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INTRODUCTION 

Acute myeloid leukemia (AML), characterized by 
abnormal proliferation and differentiation of myeloid 
progenitor cells, is an aggressive hematological malig-
nancy. Hematopoietic transformation leads to modification 
in numbers of key transcriptional targets during myelo-
poiesis. Alterations occur in genes with important roles in 
regulation of hematopoietic progenitors, contribute to 
hematological pathogenesis, and could represent attractive 
targets for AML treatment [1]. In recent years, numbers of 
reports of the competing endogenous RNAs (ceRNAs) 
network has emerged in the study of AML development 
and therapy [2, 3]. 

The hypothesis of ceRNAs states the pool of long non-
coding RNAs (lncRNAs), pseudogenes, circular RNAs 
(circRNAs) and messenger RNAs (mRNAs), compete 
and bind to microRNAs (miRNAs), regulating their 
activity [4, 5]. Among the ceRNA, lncRNAs have 
attracted much attention, as accumulating evidence has 
revealed that lncRNAs are involved in a wide range of 
biological processes. MiRNAs regulate the expression 
of the target genes by binding to the miRNA response 
elements (MREs) on the target mRNAs. And, lncRNAs 
act as molecular sponges to attract miRNAs, contri-
buting to various human diseases process [6]. At 
present, the ceRNA hypothesis has been proven to be 
implicated in the development of different kinds of 
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ABSTRACT 

Recently, competing endogenous RNAs (ceRNAs) hypothesis has gained a great interest in the study of molecular 
biological mechanisms of cancer occurrence and progression. However, studies on leukemia are limited, and there 
is still a lack of comprehensive analysis of lncRNA-miRNA-mRNA ceRNA regulatory network of AML based on high-
throughput sequencing and large-scale sample size. We obtained RNA-Seq data and compared the expression 
profiles between 407 normal whole blood (GTEx) and 151 bone marrows of AML (TCGA). The similarity between 
two sets of genes with trait in the network was analyzed by weighted correlation network analysis (WGCNA). 
MiRcode, starBase, miRTarBase, miRDB and TargetScan was used to predict interactions between lncRNAs, 
miRNAs and target mRNAs. At last, we identified 108 lncRNAs, 10 miRNAs and 8 mRNAs to construct a lncRNA-
miRNA-mRNA ceRNA network, which might act as prognostic biomarkers of AML. Among the network, a survival 
model with 8 target mRNAs (HOXA9+INSR+KRIT1+MYB+SPRY2+UBE2V1+WEE1+ZNF711) was set up by univariate 
and multivariate cox proportional hazard regression analysis, of which the AUC was 0.831, indicating its sensitivity 
and specificity in AML prognostic prediction. CeRNA networks could provide further insight into the study on gene 
regulation and AML prognosis. 
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tumors, such as liver, gastric, breast, colon, pancreatic 
and bladder cancer. 
 
In chronic myeloid leukemia (CML), lncRNA SNHG5 
promoted imatinib resistance via acting as a ceRNA 
against miR-205-5p [7]. LncRNA UCA1 was also 
identified as an important modulator of MDR1 to promote 
imatinib resistance through completely binding miR-16 
[8]. In AML, lncRNA NEAT1 modulated cell proliferation 
and apoptosis by regulating miR-23a-3p/SMC1A [9]. 
LncRNA UCA1 contributed to the chemoresistance, 
through activating glycolysis by the miR-125a/HK2 
pathway [10]. In addition, aberrant upregulation of 
CCAT1 was detected in French-American-British (FAB) 
M4 and M5 subtypes of AML patients. CCAT1 repressed 
monocytic differentiation and promoted cell growth by up-
regulating c-Myc via its ceRNA activity on miR-155 [11]. 
Sen et al. explored the major cross-talking edges of 
ceRNA networks in CML and AML utilizing patient 
sample data, which shed light on progression and 
prognosis of leukemia [12]. Therefore, studies have 
showed that the lncRNA-miRNA-mRNA ceRNA 
regulatory network is implicated in the leukemia 
development. However, studies on leukemia are limited, 
and there is still a lack of comprehensive analysis of 
lncRNAs, miRNAs and mRNAs related to AML based on 
high-throughput sequencing and large-scale sample size.  
 
In this study, we obtained RNA-Seq data and compared 
the expression profiles between 151 bone marrows (BMs) 
of AML (The Cancer Genome Atlas, TCGA) [13] and 
407 normal whole blood (Genotype-Tissue Expression, 
GTEx) [14, 15]. Following, mRNAs and lncRNAs 
between the normal samples and AML patients were 
applied to weighted correlation network analysis 
(WGCNA) to enrich modules which were most related 
with AML [16]. And, miRNA database was used to 
predict target mRNA. Finally, we identified 108 
lncRNAs, 10 miRNAs and 8 mRNAs to construct a 
lncRNA-miRNA-mRNA ceRNA network. Among the 
network, a survival model with 8 target mRNAs (HOXA9 
+INSR+KRIT1+MYB+SPRY2+UBE2V1+WEE1+ZNF7
11) was set up for predicting AML prognosis.  
 
RESULTS  
 
Different gene expression from data between TCGA 
and GTEx is analyzed 
 
The expression levels of RNAs in 151 bone marrow 
samples with AML and 407 normal whole blood 
samples were explored. The clinicopathological and 
molecular characteristics of AML patients were shown 
in Table 1 and Table 2. All gene read counts were 
normalized to the trimmed mean of M values (TMM) 
by edgeR. We found that 2667 significantly up-

regulated mRNAs and 2456 down-regulated mRNAs 
were identified. Figure 1A showed the distribution of 
all the significantly different expressed mRNAs on the 
two dimensions of -log10 (false discovery rate, FDR) 
and log2 (fold change, FC) through a volcano map. 
The gene modules in the network are often enriched 
with specific functions, which are of biological sig-
nificance. To test the biological function of the 
identified genes, information from differentially 
expressed genes was applied to Gene Ontology (GO) 
analysis. Up-regulated mRNAs were enriched in 
organelle fission, nuclear division and pattern 
specification process in biological process (BP) (Figure 
1B). Figure 1C showed the gene symbols and their 
interactions in BP of up-regulated mRNAs. Moreover, 
cell cycle, fanconi anemia pathway and homologous 
recombination related genes were up-regulated while 
hematopoietic cell lineage, natural killer cell mediated 
cytotoxicity, necroptosis and NOD-like receptor 
signaling pathways were downregulated by Kyoto 
Encyclopedia of Genes and Genomes (KEGG)-Gene 
Set Enrichment Analysis (GSEA) (Figure 1D). 
 
WGCNA is applied to analyze gene modules 
 
Gene modules were analyzed using the WGCNA among 
the first 40% mRNAs by variance comparison. As shown 
in Figure 2A, softpower 7 and module size cut-off 25 
were chosen as the threshold to identify coexpressed gene 
modules. 19 gene color modules were identified and the 
heatmap plot of topological overlap matrix (TOM) was 
shown in Figure 2B. Then, genes in the 19 color modules 
were continuously used to analyze the module-trait (AML 
and normal) coexpression similarity and adjacency. Cyan 
module and turquoise module showed high relationship 
with AML, which included 1659 mRNAs (Figure 2C). 
These 1659 mRNAs were further used to GO-GSEA to 
display the gene enrichment, gene symbols and their 
interactions in BP, as shown in Figure 2D and 2E. The 
genes were most related to embryo development, 
reproductive process and reproduction. In addition, genes 
were highly enriched in cell cycle, transcriptional mis-
regulation in cancer, ubiquitin mediated proteolysis and 
RNA transport by KEGG analysis (Figure 2F). 
 
LncRNAs modules are analyzed by WGCNA 
 
Next, we continued to investigate coexpression network 
of lncRNAs. LncRNA modules were analyzed by 
WGCNA among the first 60% lncRNAs by variance 
comparison. As shown in Figure 3A, softpower 6 was 
chosen as the threshold and we identified 8 coexpressed 
lncRNA modules. Correlation analysis showed that 
turquoise module displayed highest relationship with 
AML (Figure 3B and 3C; r=0.98). The numbers of 
lncRNAs in every module were shown in Figure 3D. The



www.aging-us.com 3335 AGING 

Table 1. The clinicopathological characteristics of AML patients. 

  Alive(n=54) Dead(n=97) Total(n=151) 
Gender    

FEMALE 24(44.4%) 44(45.4%) 68(45.0%) 
MALE 30(55.6%) 53(54.6%) 83 (55.0%) 

Age    
Mean(SD) 47.4(14.2) 58(15.9) 54.2(16.1) 
Median[MIN, MAX] 50[21,74] 62[21,88] 56[21,88] 

     FAB classification    

M0 5(9.3%) 10(10.3%) 15(9.9%) 
M1 11(20.4%) 24(24.7%) 35(23.2%) 
M2 14(25.9%) 24(24.7%) 38(25.2 %) 
M3 11(20.4%) 4(4.1%) 15(9.9%) 
M4 8(14.8%) 21(21.6%) 29(19.2%) 
M5 5(9.3%) 10(10.3%) 15(9.9%) 
M6  2(2.1%) 2(1.3%) 
M7  1(1.0%) 1(0.7%) 
Not Classified  1(1.0%) 1(0.7%) 

 

Table 2. The cytogenetic risk, immunophenotype and mutation of AML patients. 
 Cytogenetic Risk Group — no.(%) 

 
  

Favorable 31 20.5 
Intermediate 82 54.3 
Poor 36 23.8 
Missing data 2 1.3 

Immunophenotype — no.(%)  

CD33+ 124 82.1 
CD34+ 99 65.6 
CD117+ 134 88.7 

Mutation — no.(%)   

DNMT3A 18 12.6 
FLT3 45 30.6 
NPM1 33 22.0 
RAS 8 5.3 
IDH1 26 17.2 

Abbreviations: DNMT3A data were available among 143 patients (data from Simple Nucleotide Variation-Masked Somatic 
Mutation of TCGA). The data of FLT3, NPM1, RAS and IDH1 were available among 147, 150, 150 and 151 patients 
respectively. 
 
 
turquoise module contained the highest numbers (2662) of 
lncRNAs. We then used miRcode to predict the miRNAs 
sponged by 2662 lncRNAs to obtain lncRNAs-miRcode-
miRNAs relationship. Meanwhile, we used TCGA 
miRNA-Seq to analyze the first 400 miRNA with highest 
expression. Then the overlapped miRNAs between 400 
miRNAs and lncRNAs-miRcode-miRNAs (155) were 
selected to obtain lncRNAs-miRNAs (47). We further 
explored and obtained 1710 predicted target mRNAs by 
starBase, miRDB, miRTarBase and Targetscan dataset, 

which might be bound by 47 miRNAs (Figure 3E). 
Importantly, as shown in Figure 3F, we chose the 
overlapped target mRNAs by analyzing the predicted 
target mRNAs (1710), WGCNA-turquoise-cyan mRNAs 
(1659), as well as the significant differentially up-
regulated mRNAs (2667) and down-regulated mRNAs 
(2456) by edgeR. Lastly, we got 111 up-regulated 
mRNAs and 9 down-regulated mRNAs (Supplementary 
Table 1). The expression of these 120 genes in 558 
samples was shown in Figure 3G by heatmap. 
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Figure 1. Different gene expression from data between TCGA and GTEx is analyzed. (A) Volcano map of significantly different 
expression of mRNAs. Red spots represent up-regulated genes, and blue spots represent down-regulated genes. (B) Information from up-
regulated genes was applied to GO analysis in BP, CC and MF. (C) Gene symbols and interaction of the significantly up-regulated mRNAs in BP 
were shown. (D) KEGG-GSEA was applied for signaling pathway analysis.  
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Figure 2. WGCNA is applied to analyze gene modules. (A) Cluster dendrogram of the coexpression network modules was produced 
based on topological overlap in the mRNAs.  (B) Heatmap plot of topological overlap in the gene network was shown. (C) The relation of 
genes in modules between AML and normal samples was investigated. (D–E) GO-GSEA displayed the gene symbols and gene interaction in 
cyan module and turquoise module. (F) KEGG analysis was used to investigate the pathway enrichment in cyan module and turquoise module. 

 



www.aging-us.com 3338 AGING 

 
 

Figure 3. LncRNAs modules are analyzed by WGCNA. (A) Cluster dendrogram of the coexpression network modules was produced 
based on topological overlap in the lncRNAs. (B) The relation of lncRNAs in modules between AML and normal samples was investigated. (C) 
Turquoise module showed highest relationship with AML. (D) The number of lncRNAs in every module was shown. (E) Flow chart exhibited 
the process of predicting target mRNAs. (F) Overlapped target mRNAs were analyzed by the predicted target mRNAs, WGCNA-cyan-turquoise 
mRNAs, and the significantly up-regulated mRNAs and down-regulated mRNAs. (G) The expression of 120 selected target genes was 
displayed by heatmap. 
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Table 3. Multivariate cox proportional hazard regression analysis of 22 genes. 
 

Gene 
Univariate Multivariate 

HR(95%CI) P HR P 

INSR 0.603 (0.47–0.77) 0.0001 0.759 0.040 * 

MYB 0.618 (0.48–0.79) 0.0002 0.625 0.022 * 

HOXA9 1.112 (1.05–1.18) 0.0002 1.097 0.002 ** 

HOXA10 1.124 (1.05–1.2) 0.0004   

KRIT1 0.455 (0.29–0.71) 0.0004 0.678 0.131 

RREB1 0.364 (0.21–0.64) 0.0005   

REV3L 0.559 (0.39–0.81) 0.0018   

RAB5B 0.543 (0.37–0.8) 0.0023   

CLOCK 0.605 (0.43–0.85) 0.0038   

MEIS1 1.087 (1.02–1.15) 0.0063   

PTPN14 0.876 (0.8–0.96) 0.0069   

CDK6 0.753 (0.61–0.93) 0.0102   

MEF2C 1.230 (1.05–1.44) 0.0110   

KIT 0.869 (0.78–0.97) 0.0118   

SPRY2 0.888 (0.81–0.98) 0.0152 0.892 0.074 

ZNF460 0.749 (0.59–0.95) 0.0168   

ZNF711 0.930 (0.87–0.99) 0.0229 0.940 0.100 

WEE1 1.394 (1.04–1.87) 0.0280 1.757 0.002** 

MEST 0.896 (0.81–0.99) 0.0344   

RCN2 0.657 (0.44–0.97) 0.0369   

UBE2V1 0.591 (0.36–0.97) 0.0373 0.500 0.009** 

EREG 1.061 (1–1.12) 0.0454   

 
 
Cox regression analysis is conducted to clarify the 
patients’ survival  
 
Next, a univariate cox proportional hazard regression 
analysis was conducted to clarify the association of the 
expression levels of 120 genes with overall survival 
(OS). 22 genes were obtained by the threshold of p 
value <0.05 and gene ID <15000 (NCBI). The above 
mentioned 22 genes were brought into further multi-
variate cox proportional hazard regression analysis 
(Table 3). We then set up a survival model for 3-year 
OS with 8 genes: HOXA9+INSR+KRIT1+MYB+ 
SPRY2+UBE2V1+WEE1+ZNF711. We showed that 
HOXA9, INSR, KRIT1, MYB, SPRY2, WEE1 and 
ZNF711 were up-regulated while UBE2V1 was down-
regulated in AML patients (Figure 4A). The cor-
relationship of each gene in the 8-genes model was 
shown in Figure 4B and 4C. The patients from TCGA 
were classified into predicted low and high risk groups 

according to the multivariate cox score result in Figure 
4D. Furthermore, the expression heatmap of the 8 genes 
in high risk or low risk group was shown in Figure 4E. 
We then estimated the accuracy of the 8-genes signature 
on predicting survival. Kaplan-Meier survival curves 
showed that patients with predicted high risk (n=75) had 
significantly shorter OS than those with low risk (n=76, 
p=0.00, Figure 4F). Receiver operating characteristic 
(ROC) analysis to compare the sensitivity and 
specificity of the survival prediction of our models was 
performed. TCGA dataset revealed that the area under 
receiver operating characteristic curve (AUC) of the 8-
genes signature was 0.831. Previous reports showed that 
gene mutation was correlated with the prognosis of 
AML [17]. Thus, we divided the patients into groups 
according to gene mutations and we found that the 8-
genes signature worked well in DNMT3A, FLT3 or 
RAS mutation, as well as NPM1 wildtype patient 
subgroups (Supplementary Figure 1). 
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Figure 4. Survival analysis of the 8 genes is conducted. (A) The expression of 8 selected genes between AML and normal samples was 
shown. (B, C) The expression relationship of the 8 genes was displayed. (D) AML patients were classified into predicted low and high risk 
groups according to the multivariate cox proportional hazard regression analysis. (E) The expression heatmap of the 8 genes in high risk or 
low risk group was shown. (F) ROC and Kaplan-Meier survival analysis of the 8- genes model was performed. 
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A lncRNA-miRNA-mRNA ceRNA network is 
constructed 
 
In the following step, we showed the relation between the 
8 target genes and their corresponding miRNAs. We found 
that miR-106a, miR-150, miR-155, miR-17, miR-182, 
miR-195, miR-21, miR-424, miR-454 and miR-497 could 
target the 8 mRNAs respectively. For example, miR-195 
targeted INSR, MYB, WEE1 and UBE2V1, while miR-
106a, miR-155, miR-17, miR-195, miR-424 and miR-497 

regulated WEE1 (Figure 5A). Since TCGA and GTEx also 
provided the data of lncRNAs, the differentially expressed 
lncRNAs were also analyzed by edgeR. 2412 up-regulated 
lncRNAs and 788 down-regulated lncRNAs were 
identified. Then these 3200 lncRNAs were overlapped 
with the lncRNAs (174) predicted from 10 miRNAs, and 
we got 108 lncRNAs (Figure 5B). At last, a lncRNA-
miRNA-mRNA ceRNA network was constructed by 108 
lncRNAs, 10 miRNAs and 8 mRNAs, as shown in Figure 
5C. 

 

 
 

Figure 5. A lncRNA-miRNA-mRNA ceRNA network is constructed. (A) The relationship between the 8 target genes and their corresponding 
miRNA was shown. (B) Overlapped lncRNAs were analyzed by the predicted lncRNAs, significantly up-regulated lncRNAs and down-regulated 
lncRNAs. (C) A lncRNA-miRNA-mRNA ceRNA network was constructed by 108 lncRNAs, 10 miRNAs and 8 mRNAs for AML prognosis. 
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DISCUSSION 
 
Important advance in ceRNA network research developed 
rapidly, suggesting that the involvement of ceRNA 
network in human diseases, especially tumors, could be 
far more prevalent. The disruption of the equilibrium of 
ceRNA network was critical for tumorigenesis. Thus, 
understanding the intricate interplay among diverse 
ceRNA network will lead to significant insight into gene 
regulatory networks and have implications in cancer 
treatment [2]. Here, we identified 108 lncRNAs, 10 
miRNAs and 8 mRNAs to construct a lncRNA-miRNA-
mRNA ceRNA network by database. Given the fact there 
was no large-scale of public RNA-Seq database or studies 
with normal BMs, further validation of normal BMs by 
large cohorts are needed. 
 
In lung cancer, lncRNA BARD1 9'L, transcribed from 
an alternative promoter in intron 9 of the BARD1 gene 
and shared part of the 3'UTR with the protein coding 
BARD1 mRNAs, counteracted the effect of miR-203 
and miR-101, to promote tumor development [18]. 
LncRNA HOTAIR, functioned as a ceRNA, sponging 
miR-331-3p to derepress HER2, which was correlated 
with advanced gastric cancers [19]. SNHG7, whose 
high expression was correlated with poor prognosis, 
acted as a target of miR-34a to increase GALNT7 level 
and regulate PI3K/Akt/mTOR pathway in colorectal 
cancer progression [20]. Thus, ceRNA network dis-
played essential role in cancer progress and provided 
potent targets for cancer therapy.  
 
Importantly, lncRNA-miRNA-mRNA ceRNA network 
can be predicted for disease prognosis. For example, in 
the study of RNA-Seq data of breast cancer from 
TCGA, a lncRNA-miRNA-mRNA ceRNA network was 
established, which comprised of 8 miRNAs, 48 
lncRNAs, and 10 mRNAs. A multivariate cox regres-
sion analysis demonstrated that 4 of those lncRNAs 
(ADAMTS9-AS1, LINC00536, AL391421.1 and 
LINC00491) had significant prognostic value [21]. In 
pancreatic cancer, 11 lncRNAs, A2M-AS1, DLEU2, 
LINC01133, LINC00675, MIR155HG, SLC25A25-
AS1, LINC01857, LOC642852 (LINC00205), ITGB2-
AS1, TSPOAP1-AS1 and PSMB8-AS1 were identified 
and validated on a pancreatic ductal adenocarcinoma 
expression dataset. Moreover, A2M-AS1, LINC01133, 
LINC00205 and TSPOAP1-AS1 were identified as 
prognostic biomarkers [22]. In glioblastoma multi-
forme, lung cancer, ovarian cancer and prostate  cancer, 
based on the networks, only a fraction of sponge 
lncRNA-mRNA regulatory relationships were shared by 
the four cancers, suggesting that different cancers had 
varied ceRNA networks [23]. In leukemia, CML and 
AML ceRNA networks based on shared miRNAs and 
MREs were constructed. Results showed that 6 

(CDKN1A, ABL1, BTN2A1, ENPP1, CNST and 
SYNM) and 2 (CLOCK and SUZ12) sub-ceRNA 
networks for CML and AML respectively [12]. 
However, the detail of lncRNA-miRNA-mRNA ceRNA 
network did not be presented in AML with prognosis. 
 
In the present study, the significantly different expression 
levels of mRNAs in AML were calculated (Figure 1). 
Importantly, 120 overlapped genes were obtained from 
the predicted target mRNAs, WGCNA-turquoise-cyan 
mRNAs, as well as the significantly different up-regulated 
mRNAs and down-regulated mRNAs (Figure 2 and 3). 
To further investigate the relationships of these 120 genes 
with prognosis, univariate and multivariate cox 
proportional hazard regression analysis were applied. 
Then a survival model for 3-year OS with 8 genes: 
HOXA9+INSR+KRIT1+MYB+SPRY2+UBE2V1+WEE
1+ZNF711, was set up (Figure 4). Finally, a ceRNA 
network was constructed by 108 lncRNAs, 10 miRNAs 
and 8 mRNAs (Figure 5), which could act as biomarkers 
based on the patients’ prognosis. 
 
Among the 8 target genes, HOXA9, WEE1 and MYB had 
been demonstrated to be essential in leukemogenesis and 
disease process. HOXA9 had an important role in 
hematopoietic stem cell expansion, of which aberrant 
expression was a prominent feature of AML driven by 
diverse oncogenes. With continued study in HOXA9-
mediated AML, there was a wealth of opportunity for 
developing novel therapeutics applicable for AML with 
HOXA9 overexpression [24]. MiR-182 was reported to 
regulate percentage of myeloid and erythroid cells in 
CML [25]. Thus, the relationship between HOXA9 and 
miR-182 needed to be investigated in AML as predicted. 
WEE1 kinase was crucial in the G2-M cell-cycle 
checkpoint arrest for DNA repair before mitotic entry. 
WEE1 was expressed at high levels in various cancer 
types including leukemia and was a validated target of the 
miR-17-92 cluster in leukemia [26], giving support to our 
prediction of miR-17-WEE1 axis in AML. MLL fusion 
proteins negatively regulated miR-150 production, and 
forced expression of miR-150 inhibited leukemic cell 
growth and delayed MLL-fusion-mediated 
leukemogenesis likely by targeting MYB, suggesting a 
miR-150-regulated MYB signaling underlying the 
pathogenesis of leukemia [27]. MiR-21 was considered to 
be an important miRNA, which was frequently elevated in 
all types of myeloid leukemia, while lncRNA MEG3 
inhibited proliferation of CML cells by sponging MiR-21 
[28]. Primary FLT3-ITD+ AML clinical samples had 
significantly higher miR-155 levels compared with FLT3 
wild-type AML samples. MiR-155 collaborated with 
FLT3-ITD to promote myeloid cell expansion in vivo 
[29]. Besides, miR-106, miR-195, miR-424, miR-454 and 
miR-497 were all involved in the disease process of 
leukemia or solid tumors [30–34]. Therefore, many 
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previous studies had given great experimental support to 
our prediction of the ceRNA network. Pivotally, Kaplan-
Meier survival curves of our predicted model showed that 
patients with predicted high risk had significantly shorter 
OS time than those with low risk. Although the studies of 
lncRNAs in AML were limited, these predicted lncRNAs 
provided novel pathways or networks to study the 
function of 8-genes survival model in AML development 
and treatment.  
 
This study defines ceRNA network from multiple 
dimensions, and provides possible prognostic markers 
for predicting patient outcome, which will help to 
increase our comprehension about ceRNA network-
mediated leukemogenesis. Via this study, a novel 
perspective will be produced to make clear leukemia 
mechanisms and suggest approaches to regulate ceRNA 
networks for leukemia therapeutics. 
 
METHODS 
 
TCGA RNA sequence dataset  
 
The RNA sequence data of 151 BMs with AML 
(Hematopoietic and reticuloendothelial systems) were 
retrieved from TCGA data repository 
(https://portal.gdc.cancer.gov/), which were derived 
from IlluminaHiSeq RNA-Seq platform. RNA-Seq data, 
miRNA-Seq and clinical data such as patient survival 
time and FAB classification information were obtained 
from TCGA.  
 
GTEx RNA sequence dataset  
 
All data of normal tissue samples were obtained from 
407 whole blood in GTEx V7 release version 
(https://gtexportal.org/home/datasets). Complete desc-
ription of the donor genders, multiple ethnicity groups, 
wide age range, the biospecimen procurement methods 
and sample fixation were described in GTEx official 
annotation. 
 
Identification of differentially expressed genes  
 
The ensemble ID of samples was converted by using 
GENCODE Gene Set-11.2017 version. LncRNAs and 
mRNAs ensemble ID that was not included in the 
GENCODE database were excluded.  
 
R package (edgeR) was used to identify significant 
differentially expressed genes in AML and normal 
samples. All q values use FDR to correct the 
statistical significance of the multiple test. Absolute 
log2FC ≥ 2 and FDR < 0.05 were considered 
significant [35–37]. 

For the obtained differentially expressed mRNAs, we 
generated volcano map using the ggplot2 packages in 
the R platform. 
 
Gene Ontology, Kyoto Encyclopedia of Genes and 
Genomes, and Gene Set Enrichment Analysis  
 
ClusterProfiler was used for GO, KEGG and GSEA 
[38–40]. GO was used to describe gene functions along 
three aspects: biological process (BP), cellular com-
ponent (CC) and molecular function (MF). The KEGG-
GSEA was searched for pathways at the significance 
level set at p<0.05.  
 
Weighted correlation network analysis 
 
WGCNA was an algorithm used in gene coexpression 
network identification by high-throughput expression 
profiles mRNAs or lncRNAs with different traits. 
Weighted coexpression relationship among all dataset 
subjects in an adjacency matrix was assessed using the 
pairwise Pearson correlation analysis. In this study, 
WGCNA was used to analyze mRNAs and lncRNAs to 
obtain the most related mRNAs or lncRNAs with AML 
patients.  
 
MiRNA regulatory network  
 
MiRcode (http://www.mircode.org/) was used to 
predict interactions between lncRNAs and miRNAs. 
StarBase (http://starbase.sysu.edu.cn/), miRTarBase 
(http://mirtarbase.mbc.nctu.edu.tw/), miRDB (http:// 
www.mirdb.org/) and TargetScan (http://www. 
targetscan.org/) databases were used to explore target 
mRNAs.  
 
Cox regression analysis  
 
A univariate cox proportional hazards regression 
analysis was employed to identify the relationship 
between the expression level of mRNAs and patient’s 
OS. Thereafter, multivariate cox analysis was 
employed to evaluate the contribution of the selected 
genes. The analysis was conducted using the R 
package of survival. 
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SUPPLEMENTARY MATERIALS 
 
Please browse Full Text version to see the data of Supplementary Table 1. Univariate cox proportional hazard 
regression analysis of 120 genes. 
 

 

 
 

Supplementary Figure 1. Survival analysis of AML patients according to the gene mutation. Kaplan-Meier survival analysis of 
the 8 genes was performed in patients with DNMT3A mutation (A), FIT3 mutation (B), NPM1 wildtype (C), RAS mutation (D) and IDH1 
mutation (E). 
 

 


