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INTRODUCTION 
 
Benign prostatic hyperplasia (BPH), a chronic condition 
in aging men, is characterized by non-malignant 
enlargement of stromal and epithelial cells in the 
prostate [1, 2]. Although the etiology of BPH is not fully 
understood, some factors, such as hormonal disruption, 
inflammation, and oxidative stress, are clearly associated 
with the development of BPH [3, 4]. Recent studies have 
suggested that BPH is associated with metabolic 
syndrome, such as obesity, hyperglycemia, dyslipidemia, 
and hypertension, as well as urinary tract syndrome [5]. 

 

A high-fat diet (HFD) has been verified as one of the 
factors related to the activation of prostate cancer and 
BPH. Moreover, BPH has been identified as a new 
metabolic disease [6, 7]. Recent studies have 
demonstrated that obesity and hyperinsulinemia have 
positive effects on prostate volume and prostatic 
hyperplasia [8, 9]. A recent study indicated that HFD 
induces prostate fibrosis and inflammation [10]. Although 
many studies have affirmed the negative effects of HFDs 
on different systems, including the prostate, the molecular 
and morphologic mechanisms underlying proliferative 
disorders in the prostate are still unclear [11]. 
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ABSTRACT 
 
This study determined whether or not benign prostatic hyperplasia (BPH) induced by a high-fat diet (HFD) is 
involved in inflammatory responses, apoptosis, and the signal transducer and activator of transcription 
(STAT3)/nuclear factor-kappa B (NF-κB)- and nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated oxidative 
stress pathways. Forty rats were divided into four groups: control; HFD; testosterone; and HFD+testosterone. 
Hematoxylin and eosin (HE) staining was used to assess histologic changes. An enzyme-linked immunosorbent 
assay and Western blot analysis were used to detect levels of related proteins. Compared with the control group, 
the prostate levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor-α 
(TNF-α), interleukin-6 (IL-6), malondialdehyde (MDA), transforming growth factor-β1 (TGF-β1), and monocyte 
chemotactic protein-1 (MCP-1) were significantly increased, while the levels of glutathione peroxidase (GSH-Px), 
glutathione reductase (GR), glutathione (GSH), and superoxide dismutase (SOD) were decreased. The TNF-κB, Bcl-
2, and caspase-3 levels were increased, while the Bax level was markedly decreased. The cytoplasmic expression 
of STAT3 and NF-κB was increased, while the nuclear expression of Nrf2 was markedly decreased compared with 
the control group. In summary, our results demonstrated that a long-term HFD might cause changes in 
inflammatory responses, apoptosis, and oxidative stress, thus contributing to prostatic hyperplasia. The 
underlying mechanisms might be related to the STAT3/NF-κB- and Nrf2-mediated oxidative stress pathway. 

mailto:liuyiliurology@sohu.com


www.aging-us.com 5571 AGING 

Recent studies have reported that HFD leads to oxidative 
stress and inflammation in the prostate gland [12, 13]. 
An imbalance between cell proliferation and apoptosis 
leads to continuous growth of epithelial and stromal 
cells, contributing to the development of BPH [14]. The 
connection between metabolic disorders and apoptosis/ 
proliferation that occur in the course of BPH, requires 
further research. A diagnosis of diabetes and the level of 
obesity are regarded as independent risk factors for 
developing BPH [15]. 
 
This study determined the role of the inflammatory 
response, apoptosis, and oxidative stress in the process 
of BPH, and further verified the relationship of the 
signal transducer and activator of transcription 
(STAT3)/nuclear factor-kappa B (NF-κB)- and nuclear 
factor erythroid 2 related factor 2 (Nrf2)-mediated 
signaling pathways with BPH induced by HFD. 
 
RESULTS 
 
Prostate histologic alterations 
 
The body weights of the HFD and HFD+testosterone 
groups were significantly higher than the control group 
(p<0.01). The prostatic wet weight of the control group 
was lower than the other three groups (p<0.01). The same 
results existed with respect to the prostatic index, which 
was significantly increased in the three groups compared 
to the control group (p<0.01; Table 1). As shown in 
Figure 1, the results of HE staining indicated that the 
control group presented with acini and typical 
characteristics, as well as high epithelial folds in the 
distal region of the gland. The HFD, testosterone, and 
HFD+testosterone groups exhibited various morphologic 
alterations in the ventral prostate; specifically, some areas 
showed apparent epithelial hyperplasia. The massive 
empty lipid vacuoles and some inflammatory foci were 
also demonstrated in the HFD and HFD+testosterone 
groups. 
 
Levels of static inflammatory response-, apoptosis-, 
and oxidative stress-related proteins  
 
As shown in Figure 2, the levels of COX-2, iNOS, TNF-
α, IL-6, TGF-β1, and MCP-1 were significantly 
increased compared with the control group, especially in 
the HFD+testosterone group (p<0.05 or p<0.01). These 
indicators were significantly altered in the HFD+ 
testosterone group compared with the testosterone group 
(p<0.05 or p<0.01). The levels of SOD, GSH-Px, GR, 
and GSH were markedly reduced compared with the 
control group, while MDA was significantly increased 
(p<0.05 or p<0.01), especially in the HFD+testosterone 
group. In addition, these indicators were significantly 
altered in the HFD+testosterone group compared with 

the testosterone group (p<0.05 or p<0.01). All of the 
results indicated that HFD was related to the levels of 
static inflammatory response-, apoptosis-, and oxidative 
stress-related proteins. 
 
Effects of HFD on the expression of NF-κB, Bcl-2, 
caspase-3, Bax, STAT3, NF-κB p65, and Nrf2 
protein, as detected by ELISA 
 
As shown in Figure 3, the expression of NF-κB, Bcl-2, 
and caspase-3 protein were significantly increased 
compared with the control group, especially in the 
HFD+testosterone group (p<0.01), while Bax was 
markedly decreased (p<0.01). The expression of STAT3 
and NF-κB p65 protein was dramatically increased 
compared with the control group (p<0.01), while Nrf2 
was significantly decreased (p<0.01 or p<0.05), 
especially in the HFD+testosterone group. In addition, 
these indicators were significantly altered in the 
HFD+testosterone group compared with the testosterone 
group (p<0.01). 
 
DISCUSSION 
 
BPH is a prevalent and chronic progressive disease that 
may be correctly defined as prostate gland enlargement 
secondary to hyperproliferation of stromal and glandular 
cells [16]. Several parameters, including inflammatory 
mediators, inflammatory genes, and oxidative stress, are 
considered to play a role in the development of BPH 
[17]. In the case of inflammation, the production of ROS 
is increased and can exhaust the anti-oxidative protection 
system [18]. ROS may also indirectly induce the 
formation of DNA adducts by initiating autocatalytic 
lipid peroxidation, generating a large variety of potential 
genotoxic breakdown products, such as MDA [19]. 
Measurement of MDA levels in plasma or serum provide 
a convenient in vivo index of lipid peroxidation, and 
represent a non-invasive biomarker of oxidative stress 
[20]. 
 
Disordered levels of growth factors, such as inflammatory 
cytokines, have been reported to be closely associated 
with the development of metabolic diseases [21]. NF-κB, 
a redox-sensitive transcriptional factor, is stimulated by 
oxidative stress, which might control the release of 
inflammatory cytokines [22]. In addition, testosterone is 
believed to accelerate the production of other 
inflammatory cytokines, such as COX-2, iNOS, TNF-α, 
and IL-6 [23]. The prostatic chronic inflammation state 
plays a vital role in the progression of BPH and prostatic 
carcinoma [24]. The levels of COX-2, iNOS, TNF-α, and 
IL-6 were clearly increased in rats given HFD. All of 
these findings suggested that growth factors and 
inflammatory cytokines played important roles in BPH 
induced by HFD. 
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Table 1. Effects of a long-term HFD on body weight, prostatic wet weight, and the prostatic index. 

Groups Body weight (g) Prostatic wet weight (mg) Prostatic index (mg/g) 

Control 458.92±32.5 256.32±15.6 0.56±0.11 
HFD 495.56±29.5## 382.65±29.6## 0.77±0.16## 
Testosterone 468.49±49.6 388.32±32.1## 0.83±0.21## 
HFD+ testosterone 501.86±82.1## 420.21±27.9## 0.84±0.15## 

Data are expressed as the mean ± SD. ## indicates P<0.01 compared with the control group 
 

It is well-known that inflammation has an effect on 
apoptosis. Chronic inflammation leads to proliferation in 
prostate tissues by modifying the expression of apoptotic 
protein. Apoptosis is of great importance in the regulation 
of cellular growth and tissue homeostasis, and is involved 
in a number of changes at the cellular level that lead to 
the death of functionally-impaired cells [25]. Analysis of 
the mechanism underlying apoptosis could be a vital part 
of BPH treatment. Previous studies have indicated that 
increased prostate volume is not due to excessive 
proliferation of prostate tissue, but is instead related to a 
decrease in prostate tissue apoptosis [26, 27]. COX-2 

either exerts a pro-inflammatory or proliferative effect on 
prostate cells [28]. In the current study, the expression of 
Bcl-2 was significantly increased in the prostate tissues 
of rats treated with HFD or testosterone. The Bcl-2 
protein family is divided into several groups based on 
structure and function, including proteins (such as Bcl-2) 
and pro-apoptotic proteins (such as Bax) [29]. Bcl-2 was 
the earliest discovered apoptosis suppressor gene. The 
mechanism by which Bcl-2 blocks apoptosis might be 
associated with antagonism of Bcl-2 and the apoptosis-
promoting gene, Bax, thus inhibiting the release of 
cytochrome C from mitochondria to the cytoplasm and 

 

 
 

Figure 1. Histologic changes in rat prostate (HE stain, ×40). (A) Control group; (B) HFD group; (C) Testosterone group; (D) 
HFD+testosterone group. 
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Figure 2. Effects of a long-term HFD on prostatic COX-2, iNOS, TNF-α, IL-6, TGF-β1, MCP-1, MDA, SOD, GSH-Px, GR, and GSH 
(A–K) levels by ELISA. Results are representative of three independent experiments. ##p<0.01 and #p<0.05, compared with the control group; 
*p<0.05 compared with the testosterone group. 
 

activating caspase protease [30, 31]. Bcl-2 expression 
was significantly increased after treatment with HFD+ 
testosterone, while Bax expression was significantly 
reduced. In addition, the expression of caspase-3 was 
clearly increased. These findings showed that prostate 
hyperplasia induced by HFD might exert anti-apoptotic 
effects by increasing the expression of Bcl-2 and caspase-
3 and decreasing the expression of Bax. 
 
Our study showed that the MDA level was significantly 
increased in the prostate tissues of the HFD group, 
suggesting enhanced oxidative stress in the HFD 
treatment group. ROS production can suppress the anti-
oxidant ability of the liver, including anti-oxidative 
enzymes and anti-oxidants [32]. Generally, BPH is 
accompanied by a down-regulation of anti-oxidants, such 
as GSH, GSH-Px, GR, and SOD [33]. GSH is a very 

important anti-oxidant and has a strong scavenging effect 
on free radicals. SOD and GSH-Px are the anti-oxidant 
enzymes involved in endogenous defense mechanisms 
against increased ROS. Of these, SOD serves as an 
important symbol to show anti-oxidant activity in 
patients with BPH [34]. Our results showed that the level 
of SOD was markedly reduced. Moreover, the results of 
GSH, GSH-Px, and GR were markedly reduced in rats 
fed HFD, which suggested that anti-oxidant systems were 
reduced after treatment with HFD. All of these findings 
indicated that HFD might reduce the anti-oxidant system, 
resulting in enhanced oxidative stress. 
 
STAT3 is a key factor that activates NF-κB, and this 
activation contributes to the transcriptional regulation of 
inflammatory cytokines, such as TGF-β1, IL-6, iNOS, 
and MCP-1 [35]. Our results showed that the expression  
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of STAT3 and NF-κB were significantly increased, and 
the levels of TGF-β1, IL-6, iNOS, and MCP-1 were also 
markedly increased in rats fed HFD. In a previous study, 
Stat-3 was involved in the activation of NF-κB in the 
prostate as a result of HFD feeding, leading to 
inflammation [36]. NF-κB is a redox-sensitive trans-
criptional factor stimulated by oxidative stress and plays 
an important role in producing the inflammatory 
cytokines [37, 38]. These results suggested that HFD 
increases the expressions of STAT3 and NF-κB, thus 
leading to the release of inflammatory factors. Nrf2 is a 
redox-sensitive transcription factor that regulates the 
expression of anti-oxidative genes [39, 40]. HFD 
increases the risk of developing BPH and prostate cancer 
through an influence on the NF-kB and Stat-3 signaling 
pathways [41]. The expression of Nrf2 was also 
significantly decreased in HFD, suggesting that HFD 
might reduce anti-oxidant activity by inhibiting the 
expression of Nrf2. 
 
In conclusion, inflammatory cytokines (iNOS, COX-2, 
TNF-α, and IL-6), apoptosis-related proteins (Bcl-2 and 
Bax), and oxidative stress-related proteins (GSH-Px, GR, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GSH, and SOD) were changed significantly in the HFD, 
testosterone, and HFD+testosterone groups compared 
with the control group. STAT3 and NF-κB were 
significantly increased and Nrf2 was significantly 
decreased, indicating that HFD might reduce anti-
oxidant activity by inhibiting the expression of Nrf2 and 
be involved in STAT3/NF-κB- and Nrf2-mediated 
oxidative stress pathways. However, this study was only 
conducted in a rat model, thus a clinical study should be 
carried out to investigate the effects of HFD and 
testosterone on BPH. 
 
MATERIALS AND METHODS 
 
Materials 
 
A total of 40 healthy male SD rats (8 weeks old; 250±10 
g) were obtained from Shanghai SLAC Laboratory 
Animal Co., Ltd. (Shanghai, China) and maintained in a 
temperature- (22–24°C) and humidity-controlled room 
(55–60%). The rats were allowed free access to food and 
water and acclimated to the laboratory environment for 3 
days prior to the study. All experimental procedures 

Figure 3. Effects of a long-term HFD on the expression of NF-κB, Bcl-2, Bax, caspase-3, STAT3, NF-κB, p65, and Nrf2 protein. 
##p<0.01 and #p<0.05 compared with the control group; *p<0.05 compared with the testosterone group. 
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were conducted in conformity with the Institutional 
Guidelines for the Care and Use of Laboratory Animals, 
and protocols were approved by the Institutional Animal 
Care and Use Guidelines of China Medical University 
(Shenyang, China). These rats were divided into four 
groups: control group (n=10); HFD group (n=10), 
treated with HFD (carbohydrate, 29%; protein, 16%; fat, 
55%)  for 12 weeks; testosterone group (n=10), treated 
with testosterone (10 mg/kg/d) for the last 4 weeks; and 
HFD+testosterone group (n=10), treated with HFD for 
12 weeks plus testosterone (10 mg/kg/d) for the last 4 
weeks. All of the rats were sacrificed and the prostate 
glands were collected for parameter measurements. 
 
Histologic examination 
 
The prostate glands were fixed in 10% formaldehyde 
solution and embedded in paraffin for hematoxylin and 
eosin (HE) staining, then examined under a light 
microscope. The body weight, prostatic wet weight, and 
prostatic index (rostatic wet weight (mg)/body weight 
(g)) of each group were measured. 
 
Measurements of inflammatory response-, apoptosis-, 
and oxidative stress-related proteins 
 
To measure the prostatic cyclooxygenase-2 (COX-2), 
inducible nitric oxide synthase (iNOS), tumor necrosis 
factor-α (TNF-α), interleukin-6 (IL-6), malondialdehyde 
(MDA), glutathione peroxidase (GSH-Px), glutathione 
reductase (GR), glutathione (GSH), monocyte chemo-
tactic protein 1(MCP-1), and superoxide dismutase (SOD) 
levels, partial prostatic tissues were immediately put into 
ice-cold normal saline containing 50 U/ml aprotinin. The 
tissue homogenate (10%, w/v) was prepared and 
centrifuged at 1200 × g for 10 min. The supernatant then 
obtained was used for COX-2, iNOS, TNF-α, TGF-β1, 
IL-6, iNOS, and MCP-1 measurements according to the 
ELISA method following the manufacturer's instructions 
on a VersaMax plate reader (Molecular Devices, city, CA, 
USA). 
 
Western blot analysis for protein expression 
 
The western blot assay was used to measure the 
expression of Nrf2, Bcl-2, Bax, Caspase-3, STAT3, NF-
κB, NF-κB-p65, and β-actin protein. In brief, a 70-mg 
aliquot of protein from each sample was loaded on 10% 
SDS-polyacrylamide gel, separated by electrophoresis 
under constant current, and subsequently transferred to 
nitrocellulose membranes (Millipore, Billerica, MA, 
USA). The membranes were blocked with 5% skim milk 
at room temperature for 1.5, then incubated with the 
primary antibodies for NF-κB-p65 (1:500 dilution), Bcl-
2 (1:2000 dilution), Bax (1:1000 dilution), caspase-3 
(1:1000), STAT3 (1:1000 dilution), Nrf2 (1:500 

dilution), and β-actin (1:1000 dilution) at 4 C overnight. 
Next, the membranes were washed and incubated with 
the fluorescent secondary antibody at room temperature 
for 1 h. The protein blots were analyzed by densitometry 
using an Odyssey infrared imaging system and Image J 
software, and the relative ratio of the protein of interest 
was subjected to β-actin. 
 
Statistical analysis 
 
Data were expressed as the mean ±standard deviation. 
The significance of differences among groups for the 
quantitative index was determined using one-way 
ANOVA, followed by a post hoc LSD test. The hepatic 
histopathologic evaluation was performed using the 
Mann-Whitney U test. The statistical analysis was 
conducted using SPSS 19.0 software, and a p<0.05 was 
considered statistically significant. 
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