baseline AD-RAI in 
differentiating subjects at risk of conversion to MCI 
(from NC) and AD (from MCI) in a two-year follow-up, 
although choosing the optimal cutoff values of this index 
for specific individual-level differentiation tasks remains 
a challenge. 

Regarding the subjects presented as cognitive-intact (NC) 
at baseline, the NCc subjects had no significant 
difference in baseline MMSE compared with NCs 
subjects (Table 4). In contrast, AD-RAI and several 
individual regional volumetric measures (i.e. right 
temporal lobe, left insular and right insular) showed 
significant difference between these two groups (Table 4). 
These results generally corroborated with the previous 
studies, as greater right temporal lobe atrophy has been 
reported in normal subjects years before progression to 
AD [17], and insular atrophy has been identified in MCI 
patients [18]. However, hippocampus atrophy, which was 
reported as an early biomarker of AD conversion for NC 
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Table 5. Differentiation in NC stable and NC-to-MCI converters using AD atrophy index and single regional volumetric 
measures. 

Measure Cutoff Odds ratio (95% CI) ^ p AUC (95% CI) 

AD resemblance atrophy index 0.4 4.75 (1.32, 17.08) 0.017 0.714 (0.584, 0.844) 

0.5* 26.35 (2.96, 234.77) 0.003 0.740 (0.612, 0.868) 

0.6 16.75 (1.83, 153.20) 0.013 0.718 (0.589, 0.847) 

0.7 13.53 (1.45, 126.53) 0.022 0.710 (0.580, 0.839) 

Temporal lobe (atrophy) R 50% 3.31 (1.07, 10.19) 0.037 0.696 (0.571, 0.822) 

75% 3.44 (1.04, 11.39) 0.043 0.692 (0.559, 0.824) 

85%* 4.88 (1.13, 21.08) 0.033 0.703 (0.574, 0.832) 

Insular (atrophy) R 75% 5.03 (1.49, 16.97) 0.009 0.715 (0.584, 0.847) 

80% 5.05 (1.39, 18.42) 0.014 0.722 (0.592, 0.852) 

85% 4.96 (1.17, 20.93) 0.029 0.715 (0.584, 0.845) 

90%* 19.59 (1.91, 201.75) 0.012 0.733 (0.606, 0.860) 

The AD resemblance atrophy index and the single regional volumetric measures were dichotomized with cutoffs to evaluate 
their performance in differentiating NC stable and NC-to-MCI converters using logistic regression. Age and gender were covaried 
out. Only the measures that were significantly different between NC stable and NC-to-MCI converters were tested (as labeled in 
Table 4) and only the measures with a cutoff that achieved p<0.05 in logistic regression are shown here. The searching range of 
cutoff is 0.1~0.9 (real value) in increments of 0.1 for AD resemblance atrophy index and typical percentiles (50%, 75%, 80%, 85%, 
90%) for individual lobar atrophy measures. *The optimal cutoff value for a specific measure in logistic regression. R, right. 
 

 
 

Figure 2. ROC curve of prediction of conversion to MCI in NC subjects (A) and conversion to AD in MCI subjects (B) from 
logistic regression. Only the brain volumetric measures that achieved an AUC of >0.7 with the optimized cutoff (as shown in Table 5 and 
Table 7) were displayed here. 
 

subjects [15, 19], was not found in the comparison of 
NCc vs. NCs subjects at baseline in our study. It may 
result from the shorter duration of follow-up (two years) 
in this study compared with those targeting at NCc 

subjects over a period of more than five years, and that 
the NCc subjects may not necessarily present AD-like 
atrophy pattern as not all MCI patients would convert to 
AD. In the subsequent logistic regressions, the AD-RAI
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Table 6. Comparison of baseline MMSE and brain volumetry in MCI stable and MCI-to-AD converters. 

Measure MCI stable (n=50) MCI-to-AD converter (n=35) p 

MMSE 27.9 (1.65) 26.60 (1.76) 0.001 

AD resemblance atrophy index* 0.430 (0.349) 0.741 (0.292) <0.001 

Brain parenchyma 73.850 (2.321) 73.580 (2.158) 0.170 

Hippocampus L* 0.203 (0.020) 0.191 (0.027) 0.024 

Hippocampus R* 0.211 (0.021) 0.201 (0.024) 0.040 

Amygdala L* 0.106 (0.014) 0.096 (0.015) 0.003 

Amygdala R* 0.127 (0.018) 0.116 (0.016) 0.003 

Ventricular system 10.617 (1.679) 10.687 (1.310) 0.356 

Lateral ventricle L 1.307 (0.767) 1.342 (0.543) 0.462 

Lateral ventricle R 1.200 (0.682) 1.235 (0.577) 0.385 

Inferior lateral ventricle L* 0.013 (0.010) 0.017 (0.008) 0.010 

Inferior lateral ventricle R 0.010 (0.006) 0.011 (0.006) 0.245 

Frontal lobe (atrophy) L 45.976 (7.464) 44.480 (7.543) 0.461 

Frontal lobe (atrophy) R 46.416 (7.138) 44.814 (6.451) 0.454 

Occipital lobe (atrophy) L* 16.478 (3.798) 18.179 (4.848) 0.034 

Occipital lobe (atrophy) R 12.749 (3.958) 13.770 (4.766) 0.150 

Temporal lobe (atrophy) L* 29.394 (6.493) 32.429 (7.682) 0.009 

Temporal lobe (atrophy) R* 23.052 (4.996) 25.346 (5.692) 0.005 

Parietal lobe (atrophy) L 47.536 (10.466) 48.683 (10.114) 0.629 

Parietal lobe (atrophy) R 42.768 (8.664) 45.514 (9.116) 0.132 

Cingulate lobe (atrophy) L 11.896 (4.728) 12.928 (4.913) 0.117 

Cingulate lobe (atrophy) R 18.646 (6.619) 20.511 (7.003) 0.067 

Insular (atrophy) L 25.652 (10.621) 28.041 (11.253) 0.093 

Insular (atrophy) R* 16.277 (6.242) 17.849 (6.433) 0.043 

White matter hyperintensity 0.786 (0.667) 0.524 (0.418) 0.080 

The comparison was performed with ANCOVA with age and gender as covariates. The mean and SD of AD resemblance 
atrophy index and single regional volumetric measures in both groups are provided. *Measures that were significantly 
different between MCI stable and MCI-to-AD converters (p<0.05). L, left; R, right. 
 

measured at baseline with a cutoff of 0.5 performed the 
best for differentiating NCc vs. NCs subjects spanning 
two years apart (Table 5). Previous studies have reported 
the use of such an atrophy severity index of AD (based 
on complex AD-like atrophy pattern of multiple regions) 
in differentiating MCIc from MCIs subjects [8, 13, 14]. 
For the first time, we demonstrated that such an index 
could also differentiate normal subjects at risk of 
conversion to MCI over a two-year period (as illustrated 
in Figure 5 with real cases). 
 
Regarding the subjects diagnosed as MCI at baseline, 
the MCIc patients had already presented lower baseline 

MMSE than MCIs patients, and there were many 
individual regional volumetric measures in additional to 
AD-RAI that presented significant difference between the 
converters vs. non-converters (Table 6). It indicated that 
there has been widespread greater brain atrophy in 
multiple brain regions in MCIc than MCIs patients [14], 
as illustrated with real cases in Figure 6. Among the 
regions that presented greater atrophy in MCIc (Table 6), 
hippocampus, amygdala, temporal lobe and insular have 
been frequently reported as early biomarkers in 
differentiating converters vs. non-converters from MCIc 
[12, 18, 20, 21]. The performance of occipital lobe 
atrophy in differentiating MCIc from MCIs patients was
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Table 7. Differentiation in MCI stable and MCI-to-AD converters using AD atrophy index and single regional 
volumetric measures. 

Measure Cutoff Odds ratio (95% CI) ^ p AUC (95% CI) 
AD resemblance atrophy index 0.1 4.62 (1.21, 17.69) 0.026 0.684 (0.568, 0.800) 

0.2 7.07 (1.87, 26.69) 0.004 0.722 (0.610, 0.834) 
0.3 8.55 (2.27, 32.13) 0.001 0.745 (0.635, 0.854) 
0.4 7.56 (2.37, 24.13) 0.001 0.750 (0.641, 0.858) 

0.5* 8.91 (2.81, 28.31) <0.001 0.771 (0.664, 0.877) 
0.6 6.12 (2.20, 16.99) 0.001 0.744 (0.636, 0.852) 
0.7 4.91 (1.88, 12.86) 0.001 0.719 (0.608, 0.831) 
0.8 5.39 (2.01, 14.43) 0.001 0.720 (0.609, 0.831) 
0.9 5.56 (1.86, 16.61) 0.002 0.703 (0.590, 0.816) 

Hippocampus L 50% 2.90 (1.17, 7.18) 0.021 0.660 (0.539, 0.782) 
25%* 4.96 (1.65, 14.92) 0.004 0.679 (0.559, 0.798) 
20% 4.90 (1.50, 16.02) 0.009 0.667 (0.546, 0.788) 
15% 6.60 (1.53, 28.38) 0.011 0.677 (0.558, 0.797) 

Hippocampus R 20%* 3.43 (1.10, 10.69) 0.033 0.656 (0.534, 0.777) 
10% 9.27 (1.01, 84.76) 0.049 0.642 (0.521, 0.763) 

Amygdala L 50% 3.30 (1.31, 8.33) 0.012 0.661 (0.543, 0.780) 
25%* 7.33 (2.33, 23.02) 0.001 0.720 (0.605, 0.834) 
20% 4.64 (1.45, 14.86) 0.010 0.674 (0.555, 0.793) 
15% 5.61 (1.36, 23.12) 0.017 0.666 (0.544, 0.787) 

Amygdala R 50%* 4.96 (1.91, 12.89) 0.001 0.712 (0.599, 0.825) 
25% 4.73 (1.60, 14.00) 0.005 0.694 (0.578, 0.809) 

Inferior lateral ventricle L 50%* 5.29 (1.90, 14.69) 0.001 0.726 (0.614, 0.838) 
75% 7.23 (2.29, 22.87) 0.001 0.725 (0.614, 0.835) 
80% 4.03 (1.27, 12.74) 0.018 0.661 (0.543, 0.779) 

Temporal lobe (atrophy) L 50% 3.26 (1.21, 8.84) 0.020 0.663 (0.545, 0.781) 
75%* 6.01 (1.87, 19.33) 0.003 0.689 (0.574, 0.805) 
80% 5.04 (1.48, 17.18) 0.010 0.662 (0.543, 0.780) 
85% 5.28 (1.30, 21.51) 0.020 0.656 (0.538, 0.774) 

Temporal lobe (atrophy) R 50% 2.88 (1.10, 8.20) 0.048 0.651 (0.532, 0.770) 
75%* 4.54 (1.48, 13.91) 0.008 0.678 (0.561, 0.796) 
80% 3.22 (1.02, 10.16) 0.046 0.641 (0.520, 0.762) 

Insular (atrophy) R 50%* 4.27 (1.49, 12.19) 0.007 0.688 (0.571, 0.806) 

The AD resemblance atrophy index and the single regional volumetric measures were dichotomized with cutoffs to evaluate 
their performance in differentiating MCI stable and MCI-to-AD converters using logistic regression. Age and gender were 
covaried out. Only the measures that were significantly different between MCI stable and MCI-to-AD converters were tested 
(as labeled in Table 6) and only the measures with a cutoff that achieved p<0.05 in logistic regression are shown here. The 
searching range of cutoff is 0.1~0.9 (real value) in increments of 0.1 for AD resemblance atrophy index, (50th, 75th, 80th, 85th, 
90th) percentiles for individual lobar atrophy measures and ventricle measures, and (10th, 15th, 20th, 25th, 50th) percentiles for 
subcortical measures. *The optimal cutoff value for a specific measure in logistic regression. 
 

also reported in a previous study (AUC=0.59) [21]. The 
enlargement of inferior lateral ventricle has been 
identified in MCI and AD patients [22, 23] and used in 
multivariate analysis to differentiate MCIc patients [24]. 
In the subsequent logistic regressions with cutoff 

searching, most of these individual regional volumetric 
measures well differentiated MCIc from MCIs patients, 
but they still presented inferior performance compared 
with AD-RAI (with 0.5 as the optimal cutoff) as shown in 
Table 7 and Figure 2B. Compared with several previous
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studies that also investigated a single synthetic atrophy 
index (based on complex AD-like atrophy pattern of 
multiple brain regions) at baseline for differentiation of at-
risk subjects of MCI-to-AD conversion [8, 13, 14], we 
achieved similar performance (AUC: 0.771 in this study 
and 0.675~0.770 in previous studies). 
 
Of note, the optimal threshold of AD-RAI for 
differentiation of converters and non-converters should 
be explained with caution. In this study, we found that 
the optimal cutoff of AD-RAI for differentiation of NCc 
vs. NCs and MCIc vs. MCIs was the same (i.e. 0.5). 
While this may indicate similar baseline atrophy 
difference of converters in NC and MCI, further 
validations are still needed, because the differentiation 
performance with other cutoffs (e.g. 0.4 for NCc vs. NCs, 
and 0.6 for MCIc vs. MCIs) did not differ a lot from 0.5. 
In this regard, it remains a challenge to determine optimal 
cutoff points for such index [14], where larger sample 
size is needed to test the reliability of differentiations 
with specific cutoffs. Finally, the WMH volume 
measured at baseline was not significantly different in 
both comparisons of NCc vs. NCs and MCIc and MCIs, 
indicating that the vascular factors might not have 
significant impact on the differentiation of the converters 
vs. non-converters. 
 
Also, we compared the longitudinal trajectories of these 
atrophy measures in converters and non-converters. The 
NCc subjects presented more rapid increase of AD-RAI 
than NCs subjects (during the second year), while MCIc 

patients showed similar growth rate of AD-RAI with 
MCIs patients. It may indicate that the potential of 
including AD-RAI of short-term follow-up(s) for a better 
prediction of progression from NC to MCI. However, as 
NCc showed more rapid brain atrophy than NCs only at 
the last visit (two years), the additional contribution of 
AD-RAI at short-term follow-ups for long-term NC-to-
MCI conversion still needs to be validated with larger 
sample size and more intensive follow-ups. Of note, 
there were many individual regional volumetric 
measures that showed greater atrophy rate in MCIc than 
MCIs patients (Figure 4). In fact, baseline AD-RAI has 
outperformed these individual regional measures in 
differentiating MCIc from MCIs, and the more rapid 
atrophy of these measures generally occurred at the last 
visit. Therefore, the contribution of evaluating these 
individual regional volumetric measures to prediction of 
MCI-to-AD conversion should be further validated in 
the future as well. 
 
In addition to the analyses within specific groups (NC or 
MCI as diagnosed at baseline), we also found significant 
associations between AD-RAI and well-established AD 
biomarkers [25] at baseline (such as Aβ quantified from 
CSF or F18-AV-45 PET and tau from CSF) in the entire 
cohort (Table 2). These results indicated the consistency 
of MRI-based volumetry with early AD biological 
markers, and this non-invasive MRI-based atrophy index 
(AD-RAI) might facilitate early screening of general 
population for the risk of AD-related disease progression. 
The associations of AD-RAI with other AD biomarkers

 

 
 

Figure 3. Change of AD resemblance atrophy index of (A) NC and (B) MCI subjects as diagnosed at baseline over two years. Figure shows 
estimated mean change in AD atrophy index from baseline until 6, 12 and 24 months (higher scores suggest more severe atrophy). Error bars 
are standard errors. Mixed-model repeated-measures analyses were used to assess between-group differences (group × time interaction) in 
changes from baseline to 24 months. 
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Figure 4. Change of individual volumetric measures of MCI subjects as diagnosed at baseline over two years. Error bars are 
standard errors. Mixed-model repeated-measures analyses were used to assess between-group differences (group × time interaction)  
in changes from baseline to 24 months. Only the measures that were significantly different between MCI stable and MCI-to-AD converters 
were tested (as labeled in Table 6) and only the measures with a significant group × time interaction in the subsequent analyses are  
shown here. 
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Figure 5. Typical real cases of NC stable and NC-to-MCI subjects. T1-weighted (T1W) images at baseline and two years were shown 
for the two typical cases in temporal, parieto-occipital and frontal view. Red arrows pointed to the region with significant atrophy by 
comparing the T1W images of the same subject over two years. The typical case of NC stable did not present atrophy while the case of NC-to-
MCI showed increased width of left choroid fissure and temporal horn (temporal view). Aβ-: CSF-based Aβ42 >192 pg/ml at baseline and 2 
years; Aβ+: CSF-based Aβ42 <192 pg/ml at baseline and 2 years; AD-RAI: AD resemblance atrophy index. 
 

 
 

Figure 6. Typical real cases of MCI stable and MCI-to-AD subjects. T1-weighted (T1W) images at baseline and two years were shown 
for the two typical cases in temporal, parieto-occipital and frontal view. Red arrows pointed to the regions with significant atrophy by 
comparing the T1W images of the same subject over two years. The typical case of MCI stable did not present progressed atrophy during the 
two years, while the case of MCI-to-AD showed increased width of right choroid fissure and temporal horn (temporal view), enlargement of 
lateral ventricle (parieto-occipital view) and increased frontal lobe atrophy (frontal view). Aβ-: CSF-based Aβ42 >192 pg/ml at baseline and 2 
years; Aβ+: CSF-based Aβ42 <192 pg/ml at baseline and 2 years; AD-RAI: AD resemblance atrophy index. 
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(e.g. retinal conditions [26]) may be evaluated in the 
future when multiple types of AD biomarkers are 
available. Furthermore, the AD-RAI presented significant 
associations with deterioration of global cognition and 
domain cognitive function (Table 3, Supplementary 
Table 2), which corroborated with our positive findings 
regarding the potential of AD-RAI in predicting NC-to-
MCI conversion and MCI-to-AD conversion. As the 
domain cognitive functions were only assessed with the 
components of MoCA, future work should apply a more 
detailed battery of neuropsychological assessments to 
explore the potential of AD-RAI in detecting the 
population at risk of cognitive decline in specific domains. 
 
There are several limitations to this study that should be 
considered. Firstly, the sample size of the study cohort is 
relatively small (especially for NCc group), which makes 
it difficult to perform a more comprehensive searching of 
the cutoffs for both AD-RAI and volumetric measures of 
individual regions, because at least a number of subjects 
need to be allocated to the smaller dichotomized group. 
Therefore, further validations are needed to test whether 
the findings of this study (e.g. optimal cutoff of baseline 
AD-RAI for future conversion to MCI/AD) can be 
generalizable to a larger cohort. In addition, although this 
study aimed to measure separate periods of AD 
progression (NC-to-MCI, and MCI-to-AD), the follow-
up duration (2 years) is still short to capture sufficient 
brain volumetric changes. There might be some subjects 
that would have progression soon after the last visit but 
were still diagnosed as NCs or MCIs based on the 
observations within two years. Also, some of the imaging 
data of intermediate visits (at 6 and 12 months) were 
missing, and there was one subject that had reversion 
from MCI to NC during the intermediate visits. However, 
the longitudinal trajectory analyses that involved 
intermediate visits were performed with mixed effect 
model which is resistant to missing data. The only one 
subject with short-term reversion from MCI to NC 
returned to MCI at the last visit and the disease 
progressions of remaining subjects did not reverse in the 
two years. Finally, this study aimed to test the ability of 
brain volumetric measures (based on structural  
MRI) in identifying the risk of conversion to  
MCI/AD, and no other biomarkers were used for the 
predictions. As different biomarkers (e.g. PET, CSF and 
neuropsychological assessments) provide complementary 
information and presented better prediction of conversion 
[27–29], further efforts should be made to combine these 
features in a single synthetic AD risk index as an easy-to-
use tool for individual-level diagnosis. 
 
In conclusion, this study confirmed the potential of using 
synthetic atrophy index that combines brain volumetric 
measures of multiple regions in early differentiation of 
subjects at risk of conversion from NC to MCI and from 

MCI to AD at an individual-level. Future efforts should 
aim to identify a reliable cutoff of this index in specific 
differentiation tasks, where a longer duration of follow-
up and larger sample size would be preferred. The 
additional contribution of short-term follow-ups of this 
index for prediction of conversion also needs to be 
validated with a larger cohort. 
 
MATERIALS AND METHODS 
 
Subjects 
 
All data used in this study was obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database (http://adni.loni.usc.edu), which was launched 
in 2003 as a public-private partnership. The primary goal 
of ADNI has been to test whether serial magnetic 
resonance imaging (MRI), positron emission tomography 
(PET), other biological markers, and clinical and 
neuropsychological assessment can be combined to 
measure the progression of mild cognitive impairment 
(MCI) and early Alzheimer’s disease (AD) [30]. 
 
Data used in this work included subjects from the 
Alzheimer's Disease Neuroimaging Initiative phase 2 
(ADNI-2) who had both baseline and follow-up MRI data 
and diagnostic information spanning two years apart. To 
map a more comprehensive trajectory of the changes 
during the two years, we also included the follow-up data 
(MRI scans and diagnostic information) at 6 and 12 
months of these subjects if available. All MRI scans were 
checked for quality control, and those with common 
artifacts or structural abnormalities were excluded from 
the dataset [31]. Neuropsychological test scores were also 
obtained such as Mini-Mental State Examination 
(MMSE) [32] and Montreal Cognitive Assessment 
(MoCA) [33]. Five cognitive domain scores of MoCA 
were also calculated using a method published previously 
[34], including memory, language, attention, executive 
function and visuospatial function. In addition, we 
downloaded the data of CSF-based biomarkers such as 
amyloid-β (Aβ42), total tau (t-tau) and phosphorylated tau 
(p-tau181), and the processed data of Florbetapir (F18-AV-
45) PET in terms of average cortical uptake with the 
whole cerebellum as the reference region [35]. 
 
According to the diagnostic information at baseline and 
24 months, each subject was assigned to one of the 
following groups: (1) NC-to-MCI converter, (2) MCI-to-
AD converter, (3) AD stable, (4) NC stable, (5) MCI 
stable. Information on the change of subjects’ diagnoses 
were downloaded from the ADNI website 
(DXSUM_PDXCONV_ADNIALL.csv). For group (1) 
and (2), converter is defined when a subject’s diagnostic 
status has advanced during the two-year period. We 
included NC-to-MCI converter (NCc) subjects who have 
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transitioned from NC to MCI, and MCI-to-AD converter 
(MCIc) subjects who transitioned from MCI to AD from 
baseline to 24-month follow-up examinations. For 
subjects in groups (3), (4) and (5), stable is defined when 
a subject kept his/her baseline diagnosis for the whole 
two-year period. Finally, we identified 23 NCc subjects, 
35 MCIc subjects, 25 AD stable (ADs) subjects, 50 NC 
stable (NCs) subjects and 50 MCI stable (MCIs) subjects. 
The diagnostic information of these subjects over the 2 
years were shown in Table 8. 
 
MRI acquisition and processing 
 
High-resolution structural brain MRI scans were 
acquired using 3T MRI scanners (GE Healthcare, 
Philips Medical Systems, or Siemens). For T1-weighted 
MRI, GE scanners use inversion recovery-fast spoiled 
gradient recalled (IR-FSPGR) sequences and Philips 
and Siemens use magnetization-prepared rapid gradient 
echo (MP-RAGE) sequences. For T2-weighted MRI, all 
the scanners use Axial T2 fluid attenuated inversion 
recovery (FLAIR) sequence. 
 
All the MRIs were processed using AccuBrain® 

(BrainNow Medical Technology Limited), a cloud-
based tool of automated brain volumetry that performs 
brain structure and tissue segmentation and 
quantification in a fully automatic mode. In a recent 
validation study based on a standard dataset from the 
European Alzheimer’s Disease Consortium - 
Alzheimer’s Disease Neuroimaging Initiative 
Harmonized Protocol (EADC-ADNI HarP) where 
manual hippocampal segmentation reference was 
available, AccuBrain® achieved the best performance 
among the existing automatic brain segmentation tools 
[36]. In this study, we selected brain parenchyma, 
typical subcortical structures (bilateral hippocampus 
and amygdala), ventricular regions (ventricular system, 
lateral ventricle, inferior lateral ventricle) and lobar 
regions (frontal lobe, occipital lobe, temporal lobe, 
parietal lobe, cingulate lobe and insular) for 
quantification of brain volumetry, which are cognitive-
relevant regions for the subsequent analysis. In detail, 
the subcortical regions and ventricle structures were 
measured with volume ratio (% of intracranial volume 
(ICV)), and the cortical regions were measured with 
atrophy degree regarding the ratio of the volume of 
cerebrospinal fluid (CSF) to cortical volume of a 
specific region [37]. To investigate the influence of 
small vessel disease on the outcomes of the study 
cohort, we also quantified the total volume of white 
matter hyperintensities (WMH) for each subject using 
AccuBrain®, based on an automated WMH segmentation 
algorithm mentioned in a previous study [38]. The 
WMH volumes to be compared between groups were 
also normalized by ICV as volume ratios (% of ICV). 

In addition to the brain structural volumetry, an AD 
resemblance structural atrophy index (AD-RAI) was 
also estimated for each individual by AccuBrain® to 
indicate the whole brain AD-pathological atrophy 
degree. The AD-RAI ranges from 0 to 100%, 
representing the severity of brain atrophy. It was 
calculated according to the atrophy degree of AD-
related brain structures, including subcortical structures 
(e.g. hippocampus), ventricles, and also the cortical 
lobar regions. Based on an in-house training database 
with the brain volumetric data of both normal subjects 
and AD patients, AccuBrain® computes and selects the 
most relevant brain regional volumetry and projects the 
multi-dimensional brain regional volumetry features 
into a single atrophy index (i.e. AD-RAI) for the 
individual to be tested. Here, the in-house training 
database contains brain MRI scans of 400 subjects, with 
45% AD patients and 55% NC subjects. Regarding the 
inclusion criteria of the in-house training database, for 
the AD group they were: (1) diagnosis of AD according 
to the International Classification of Diseases, 10th 
Revision (ICD-10), (2) CDR≥1, (3) not having any 
nootropic drugs, such as anticholinesterase inhibitors, 
and (4) able to perform the neuropsychological test and 
tolerate the MRI scanning. The inclusion criteria for the 
NC group were: (1) normal in general physical status, 
(2) a CDR of 0 and (3) no memory complaints. 
 
Statistical analyses 
 
We compared the demographic characteristics of the 
five groups of subjects (NCs, MCIs, ADs, NCc and 
MCIc) using ANOVA with Bonferroni correction for 
between-group comparisons. The AD-RAIs of the five 
groups were also compared with ANOVA to confirm 
their consistence with the diagnosis of the subjects. In 
addition, Pearson partial correlation analyses were 
performed to associate baseline AD-RAI with CSF-
based/PET-based biomarkers (with age and gender as 
covariates) and cognitive measures (with age, gender 
and education level as covariates) over the two years. 
Subsequently, we focused on the brain volumetric 
difference between converters and non-converters (e.g. 
NCc vs. NCs) identified by the baseline measures and 
the longitudinal changes over the two years. 
 
Baseline brain volumetry in converters and  
non-converters 
ANCOVA analyses were first performed to identify the 
measures of baseline brain volumetry (measures of single 
regions and the AD-RAI based on multiple regions) that 
presented significant difference between NCs and NCc, 
and between MCIs and MCIc respectively. Age and 
gender were covaried out in these comparisons. Using the 
baseline brain volumetry measures that were significantly 
different between converters and non-converters, we
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Table 8. Diagnostic distribution at each visit over 2 years. 

 Baseline 6 months 12 months 24 months 
Cumulative (n=183) (n=174) (n=175) (n=183) 

NC 73 66 63 50 
MCI 85 76 73 73 
AD 25 32 39 60 

Missing 0 9 8 0 
Conversion (compared with baseline)     

NC to MCI 0 3 5 23 
MCI to AD 0 10 9 35 
MCI to NC 0 1 1 0 

 

further performed logistic regression analyses, where the 
condition of conversion (e.g. NCc vs. NCs) was the 
dependent variable, with a dichotomized brain volumetry 
measure as the independent variable. To compare the 
performance of these baseline measures of brain 
volumetry in differentiating converters and non-
converters, we also optimized the cutoff when 
dichotomizing a volumetric measure (the independent 
variable) to achieve the best area under the curve (AUC) 
of receiver operating characteristics (ROC) for the 
corresponding measure. Here, the candidate cutoff values 
were selected for different type of volumetric measures.  
 
Regarding the AD-RAI (ranging from 0 to 1), we 
searched within the range of 0.1~0.9 in increments of 0.1 
for the best cutoff, where the cutoffs were determined by 
the exact value of this index. Different from AD-RAI 
which indicates severity of AD-like atrophy pattern, the 
exact values of the volumetric measures of individual 
regions do not represent atrophy degree, and the ranges 
of their exact values vary for different brain regions. To 
dichotomize these volumetric measures with similar 
criteria, we applied percentiles (based on the data of this 
study) as the cutoffs. As the expected “norms” of 
volumetric measures may vary for NC-to-MCI 
conversion and MCI-to-AD conversion, we calculated 
the percentiles of the volumetric measures of individual 
regions separately for NC group (including subjects of 
NCs and NCc) and MCI group (including subjects of 
MCIs and MCIc). For lobar atrophy measures and 
ventricle volumes which are expected to positively 
associate with the risk of disease progression, we first 
selected median (50th percentile) and 75th percentile as 
the cutoffs, which have been widely used in literature 
[39]. Furthermore, we chose 90th percentile instead of 
even higher ones (e.g. 95th percentile) as the cutoff of 
upper limit, aiming to leave at least 10% of the data to the 
smaller group (dichotomized by volumetric measures) 
due to the small sample size of our study (n=73 for NC 
group and n=85 for MCI group). Finally, we considered 
80th and 85th percentiles for a finer searching within the 
upper range (75%~90%). In this regard, the candidate 

cutoffs for lobar atrophy measures and volumetric 
measures of ventricle structures were 50th, 75th, 80th, 85th 
and 90th percentiles. Similarly, for the volumetric 
measures of subcortical structures which are expected to 
negatively associate with the risk of disease progression, 
the candidate cutoffs were 10th, 15th, 20th, 25th and 50th 
percentiles. These cutoffs were subsequently used in the 
logistic regressions for the analyses of NCs vs. NCc and 
MCIs vs. MCIc.  
 
Longitudinal trajectory of brain volumetric changes of 
converters and non-converters 
As the data at 6 and 12 months before the last diagnostic 
visit (at 24 months) was also available for most of the 
subjects, it should also be interesting to map the 
difference of longitudinal trajectory of brain volumetric 
changes between the converters and non-converters (e.g. 
NCs vs. NCc). Here, we used linear mixed effect model, 
which can properly account for correlation between 
repeated measurements on the same subject and handle 
missing data more appropriately than the traditional 
repeated ANOVA analyses [40]. The interaction effect 
of group × time was tested with age and gender as 
covariates, where the group variable (independent 
variable) was defined as conversion status during the 
two years (for baseline NC subjects or MCI subjects), 
and the dependent variables were the volumetric 
measures (measures of single regions and the AD-RAI 
based on multiple regions) at different timepoints. With 
the mapping of longitudinal trajectory, we could also 
identify the brain regional volumetric measures that 
provided clues of further disease progression on top of 
the baseline measures, for example, if NCc subjects had 
more rapid atrophy at 6 or 12 months than NCs subjects. 
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SUPPLEMENTARY MATERIALS 
 
 
Supplementary Table 1. Available number of subjects for biomarkers of CSF and F18-AV-45 PET. 

  NCs NCc MCIs MCIc AD Total 
Included subjects^, n 50 23 50 35 25 183 
CSF Aβ42, n        

Baseline  44 12 48 35 25 164 
24 months  27 6 31 20 12 96 

CSF t-tau, n        
Baseline  44 12 48 34 23 161 
24 months  27 6 31 19 12 95 

CSF p-tau181, n        
Baseline  44 12 48 35 25 164 
24 months  27 6 31 20 12 96 

Mean cortical SUVR*, n        
Baseline  50 23 50 35 25 183 
24 months  48 18 42 34 22 164 

^Total number of the subjects included in this study. *Mean average cortical uptake (within frontal, anterior/posterior 
cingulate, lateral parietal, and lateral temporal cortex) of Florbetapir (F18-AV-45) PET with the whole cerebellum as the 
reference region. NCs, NC stable subjects; NCc, NC-to-MCI converters; MCIs, MCI stable subjects; MCIc, MCI-to-AD 
converters; ADs, AD stable subjects; CSF, cerebrospinal fluid; SUVR, standard uptake value ratio. 
 

Supplementary Table 2. MoCA and its subscores at baseline and 24 months. 
 NCs (n=50) NCc (n=23) MCIs (n=50) MCIc (n=35) ADs (n=25) p 

MoCA, mean (SD)       

Baseline 25.98 (1.76) 25.13 (2.10) 24.62 (2.39) 23.49 (2.72) 19.52 (5.10) <0.001 
24 months 26.46 (1.61) 25.55 (1.87) 25.02 (2.56) 19.86 (4.10) 14.21 (6.20) <0.001 

MoCA-memory, mean (SD)       

Baseline 9.58 (1.03) 9.52 (1.08) 9.44 (1.25) 9.20 (1.35) 7.32 (2.76) <0.001 
24 months 9.64 (0.72) 9.55 (0.74) 9.66 (1.30) 6.97 (2.05) 5.00 (2.75) <0.001 

MoCA-visuospatial, mean (SD)       

Baseline 3.42 (0.73) 3.00 (0.90) 3.26 (0.83) 2.94 (0.97) 2.44 (1.12) <0.001 
24 months 3.62 (0.60) 3.14 (0.94) 3.10 (0.86) 2.57 (1.07) 1.79 (0.98) <0.001 

MoCA-language, mean (SD)       
Baseline 4.58 (0.61) 4.61 (0.66) 4.30 (0.76) 4.17 (1.07) 3.92 (1.08) 0.007 
24 months 4.76 (0.52) 4.59 (0.59) 4.38 (0.81) 3.60 (1.24) 2.96 (1.46) <0.001 

MoCA-attention, mean (SD)       
Baseline 3.86 (0.45) 3.70 (0.56) 3.64 (0.56) 3.34 (0.80) 2.64 (1.35) <0.001 
24 months 3.92 (0.34) 3.82 (0.39) 3.62 (0.67) 3.03 (0.98) 1.96 (1.52) <0.001 

MoCA-executive, mean (SD)       
Baseline 4.54 (0.65) 4.30 (0.88) 3.98 (1.00) 3.83 (1.15) 3.20 (1.32) <0.001 
24 months 4.52 (0.95) 4.45 (0.80) 4.26 (0.90) 3.69 (1.21) 2.50 (1.44) <0.001 

NCs, NC stable subjects; NCc, NC-to-MCI converters; MCIs, MCI stable subjects; MCIc, MCI-to-AD converters; ADs, AD stable 
subjects. 


