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INTRODUCTION 
 
In the last years, the phenomenon of cellular senescence 
(CS) has been becoming a hot topic in biomedical 
research. Apart from being involved in tissue repair 
upon wound healing [1,2] and acute fibrosis [3,4], cell 
reprogramming [5], and tissue remodeling during 
embryonic development [6–10], CS has attracted lots of 
attention, first and foremost, due to its strong links with 
aging and age-related diseases [11,12]. Indeed, the 
growing body of evidence indicates that accumulation 
of senescent cells could be an important player in 
mechanisms of aging and late-onset pathologies [13–
16]. Senescent cells are characterized by a stable cell 
growth arrest, enlarged, flattened shape of heterogenous 
morphology, resistance to apoptosis, secretion of a 
plethora of proinflammatory and ECM-modifying 
compounds, and expression of several molecular 
markers (e.g., p16INK4a, p21Cip1/Waf1, SA-β-gal, etc.) [17]. 
Yet, none of the existing molecular markers is 
exclusively indicative of CS, and there are ongoing 
attempts for reliable identification of senescent cells 
[18,19].  
 

 

While searching for microRNAs with a potential 
involvement in CS, we observed a profound down-
regulation of miR-199a-3p and miR-34a in pre-
senescent human skin fibroblasts [20]. Among their 
experimentally validated targets is the hepatocyte 
growth factor receptor (MET), a well-known proto-
oncogene encoding for the c-Met protein with tyrosine 
kinase activity [21]. Then, it would be reasonable to 
suggest that a decreased expression of miR-199a-3p and 
miR-34a in (pre)senescent cells could result in over-
expression of c-Met. Indeed, elevated levels of c-Met 
were reported for a variety of tumors in which the 
members of miR-34 and miR-199 families are often 
silenced (reviewed by [22]). Not surprisingly, c-Met has 
extensively been studied in cancer research [21]. The 
studies on c-Met with regard to CS are fully absent.  
 
The c-Met receptor can interact with a number of 
signaling proteins. As a result, this interaction may lead 
to induction of various signaling pathways (PI3K/AKT, 
JAK/STAT, etc.), thus explaining a wide range of c-Met 
biological activities including cell survival, migration 
and adhesion [21,23,24]. Of note, all of these activities 
could be relevant to CS.  
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ABSTRACT 
 
Here, we reported for the first time an increased expression of c-Met protein in primary cultures of human 
dermal and pulmonary fibroblasts of late passages. This suggests that c-Met could serve as an early marker of 
cellular senescence (CS). The levels of c-Met-related signaling proteins phospho-Akt and Stat3 were also 
increased in (pre)senescent fibroblasts. Considering the anti-apoptotic activity of Akt and the involvement of 
Stat3 in mediating the effects of proinflammatory cytokines, the findings of this study indicate that c-Met could 
contribute through its downstream targets or partners to at least two major phenotypical features of CS – 
resistance to apoptosis and senescence-associated secretory phenotype. 
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This study was undertaken to evaluate whether the 
expression of c-Met is altered in the course of 
replicative CS, and if so, whether its levels could serve 
as a new marker of senescent cells. Also, to get insight 
into possible role of c-Met in CS, we determined the 
expression of its downstream targets Akt and Stat3. 
 
RESULTS 
 
Expression of c-Met protein in primary cultures of 
human fibroblasts 
 
The patterns of cell growth and CS of primary cultures 
of human fibroblasts were similar to those described by 
us previously [25,26]. Briefly, fibroblasts (both dermal 
and pulmonary) of early passages (P.12-20) displayed a 
typical spindle-like shape, did not express SA-β-gal, 
and doubled their population each 48-72 h. In contrast, 
the fibroblast cultures of late passages (around P.35-40) 
had heterogenous morphotypes, with large cells of 
irregular shape, that were stained with CS marker SA-β-
gal, and dramatically slowed down their growth (PDT 
3-4 weeks) or ceased to divide. Altogether, this allows 
to characterize the cell cultures of late passages as pre- 
or senescent cultures. 
 
We first measured the levels of c-Met protein as well as 
its phosphorylated form (pMet) in primary cultures of 
human fibroblasts of various passages and different 
origin (dermal and pulmonary fibroblasts). As seen in 
Figure 1, both dermal (left panel) and pulmonary (right 
panel) fibroblasts displayed similar patterns of changes in 
c-Met protein levels during the course of replicative CS.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The c-Met protein was hardly detectable in cell cultures 
of dermal fibroblasts of early passages (P.12-18), and 
this low level remained up to P.31. A marked increase 
in the c-Met level was observed in cell cultures of late 
passages (P.34-40), when the cell growth dramatically 
slowed down. In pulmonary fibroblast cultures, the 
level of c-Met started to gradually increase from P.25, 
with the peak in P.34. As in case of dermal fibroblasts, 
the c-Met protein levels coincided well with population 
doubling time (PDT), so that the longer PDT, the higher 
c-Met level. It should be noted that a clear elevation of 
c-Met levels was observed before reaching the full 
growth arrest. Yet, PDT of senescing cultures of the 
examined late passages was quite long (3-4 weeks) and 
most cells were stained with the CS marker SA-β-gal. In 
contrast to c-Met, its phosphorylated form pMet was 
either undetectable in cell cultures of both early and late 
passages (pulmonary fibroblasts) or was of a very low 
level in only early passages but not late ones (dermal 
fibroblasts) (Figure 1, left-lower panel).  
 
Expression of Akt in primary cultures of human 
fibroblasts  
 
One of the c-Met downstream pathways which could be 
related to CS is a PI3K/AKT pathway. With this in 
mind, we further examine whether Akt1/2/3 and its 
phosphorylated form pAkt undergo changes during 
replicative CS. As seen in Figure 2 (upper panel), no 
significant differences in the Akt protein level between 
fibroblast cultures of late and early passages were 
observed, while pAkt unexpectedly increased in 
fibroblast cultures of late passages (lower panel). This  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. The levels of c-Met and pMet proteins in primary cultures of human dermal (left panel) and pulmonary 
fibroblasts (right panel) of various passages.  Immunoblots represent one of the 4 independent experiments.  
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patterns of CS-related changes in Akt and pAkt were 
common for both dermal and pulmonary fibroblasts. As 
in the case of c-Met, the levels of pAkt tended to inver-
sely correlate with the number of passages, i.e., the 
higher the passage number (and, accordingly, the lower 
cell growth rate), the higher the level of pAkt.  
 
Expression of Stat3 in primary cultures of human 
fibroblasts  
 
The c-Met target Stat3 could also be directly related to 
CS. Therefore, we examined the levels of Stat3 protein 
in fibroblast cultures of various passages. As seen in 
Figure 3, the expression of Stat3 protein increased in 
fibroblast cultures of late passages. This was particular-
ly noted for dermal fibroblasts (left panel) and, to a 
lesser degree, for pulmonary fibroblasts (right panel).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DISCUSSION 
 
In this study, we examined the expression of c-Met 
protein in fibroblast cultures of various passages, from 
early to late ones. The rationale was based on our recent 
finding, indicating that downregulation of several 
miRNAs could govern CS through overexpression of 
their targets, c-Met included (see Introduction). In line 
with this suggestion, we found for the first time an 
increased expression of c-Met protein in primary 
cultures of dermal and pulmonary fibroblasts during the 
course of replicative CS (Figure 1). Notably, in 
fibroblasts of early passages, the c-Met level was very 
low or undetectable, which is consistent with previously 
reported data [27,28]. The high c-Met protein levels 
were clearly evident in presenescent fibroblast cultures. 
This suggests that c-Met could serve as an early marker  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 2. The levels of Akt1/2/3 and pAkt proteins in primary cultures of human dermal (left panel) and pulmonary 
fibroblasts (right panel) of various passages. Immunoblots represent one of the 3 independent experiments.  
 

Figure 3. The levels of Stat3 proteins in primary cultures of human dermal (left panel) and pulmonary 
fibroblasts (right panel) of various passages. Immunoblots represent one of the 3 independent experiments.  
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of CS. Two lines of observations indirectly support this 
notion. First, it was shown that both in vitro and in vivo, 
myofibroblasts (activated fibroblasts) express c-Met [29]. 
On the other hand, it was also found that senescent 
fibroblasts express the myofibroblast-specific marker α-
SMA, thus connecting CS with myofibroblasts [25,30]. 
Second, transfection of normal dermal fibroblasts with 
the IL-1α gene whose overexpression is an initiation 
event in SASP development [31], resulted in high 
expression of c-Met mRNA [27]. Of note, the c-MET 
protein is expressed in a variety of cell types including 
epithelial, muscle, neuronal cells, etc. [29,32]. Whether 
senescent cells other than dermal and pulmonary 
fibroblasts also express high levels of c-Met needs to be 
clarified.   
 
As mentioned above, elevated levels of c-Met could be 
related to a decreased expression of miR-199a-3p and 
miR-34a. Downregulation of these microRNAs was 
consistently observed in cancer cells [22] and was also 
shown by us in (pre)senescent fibroblast cultures [20]. 
Another possibility for c-Met accumulation in both 
cancer and senescent cells could include its inadequate 
ubiquitination [33]. Whatever the case, it would be 
attractive to speculate that the proto-oncogene c-Met 
might induce CS by the well-known mechanism [34] of 
oncogene-induced cellular senescence.  
 
Further complicating the cancer-CS relationships is a 
recently discovered HGF-associated mechanism by 
which the cancer cells may induce CS in normal cells 
that, in turn, form a cancer-promoting microenvironment 
[35,36]. However, whether c-Met mediates the CS-
promoting effects of HGF has not yet been established. 
 
In contrast to c-Met, we did not find any detectable 
passage-dependent elevation in its activated form pMet 
(Figure 1). It should however be noted that we deter-
mined only two (Tyr1234 and Tyr1235) of 14 sites of 
phosphorylation in c-Met that have thus far been 
identified [21]. Although phosphorylation of c-Met at 
Tyr1234 and Tyr1235 is believed to be a critical event 
in the c-Met kinase activity [37], the role of other 
phosphorylation sites cannot be excluded. Besides, 
activation of c-Met could be related to the production of 
its ligand—hepatocyte growth factor (HGF) [38,39]. 
Yet, the studies on HGF in CS are scarce and 
controversial. In early study by Miyazaki et al. (1998), 
an increased production of HGF by human embryonic 
lung fibroblasts of late passages vs. early passages was 
reported [40]. The authors also showed that the human 
skin fibroblasts derived from the old donors (80+ years) 
produced more HGF than the cells from the young and 
middle-aged donors. However, these findings were not 
confirmed by recent in vitro and in vivo studies on 
human skin fibroblasts. Qin et al. (2017) demonstrated 

that HGF mRNA was similarly expressed in the 
fibroblasts isolated from the skin of young (mean age 
27±1 years) and aged (mean age 83±1.4 years) donors, 
as well as in fibroblast cultures of early passages and 
late passages (PDT of 45 days) [41]. Whatever the case, 
a possible role of HGF/c-Met axis in CS warrants 
further investigation.  
 
c-Met receptor is a transmembrane protein which 
directly or indirectly interacts with numerous partners 
[37, https://thebiogrid.org/]. Among them, at least 
several could be relevant to CS. In this study, we 
focused on Akt and Stat3 proteins that are well known 
for their anti-apoptotic activity and mediating the 
effects of proinflammatory cytokines, respectively.   
 
Unexpectedly, the opposite of c-Met picture was 
observed for Akt which is activated via interaction of c-
Met with PI3K, directly or by forming a protein 
complex with GAB1 [37]. While there were no 
significant differences in the Akt protein level between 
fibroblast cultures of late and early passages, the levels 
of its active form pAkt was markedly increased in 
(pre)senescent fibroblasts (Figure 2). It should be noted 
that apart from c-Met, several other signaling pathways 
(e.g., EGF/EGFR, INS/IGF-1) could also activate the 
Akt protein [43]. Of note, among the major downstream 
effectors of Akt is a serine/threonine kinase mTOR 
[44], known to be strongly associated with CS and 
aging (for recent review see [45]). The levels of another 
c-Met target, Stat3 protein, a member of signal 
transducers and activators of transcription (JAK/STAT) 
pathway, also increased in fibroblast cultures of late 
passages (Figure 3).  
 
In line with our findings, demonstrating the increase in 
the levels of pAktSer473 and Stat3 in (pre)senescent 
human dermal and pulmonary fibroblasts, are the most 
recently obtained evidence of an increased expression 
and/or activation of Akt and Stat3 both in replicative 
and stress-induced CS. These observations are sum-
marized in Table 1 and together with our data suggest 
that the abovementioned changes in Akt and Stat3 are 
typical for senescent cells of various types.   
 
Apart from their “canonical” functions, Akt and Stat3 
could be linked to CS by other activities. For example, a 
recent study by Kim et al. (2017) suggests that Akt 
activation is crucial not only for promoting cell survival 
but also for induction of SASP  [46]. On the other hand, 
binding of non-phosphorylated Stat3 (but not pStat3!) to 
regulatory regions of pro-apoptotic genes with sub-
sequent inhibition of their expression, results in an 
increased resistance to apoptosis [47]. The latter could 
be also promoted through the c-Met partner BAG1 
(BCL2 Associated Athanogene 1),  which  enhances the  

https://thebiogrid.org/
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anti-apoptotic effects of Bcl2 (GeneCards – Human 
Gene Database; https://www.genecards.org/). In the 
model of stress-induced premature CS, we found an 
increased BAG1 protein level in senescent dermal 
fibroblasts vs. “young” cultures (data not shown).  
 
In summary, c-Met seems to be mechanistically linked 
to CS and could serve as a marker of CS. Considering 
the anti-apoptotic and SASP-related activities of Akt 
and Stat3, the findings of this study indicate that c-Met 
could contribute through its downstream targets or 
partners to at least two major phenotypical features of 
CS – resistance to apoptosis and senescence-associated 
secretory phenotype (SASP). The role of c-Met and 
related proteins in CS appears to be an important point 
for further investigation.  
 
MATERIALS AND METHODS 
 
Cell cultures 
 
Primary cultures of human dermal and pulmonary 
fibroblasts (obtained from ScienCell, Carlsbad, CA, 
US) were grown under standard conditions (37 °C, 5% 
CO2) in Dulbecco’s modified Eagles medium (DMEM),  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
supplemented with 10% fetal bovine serum, 1% L-
glutamine, and 1% penicillin/streptomycin. All products 
for cell cultures were from Biological Industries, Beit 
Haemek, Israel. The cultures were inspected every day 
under inverted phase-contrast microscope (Primo Vert, 
Zeiss) and cells were passaged 1:2 upon 75–80% 
confluence. The number and concentration of viable 
cells were calculated using Trypan blue exclusion assay. 
Replicative CS was achieved by serial passaging. The 
cells were defined as pre-senescent or senescent, based 
on a dramatic inhibition of cell proliferation or cell 
growth arrest, respectively; typical CS morphology, and 
expression of the CS marker SA-β-gal. The SA-β-gal 
assay was carried out using the Sigma Aldrich SA-β-
galactosidase detection kit (GALS), according to the 
manufacturer’s protocol, with subsequent visualization 
using the Primo Vert microscope. 
 
Preparation of cell lysates 
 
Cells were washed with ice-cold PBS and scraped into 
ice-cold lysis buffer with phosphatase inhibitor cocktail 
(Stratech Scientific Ltd., CAT# B15001-BIT). Lysates 
were centrifuged at 14,000 rpm for 10 min at 4 °C, and 
supernatants were collected. Total protein concentration 

Table 1. Evidence for the involvement of Akt and Stat3 in cellular senescence. 

Cells Type of CS Changes in activity/expression Reference 

IMR90 human lung 
fibroblasts 

Replicative CS  
H2O2-induced CS 

Increased Akt-1 and p-Akt-1 levels in 
senescent cells 

[48] 

Human vascular smooth 
muscle cells (VSMCs) 

Replicative CS Increased p-Akt level in senescent cells [49] 

EJ p53-null human bladder 
cancer cells 

Replicative CS p53-
induced CS 
 

Increased p-Akt (pS473 and pT308) 
protein level in senescent cells 

[46] 
 

TIG3 human fibroblasts Replicative CS 
IL-6-induced or 
soluble IL-6Rα- 
induced CS 

Stat3 was constitutively activated in 
senescent cells (both with or without 
exogenous IL-6/ IL-6Rα stimulation) 

[50] 
 

Human umbilical vein 
endothelial cells (HUVECs) 

TNFα-induced CS Increased p-Stat1 and p-Stat3 levels in 
senescent cells 

[51] 

IPF-derived lung fibroblasts Replicative CS Hyperphosphorylation of Stat3 in IPF-
derived lung fibroblasts with features of 
CS 

[52] 

 

https://www.genecards.org/
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in each sample was determined using Bradford protein 
assay (Bio-Rad Laboratories, CAT# 5000006). 
Quantified samples were then analyzed by Western 
blotting.  
 
Western blotting 
 
Equal amounts of protein were separated on 10% SDS-
polyacrylamide gels, and electrophoretically transferred 
into PVDF membranes (Bio-Rad, #1704157). Memb-
ranes were blocked for 1 h in 5% BSA in Tris-buffered 
saline (TBS)-Tween and then incubated with primary 
antibodies in 5% BSA TBS-Tween. The following 
primary antibodies were used (all from Cell Signaling 
Technology): Met (D1C2) Rabbit mAb (#8198), 
phospho-Met (Tyr1234/1235) Rabbit mAb (#3077), 
pan-Akt (C67E7) Rabbit mAb (#4691), phospho-Akt 
(Ser473) (D9E) Rabbit mAb (#4060), and Stat3 
(D3Z2G) Rabbit mAb (#12640). Membranes were then 
incubated with rabbit horseradish peroxidase (HRP)-
conjugated secondary antibodies (1:20,000, GE 
Healthcare) diluted in blocking solution. Protein-
antibody complexes were detected by chemilumines-
cence with ECL supernova (Cyanagen), and images 
were captured with the Azure C300 Chemiluminescent 
Western Blot Imaging System, Azure Biosystems. 
 
Abbreviations 
 
α-SMA, α-smooth muscle actin; BSA, bovine serum 
albumin; CS, cellular senescence; HGF, hepatocyte 
growth factor; PDT, population doubling time; SA-β-
gal, senescence-associated β-galactosidase; SASP, 
senescence-associated secretory phenotype.  
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