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Supplementary Methods 
 

Participants for the ADNI dataset 

 

Data used in this study were obtained from the 

Alzheimer's Disease Neuroimaging Initiative (ADNI) 

database (http://adni.loni.usc.edu). ADNI was launched 

in 2003 by the National Institute on Aging (NIA), the 

National Institute of Biomedical Imaging and 

Bioengineering (NIBIB), the US Food and Drug 

Administration (FDA) [1], private pharmaceutical 

companies, and nonprofit organizations, as a $60 

million, five-year public-private partnership. ADNI is 

an observational study with both cross-sectional and 

longitudinal follow-up components. The primary goal 

of ADNI has been to test whether neuroimaging, fluid 

and genetic biomarkers, and cognitive assessments can 

be combined to measure the progression of mild 

cognitive impairment (MCI) and early Alzheimer’s 

disease (AD). 

 

This study employed data from the ADNI 2, which 

includes 225 subjects with three clinical groups 

(cognitively normal [CN], MCI, and AD) 

(https://adni.loni. usc.edu/wp-content/uploads/2008/07/ 

adni2-procedures-manual.pdf downloaded May 19, 

2016). All subjects and their study partners completed 

the informed consent process, and the study protocols 

were reviewed and approved by the Institutional Review 

Board at each ADNI data collection site. 

 

The general eligibility, inclusion, and exclusion criteria 

for ADNI subjects can be found on the ADNI website 

(www.adni-info.org). We selected a total of 74 MCI 

subjects with a baseline diagnosis of amnestic MCI, 

based on the following requirements: First, all subjects 

had at least one resting-state functional magnetic 

resonance imaging (R-fMRI) scan with corresponding 

anatomical scans. Second, all subjects had cerebrospinal 

fluid (CSF), amyloid beta (Aβ), and phosphorylated tau 

(p-tau) concentration values. Third, all subjects had 

scores on the Mini-Mental State Examination (MMSE), 

modified 13-item Alzheimer’s Disease Assessment 

Scale-Cognitive Subscale (ADAS-Cog), and Rey 

Auditory Verbal Learning Test (AVLT) (immediate 

recall score, i.e., the sum of trials 1 to 5). Of note, in 

this study, the CSF, p-tau, and ADAS-Cog biomarkers 

were used only to estimate the optimal temporal 

sequence of events by using event-based probabilistic 

model. Finally, in this study, 46 subjects had a three-

year follow-up clinical diagnosis of MCI and met 

criteria for inclusion as part of either a nonprogressive 

MCI (N-MCI) group or a progressive MCI (P-MCI) 

group, depending on whether they progressed to AD-

type dementia at the three-year follow-up. At study 

entry (baseline), all subjects underwent a standardized 

clinical interview, cognitive/functional assessments, 

structural MRI, and R-fMRI scans. The clinical status of 

each MCI subject was reevaluated at the 36-month 

follow-up time point. According to the follow-up 

clinical diagnosis by the NINCDS-ADRDA criteria for 

the diagnosis of probable AD [2], those MCI subjects 

who progressed to AD-type dementia within 36 months 

of entering the study were labeled as P-MCI, those who 

did not progress were labeled as N-MCI subjects. The 

clinical status for N-MCI and P-MCI subjects is 

employed as the “ground truth” in our classification 

experiments, as described below. Note that most of the 

subjects included in the ADNI dataset had not met both 

comprehensive neuropsychological assessment scores 

and had at least one R-fMRI scan with corresponding 

anatomical scans at the three-year follow-up. Therefore, 

data from the ADNI dataset were not used to investigate 

the links between the changes of the characterizing AD 

risk events and the changes of neuropsychological 

performance. 

 

There are 12 P-MCI subjects who progressed to AD and 

34 N-MCI subjects who did not within 36 months of 

entering the study. Among the 34 N-MCI subjects, four 

MCI subjects reverted to normal cognitive status and 

remained dementia-free, the other 30 MCI subjects 

remained cognitively stable. 

 

Participants for the NADS dataset 

 

The NADS study recruited 87 subjects with a baseline 

diagnosis of amnestic MCI status, through normal 

community health screening, newspaper advertisement, 

and hospital outpatient service. Written informed 

consent was obtained from all of the participants, and 

the study was approved by the responsible Human 

Participants Ethics Committee of the Affiliated 

ZhongDa Hospital, Southeast University, Nanjing, 

China. To be considered for inclusion, participants had 

to have had functional and structural MRIs performed in 

ZhongDa Hospital, which is affiliated with Southeast 

University, on a Neuroscience Imaging Center 3T 

scanner. 

 

All amnestic MCI subjects met the diagnostic criteria 

proposed by Petersen and colleagues [3] and the revised 

consensus criteria of the International Working Group 

on amnestic MCI [4], including the following: 

(1) subjective memory impairment was corroborated by 

the subject and an informant, (2) objective memory 

performance was documented according to an Auditory 

Verbal Learning Test-delayed recall score that was 

within ≤ 1.5 SD of age- and education-adjusted norms 

(the cutoff was ≤ 4 correct responses on 12 items for ≥ 8 

years of education), (3) normal general cognitive 

function was evaluated by a MMSE of 24 or higher, (4) 
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a Clinical Dementia Rating of 0.5 with at least a 0.5 

rating in the memory domain, (5) no or minimal 

impairment in daily living activities, and (6) the absence 

of dementia, or symptoms that were sufficient to meet 

the National Institute of Neurological and 

Communicative Disorders and Stroke or the AD and 

Related Disorders Association criteria for AD. The 

exclusion criteria were as follows: (1) a past history of 

known stroke (modified Hachinski score of > 4), 

alcoholism, head injury, Parkinson’s disease, epilepsy, 

major depression (excluded using a Self-Rating 

Depression Scale), or other neurological or psychiatric 

illness (excluded by clinical assessment and case 

history), (2) major medical illness (e.g., cancer, anemia, 

or thyroid dysfunction), (3) severe visual or hearing 

loss, and (4) a T2-weighted MRI showing major white 

matter (WM) changes, infarction, or other lesions (two 

experienced radiologists analyzed the scans). Finally, 56 

subjects had a three-year follow-up clinical diagnosis of 

amnestic MCI. 

 

The clinical status of each MCI subject was reevaluated 

at 36 months and classified into the N-MCI and P-MCI 

groups, as described above. There were 16 P-MCI and 

40 N-MCI subjects in the NADS study. Of 40 N-MCI 

subjects, six MCI subjects reverted to normal cognitive 

status and remained dementia-free; the other 34 MCI 

subjects remained cognitively stable. 

 

Neuropsychological assessments for the NADS 

dataset 

 

All subjects underwent a standardized clinical interview 

and comprehensive neuropsychological assessments 

that were performed by neuropsychologists, including 

MMSE, Mattis Dementia Rating Scale (MDRS); 

Auditory Verbal Learning Test–immediate recall 

(AVLT-IR); Auditory Verbal Learning Test–5-min 

delayed recall (AVLT-5-min-DR); Auditory Verbal 

Learning Test–20-min delayed recall (AVLT-20-min-

DR); Logical Memory Test–immediate recall (LMT-

IR); Logical Memory Test–20-min delayed recall 

(LMT-20-min-DR); Rey-Osterrieth Complex Figure 

Test (ROCFT); Rey-Osterrieth Complex Figure Test –

20-min delayed recall (ROCFT-20min-DR); Trail-

Making Tests A and B (TMT–A and B); Digital Symbol 

Substitution Test (DSST); Digit Span Test (DST); 

Stroop Color and Word Test A, B, and C; Verbal 

Fluency Test (VFT); Semantic Similarity (Similarity) 

test; and Clock Drawing Test (CDT). These tests were 

used to evaluate general cognitive function, episodic 

memory, information processing speed, executive 

function, and visuo-spatial function. 

 

Image acquisition for the ADNI dataset and the 

NADS dataset 

 

The ADNI data acquisition process is described at 

http://adni.loni.ucla.edu/. Briefly, R-fMRI datasets were 

scanned on 3.0 Tesla MRI scanners (Philips, 

Netherlands). Axial R-fMRI images of the whole brain 

were obtained in seven minutes with a single-shot 

gradient echo planar imaging (EPI) sequence. High-

resolution MP-RAGE (magnetization-prepared rapid 

gradient-echo) 3-D sagittal T1-weighted images also 

were acquired. 

 

MRI images for the NADS dataset were acquired using 

a 3.0 Tesla Verio Siemens scanner (Erlangen, Germany) 

with a 12-channel head-coil at ZhongDa Hospital, 

which is affiliated with Southeast University. Resting-

state functional images including 240 volumes were 

obtained using a gradient-recalled echo-planar imaging 

(GRE-EPI) sequence, with repetition time (TR) = 2000 

ms, echo time (TE) = 25 ms, flip angle (FA) = 90°, 

acquisition matrix = 64 × 64, field of view (FOV) = 240 

mm × 240 mm, thickness = 4.0 mm, gap = 0 mm, 

number of slices = 36, and voxel size = 3.75 × 3.75 × 4 

mm
3
. High-resolution T1-weighted axial images 

covering the whole brain were acquired by 3D 

magnetization prepared rapid gradient echo (MPRAGE) 

sequence as described below: TR = 1900 ms, TE = 2.48 

ms; FA = 9°, acquisition matrix = 256 × 256, FOV = 250 

× 250 mm, thickness = 1.0 mm, gap = 0 mm, number of 

slices = 176, and voxel size = 1 × 1 × 1 mm
3
. 

Additionally, routine axial T2-weighted images were 

acquired to rule out subjects with major WM changes, 

cerebral infarction or other lesions using flair sequence 

as below: TR = 8400 ms, TE = 94 ms, FA= 150°, 

acquisition matrix = 256 × 256, FOV = 230 ×2 30 

mm, thickness = 5.0 mm, gap = 0 mm, and number of 

slices = 20.  

 

Image preprocessing 

 

Conventional preprocessing steps were conducted using 

Analysis of Functional NeuroImages (AFNI) software, 

SPM8, and MATLAB. The preprocessing allows for 

T1-equilibration (removing the first 15 s of R-fMRI 

data); slice-acquisition-dependent time shift correction 

(3dTshift); motion correction (3dvolreg); detrending 

(3dDetrend); despiking (3dDespike); spatial 

normalization (original space to the Montreal 

Neurological Institute [MNI] space, SPM8); averaging 

white matter and CSF signal retrieval (3dROIstats) 

using standard SPM white matter and CSF mask in the 

MNI space; white matter, CSF signal, and motion effect 

removal (3dDeconvolve); global signal removal 

necessity check (the global signal will be removed if  
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necessary) [5]; and low-frequency band-pass filtering 

(3dFourier, 0.015–0.1Hz). 

 

Functional connectivity indices of the regions of 

interest 

 

This study calculated the functional connectivity indices 

(FCI) of the three regions of interest (ROIs): bilateral 

hippocampus (HIP
FCI

), posterior cingulate cortex 

(PCC
FCI

), and fusiform gyrus (FUS
FCI

). The details 

regarding the FCI calculation stream were found in our 

previously published study [6]. First, the whole cerebral 

cortex was separated into 90 regions based on the 

Automated Anatomical Labeling (AAL) template, and 

the blood oxygen level dependent (BOLD) time series 

of each region was extracted using the AAL template 

mask from the preprocessed resting-state dataset [7]. 

Second, functional connectivity between each ROI and 

the other brain regions was calculated using the Pearson 

cross-correlation analysis. Thus, a vector consisting of 

89 cross-correlation coefficient (CC) values for each 

ROI was obtained. Finally, each ROI’s FCI value—

identified separately as HIP
FCI

, PCC
FCI

, and FUS
FCI

 was 

calculated by summating 89 CC values within each 

ROI’s vector and averaging them across each pair of 

bilateral ROIs. 

 

Gray matter index 

 

For each subject, the gray matter index [8] of each brain 

region (using the same AAL template) was calculated 

using SPM8 software (www.fil.ion.ucl.ac.uk/spm/ 

software/spm8/). First, the anatomical image of each 

individual’s brain was normalized into the Montreal 

Neurological Institute (MNI) space. Second, the gray 

matter of the whole brain was segmented and separated 

from WM and CSF areas, and a threshold of 0.8 was 

used to exclude non-gray-matter areas. Third, each 

region’s gray matter concentration index was 

determined by summing the gray matter concentration 

values of all voxels within the region and averaging 

across each pair of bilateral ROIs. 

 

Event-based probabilistic model 

 

Given that a set of N events, E1, E2, …, EN, is measured 

by N biomarkers, x1, x2, …, xN, respectively, the 

temporal order of events, S={s(1), s(2), …, s(N)}, is 

calculated by a permutation of the integers 1, …, N. For 

subjects j=1, …, J, the dataset X could be regarded as 

X={X1, X2, …, XJ}. Specifically, XJ represents the 

subject j data that is given by Xj={x1j, x2j, …, xNj}, 

where xij is the ith biomarker measurement for subject j. 

This study determined the optimal temporal order in a 

data-driven manner, based on the criteria that the 

optimal temporal order, defined as the S
optimal

, yielded 

the highest probability in measuring dataset X. That is, 

the p(X|S) value of the S
optimal

 sequence was calculated 

to be maximal among all of the possible sequences. To 

accomplish this objective, we first estimated the 

likelihood of measurement xij given that biomarker 

event Ei has or has not occurred. These likelihoods are 

labeled below: 

 

 (     ) = likelihood of measurement     given that 

event Ei has occurred                                                   (1)     (1) 

 (   ¬  ) = likelihood of measurement     given that 

event Ei has     occurred                                            (2) 

 

 (2) We assumed that subject j is at stage k, although the authentic biomarkers sequence and the subject’s stage were unavailable. This means that for subject j, events Es(1), Es(2), …, Es(k) already have occurred, and 

We assumed that subject j is at stage k, although the 

authentic biomarkers sequence and the subject’s stage 

were unavailable. This means that for subject j, events 

Es(1), Es(2), …, Es(k) already have occurred, and 

eevents Es(k+1), Es(k+2), …, Es(N) have not occurred. 

The likelihood of data Xj given the sequence S and 

the subject’s stage at k was obtained using the formula 

below: 

 

   (3) 

Where  is the overall likelihood of 

measurements given that corresponding events have 

already occurred, is the overall 

likelihood of measurements given that these events have 

not yet occurred. Then, we obtained the likelihood of 

data Xj in the condition of sequence S by summing the 

likelihood values of data Xj across all possible stages 

within sequence S, as shown in Equ. (4) below: 

 

                                  (4) 

 

Next, we combined the measurements of all subjects, 

j=1, …, J, assuming that the intersubject relationship 

is independent: 

 
                                                                                     (5) 

 

In theory, the above analysis needs to be repeated for 

each possible sequence to determine the sequence 

S
optimal

 with the maximal value of  ( | ). However, such 

a computation strategy is extremely time consuming; 

total calculation times in this study would be 

2.7942e+009, given that there are 10 biomarker events, 

11 possible stages (including stage 0), and 70 subjects 

(cognitively normal [CN] and AD groups only) 

involved. Therefore, we employed a greedy algorithm 

to improve processing efficiency. 
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Event occurrence and nonoccurrence distribution 

modeling 

 

We used a mixture model of two Gaussian distributions 

to fit the event data from the CN and AD groups, based 

on the assumption that an event occurring and an event 

not occurring are estimated by a mixed distribution of 

normal and abnormal groups. The fitted Gaussian 

distributions separated the data into two groups, i.e., 

abnormal (event occurred) and normal (event did not 

occur), similar to the approach by Young et al. [9]. 

Notably, we modified Young et al.’s approach by 

applying a k-mean clustering algorithm to separate the 

whole distribution into two clusters before applying the 

Gaussian mixture model fitting. This modified 

modeling method led to high consistency in the 

obtained model. 

 

Self-growing greedy algorithm 

 

The amount of time such an analysis would take to find 

a global optimal result is unpredictable due to the 

randomized initial sequence, and it may be quite long 

due to the inevitable searching loop. Therefore, we 

developed a new greedy algorithm to address this 

deficiency. The greedy algorithm explores the globally 

optimal solution by making the locally optimal choice at 

each stage, in a greedy heuristic manner. The greedy 

Markov chain Monte Carlo (MCMC) algorithm is a 

useful approach to find globally optimal results. 

Specifically, we started with a set of all possible initial 

root sequences, each of which consisted of two 

randomly selected events from the 10 biomarker events 

total. Second, for each initial sequence S, we generated 

the children of S by inserting a randomly selected event 

from the remaining events. Third, we selected the 

children sequence with the maximal  ( | ) value; this 

replaced the initial sequence. Then, we entered another 

randomly selected event into the sequence and repeated 

the second and the third steps until no events were left. 

Thus, we generated whole sequences for each root 

sequence. Ultimately, we determined the sequence with 

the maximum  ( | ) value as the final optimal 

sequence,  S
optimal

. We repeated this greedy algorithm 

100 times to ensure the S
optimal

 had a high reliability. 

This study used 45 CN and 25 AD subjects to 

determine the S
optimal

. Note that the MCI subjects were 

not used to train the S
optimal

. 

 

The S
optimal

 reflects the order in which the sequential 

pathophysiological events occurred and provides a 

numeric score to measure disease progression from one 

stage to the next. 

 

CARE index score calculation based on the obtained 

sequence 

 

Using the following equation to determine each 

subject’s CARE index score, we calculated the 

likelihood value of k at each possible stage in the 

sequence and defined the CARE index score as that at 

which k had the highest likelihood value at the S
optimal

: 

 

 
                                                                                     (6) 

 

In Equ. 6, implications of      and  

refer to those in Equ. 3, 

except that the optimal sequence, S
optimal

, is obtained. 

 

Mathematical detail of missing biomarkers 

 

Biomarker events 

 

Ten well-studied AD biomarkers, as described above, 

were selected (Table S1); each represents an event that 

occurs along with AD progression. 

 

Weighted average stage 

 

The mathematical detail of event-based probabilistic 

(EBP) model is described earlier [6]. The EBP model 

determines the optimal order of biomarker events (i.e., 

 optimal = { 1,  2,  3,  4,  5,  6,  7,  8,  9,  10}). 

It also determines the likelihood of subject j being in 

stage k, given the biomarker measurement Xj and 

 optimal, by the formula below: 

 

Table S1. The order of the 10 progressive events in AD development represented by the 10 well-studied 
biomarkers. 

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 

HIPFCI PCCFCI Aβ1-42 p-tau MMSE ADAS-Cog AVLT HIPGMI FUSGMI FUSFCI 
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 (7) 

 

where Xj={x1j, x2j, …, xNj}, and xij is the ith biomarker 

measurement for subject j. The normalized likelihood is 

defined as: 

 

                              (8) (8) 

where normalization factor    is determined by: 

 

(9) 

 

The weighted average (WA) stage   ,    ℎ             for 

subject j is defined as 

 

      (10) 

 

S
optimal

 in missing biomarkers 

 

In the previous EBP model [6], the individual subject's 

disease stage was determined by the “winner take all” 

approach, i.e., the stage k with the highest likelihood 

value determines the subject's disease stage. However, 

this poses a potential problem when a biomarker is 

missing. For example, when a subject's disease stage 

corresponds to the missing marker k, it is impossible to 

determine the subject's disease stage to be k in the 

“winner take all” approach. The disease stage will fall 

to the next available highest likelihood stage, most 

likely k−1 or k+1. To address this problem, here we 

employ the WA stage defined in Equ (10). Theoretically,  

the WA stage of a subject can be k even when the 

corresponding marker is missing; this is demonstrated 

with a representative subject in Fig. S1. In the case of 

missing biomarker          ,  and 

 were set to be 1. This is 

equivalent to removing them from Equ. (7) without having 

to modify the existing programs. Meanwhile, for 

was set to 0. With this numerical 

modification, neither the analytical equations (7–10) nor 

the existing programs from [6] needed to be modified. 

However, for clarity, Equ. (7) was rewritten to account 

for missing biomarker(s): 

 

 
 

 
 

The program was employed to calculate  optimal  when 

the biomarkers were missing. The WA stage for each 

subject was calculated. 

 
A representative subject 

 
By employing the WA calculation, theoretically, the 

WA stage of a subject can be k even when the 

corresponding marker is missing. This benefit is 

demonstrated with a representative subject. Fig. S1 

shows the advantage of the WA stage calculation. Fig 

S1A shows that the subject's stage is 3 with complete 

data and the original method; Fig. S1B shows that the 

 

 
 

Figure S1. Advantage of the weighted average stage calculation. (A) Th subject's stage is 3 with complete data and the 

original method. (B) The subject's stage is 1 with missing data and the original method. (C) The subject's WA stage is 3.01 calculated 
with the formula shown in the figure. The difference is only 0.01 compared with the original stage calculated with the complete data. 
Weighted average Stage = 0x0+1x0.37+2x0.34+3x0+4 x0+5x0.03+6x0.01+7x0.25+ 8x0+9x0+10x0 = 3.01 

 

 A    B    C 
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subject's stage is 1 with missing data and the original 

method. Note: With missing data at stages 3 and 4, the 

normalized likelihood of stages 1, 2, 5, and 7 increases 

and is maximized at stage 1. Compared to that 

calculated using complete data (stage 3), the result with 

missing data (stage 1) is two stages lower; Fig. S1C 

shows that the subject's WA stage is 3.01 calculated 

with the formula shown in the figure. The difference is 

only 0.01 compared with the original stage calculated 

with the complete data. 

 

Statistical analysis 

 

Demographic and neuropsychological data 

 

To increase statistical power by reducing random 

variability, this study composited the 

neuropsychological tests into four cognitive domains 

and transformed the raw scores into four composite Z 

scores, as previously described [10-12]. First, for each 

neuropsychological test, the individual raw scores were 

transformed to Z scores, according to the mean and 

standard deviation of the scores for all subjects. The 

following is the equation for Z transformation: 

 

 (12) 

 

where     is the Z score of the ith subject,  ri  is the raw 

score of the ith subject,  r   is the average raw score of 

the neuropsychological test for all subjects, and S is the 

standard deviation of the scores. Notably, for tests 

measured in time, including TMT–A, TMT–B, Stroop 

A, Stroop B, and Stroop C, the raw scores were defined 

as the reciprocal of the time required for the test. Then, 

each cognitive domain’s composite Z score was 

determined by averaging the Z scores related to the 

tests. We divided these tests into four cognitive 

domains: episodic memory (six tests, including AVLT–

IR, AVLT–5-min-DR, AVLT–20-min-DR, LMT–IR, 

LMT–20-min-DR, and ROCFT–20-min-DR), 

information processing speed (four tests, including 

DSST, TMT-A, Stroop A, and Stroop B), visuospatial 

function (two tests, including CFT and CDT), and 

executive function (six tests, including VFT, DST, TMT-

B, Stroop C, and Similarity). Bonferroni correction for 

multiple comparisons was performed at a significance 

level of p < 0.0125 (p = 0.05/4 composite scores).
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Supplementary Tables 
 

 

 

 

 

 

Table S1. Comparison of the conversion rates of different MCI state transitions between ADNI and NADS 
datasets. 

Dataset Total MCI  

  N-MCI P-MCI 

ADNI 46 34(73.91%) 12(26.09%) 

NADS 56 40(71.43%) 16(28.57%) 

χ2  0.078  

p  0.78  

Abbreviations: ADNI, Alzheimer's Disease Neuroimaging Initiative; NADS, Nanjing Aging and Dementia Study, MCI, mild 
cognitive impairment; AD, Alzheimer's Disease; P-MCI, progressive MCI, including MCI subjects who progressed to AD-type 
dementia at the three-year follow-up; N-MCI, nonprogressive MCI, including MCI subjects who did not progress to dementia 
at the three-year follow-up. 
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Table S2. Sensitivity for P-MCI, specificity for N-MCI, and AUC and accuracy of CARE index and each of seven selected 
biomarker indices in the ADNI, NADS, and combined datasets. 

     

AUC 

   

Sensitivity 

 

Specificity 

  

Accuracy 

 

Balanced 

 

Accuracy 

 

  

Predictors 
 

Rank 
 

P-MCI 

+ N-

MCI 

(n=46) 

 

95%CI 
 

p 

  
Rank 

 

P-MCI 

(n=12) 

 

Rank 
 

N-MCI 

(n=34) 

 

Rank 
 

P-MCI + N-

MCI (n=46,%) 

 

Rank 

 

% 

 

Opt. 

Threshold 

  

CARE 

 

index 

 

1 

 

0.809 
 

0.68-0.94 
 

0.02 

  

2 

 

0.75 
 

1 

 

0.82 
 

1 

 

80.4 
 

1 
 

78.7 
 

6.54 

ADNI  

MMSE 
 

6 

 

0.578 
 

0.42-072 
 

0.42 

  

2 

 

0.75 
 

8 

 

0.44 
 

2 

 

76.1 
 

8 
 

59.6 
 

28.5 

  

AVLT 
 

3 

 

0.761 
 

0.61-0.87 
 

0.08 

  

6 

 

0.67 
 

2 

 

0.79 
 

8 

 

52.2 
 

3 
 

73.0 
 

28.5 

 HIPFCI  

8 

 

0.515 

 

0.36-0.67 

 

0.88 

  

8 

 

0.50 

 

4 

 

0.71 

 

5 

 

65.2 

 

7 

 

60.3 

 

0.66 

 PCCFCI  

5 

 

0.635 

 

0.48-0.77 

 

0.17 

  

1 

 

0.83 

 

6 

 

0.50 

 

6 

 

58.7 

 

5 

 

66.7 

 

2.28 

 FGFCI  

4 

 

0.659 

 

0.51-0.79 

 

0.10 

  

6 

 

0.67 

 

4 

 

0.71 

 

4 

 

69.6 

 

4 

 

68.6 

 

10.57 

 HIPGMI  

2 

 

0.762 

 

0.61-0.88 

 

0.01 

  

2 

 

0.75 

 

3 

 

0.74 

 

3 

 

73.9 

 

2 

 

74.3 

 

0.40 

 FGGMI  

6 

 

0.578 

 

0.42-0.72 

 

0.42 

  

2 

 

0.75 

 

6 

 

0.50 

 

7 

 

56.5 

 

6 

 

62.5 

 

0.55 

     

AUC 

   

Sensitivity 

 

Specificity 

  

Accuracy 

 

Balanced 

 

Accuracy 

 

   

Rank 

 

P-MCI 

+ N-

MCI 

(n=56) 

 

95%CI 

 

p 

  

Rank 

 

P-MCI 

 

(n=16) 

 

Rank 

 

N-MCI 

 

(n=40) 

 

Rank 

 

P-MCI + N-

MCI 

 

(n=56,%) 

 

Rank 

 

% 

 

Opt. 

Threshold 

NADS               

  

CARE 

 

index 

 

2 

 

0.861 

 

0.74-0.94 

 

0.00 

  

1 

 

0.81 

 

1 

 

0.90 

 

1 

 

87.5 

 

1 

 

85.6 

 

6.87 

  

MMSE 

 

3 

 

0.837 

 

0.71-0.92 

 

0.00 

  

6 

 

0.63 

 

1 

 

0.90 

 

3 

 

82.1 

 

3 

 

76.3 

 

25.50 
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AVLT 

 

1 

 

0.876 

 

0.74-0.95 

 

0.00 

  

2 

 

0.75 

 

1 

 

0.90 

 

2 

 

83.9 

 

2 

 

82.5 

 

27.26 

 HIPFCI  

6 

 

0.588 

 

0.45-0.72 

 

0.31 

  

2 

 

0.63 

 

8 

 

0.60 

 

8 

 

60.7 

 

7 

 

61.3 

 

-0.3 

 PCCFCI  

7 

 

0.567 

 

0.43-0.70 

 

0.44 

  

4 

 

0.69 

 

7 

 

0.62 

 

6 

 

64.3 

 

6 

 

65.6 

 

4.98 

 FGFCI  

8 

 

0.563 

 

0.42-0.70 
 

0.47 

  

8 

 

0.50 
 

6 

 

0.70 
 

6 

 

64.3 
 

8 
 

60.0 
 

11.58 

 HIPGMI  

4 

 

0.811 

 

0.68-0.90 
 

0.00 

  

4 

 

0.69 
 

4 

 

0.82 
 

4 

 

78.6 
 

4 
 

75.6 
 

0.43 

 FGGMI  

5 

 

0.634 

 

0.50-0.76 
 

0.12 

  

6 

 

0.63 
 

5 

 

0.72 
 

5 

 

67.9 
 

5 
 

66.3 
 

0.56 

     

AUC 

   

Sensitivity 

 

Specificity 

  

Accuracy 

 

Balanced 

 

Accuracy 

 

   

Rank 
 

P-MCI + 

N-MCI 

(n=102) 

 

95%CI 
 

p 

  
Rank 

 

P-MCI 

(n=28) 

 

Rank 
 

N-MCI 

(n=74) 

 

Rank 
 

P-MCI + N-

MCI (n=102,%) 

 

Rank 

 

% 

 

Opt. 

Threshold 

  

CARE 

 

index 

 

1 

 

0.839 

 

0.75-0.90 

 

0.00 

  

1 

 

0.79 

 

1 

 

0.85 

 

1 

 

83.3 

 

1 

 

82.0 

 

6.57 

ADNI+ 

 

NADS 

 

MMSE 

 

4 

 

0.715 

 

0.62-0.80 

 

0.00 

  

8 

 

0.57 

 

4 

 

0.64 

 

4 

 

62.8 

 

5 

 

62.1 

 

26.50 

 AVLT 2 0.826 0.74-0.90 0.00  3 0.71 1 0.85 2 81.4 2 78.3 28.26 

 HIPFCI  

7 

 

0.563 

 

0.46-0.66 

 

0.33 

  

6 

 

0.61 

 

6 

 

0.61 

 

7 

 

60.8 

 

7 

 

60.8 

 

0.66 

 PCCFCI  

8 

 

0.532 

 

0.43-0.63 

 

0.62 

  

2 

 

0.75 

 

8 

 

0.39 

 

8 

 

49.0 

 

8 

 

59.1 

 

2.30 

 FGFCI  

6 

 

0.598 

 

0.50-0.69 

 

0.13 

  

6 

 

0.61 

 

4 

 

0.64 

 

4 

 

62.8 

 

5 

 

62.1 

 

11.72 

 HIPGMI  

3 

 

0.779 

 

0.69-0.86 

 

0.00 

  

3 

 

0.71 

 

3 

 

0.74 

 

3 

 

73.5 

 

3 

 

72.9 

 

0.43 

 FGGMI  

5 

 

0.601 

 

0.50-0.70 

 

0.12 

  

5 

 

0.68 

 

7 

 

0.59 

 

6 

 

61.8 

 

4 

 

63.7 

 

0.56 

Abbreviations: ADNI, Alzheimer's Disease Neuroimaging Initiative; NADS, Nanjing Aging and Dementia Study; CARE, characterizing AD risk 
events; P-MCI, progressive MCI, including MCI subjects who progressed to AD-type dementia at the three-year follow-up; N-MCI, 
nonprogressive MCI, including MCI subjects who did not progress to dementia at the three-year follow-up; MCI, mild cognitive impairment; 
AD, Alzheimer's Disease; AVLT, Rey Auditory Verbal Learning Test; MMSE, Mini-Mental State Examination; HIP, hippocampus; PCC, posterior 
cingulate cortex; FUS, fusiform gyrus; GM, gray matter; GMI, gray matter indices; FCI, functional connectivity indices; Opt, optimal. 
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Table S3, related to Figure 4. The correlation between the changes in CARE index and changes in cognitive 
performance or clinical variables measured at baseline and 3-year follow-up in MCI subjects from NADS 
dataset. 

Item Statistic The correlation between CARE index and cognitive domain and clinical 

 

variables in: 

  EM EF IPS VF MMSE 

NADS dataset 

 r -0.5136 0.0206 -0.4028 -0.3764 -0.3417 

 p 0.0004* 0.8944 0.0067* 0.0118* 0.0232* 

Abbreviations: MCI, mild cognitive impairment; CARE, characterizing AD risk events; EM, episodic memory; EF, executive 
function; IPS, information processing speed; VF, visuospatial function; MMSE, Mini Mental State Exam; NADS, Nanjing Aging 
and Dementia Study. A statistical threshold was set at a p < 0.05 (false discovery rate [FDR]-corrected). * PFDR-corrected < 0.05. 
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Supplementary Figures 
 

 

 

 

 
Figure S2, related to Figures 2 and 3. Scores of biomarkers at baseline from ADNI and NADS datasets. (A) Boxplot representing 

comparisons of index value of biomarkers in N-MCI and P-MCI at baseline from ADNI dataset. (B) Boxplot representing comparisons of 
index value of biomarkers in N-MCI and P-MCI at baseline from NADS dataset, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, n.s., 
nonsignificant. 
Abbreviations: ADNI, Alzheimer's Disease Neuroimaging Initiative; NADS, Nanjing Aging and Dementia Study. P-MCI, progressive MCI, 
including MCI subjects who progressed to AD-type dementia at the three-year follow-up; N-MCI, non-progressive MCI, including MCI 
subjects who did not progress to dementia at the three-year follow-up; MCI, mild cognitive impairment; AD, Alzheimer's Disease; AVLT, Rey 
Auditory Verbal Learning Test; MMSE, Mini-Mental State Examination; HIP, hippocampus; PCC, posterior cingulate cortex; FUS, fusiform 
gyrus; CC, correlation coefficient. 
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Figure S3, related to Figures 2 and 3. ROC curve of the CARE index stage in classifying the diagnosis of P-MCI versus N-MCI at 
baseline in combining ADNI and NADS datasets. Note: Numbers next to ROC curve indicate CARE index threshold. 
Abbreviations: ROC, receiver operating characteristic; AUC, area under curve; opt., optimum. 
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