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ABSTRACT

Background: Papillary thyroid cancer (PTC) is the most common subtype of thyroid cancer, and inflammation
relates significantly to its initiation and prognosis. Systematic exploration of the immunogenomic landscape
therein to assist in PTC prognosis is therefore urgent. The Cancer Genome Atlas (TCGA) project provides a large
number of genetic PTC samples that enable a comprehensive and reliable immunogenomic study.

Methods: We integrated the expression profiles of immune-related genes (IRGs) and progression-free intervals
(PFIs) in survival in 493 PTC patients based on the TCGA dataset. Differentially-expressed and survival-
associated IRGs in PTC patients were estimated a computational difference algorithm and COX regression
analysis. The potential molecular mechanisms and properties of these PTC-specific IRGs were also explored
with the help of computational biology. A new prognostic index based on immune-related genes was
developed by using multivariable COX analysis.

Results: A total of 46 differentially expressed immune-related genes were significantly correlated with clinical
outcome of PTC patients. Functional enrichment analysis revealed that these genes were actively involved in a
cytokine-cytokine receptor interaction KEGG pathway. A prognostic signature based on IRGs (AGTR1, CTGF,
FAM3B, IL11, IL17C, PTH2R and SPAG11A) performed moderately in prognostic predictions, and correlated with
age, tumor stage, metastasis, number of lesions, and tumor burden. Intriguingly, the prognostic index based on
IRGs reflected infiltration by several types of immune cells.

Conclusions: Together, our results screened several IRGs of clinical significance, revealed drivers of the immune
repertoire, and demonstrated the importance of a personalized, IRG-based immune signature in the
recognition, surveillance, and prognosis of PTC.
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INTRODUCTION

Thyroid cancer accounts for > 90% of endocrine system
malignancies, and its incidence rate is on the rise [1-5].
In the United States, it is estimated that 53,990 new
cases will be diagnosed and 2,060 thyroid cancer
fatalities will occur in 2018 [6]. Papillary thyroid
carcinoma (PTC), the most common subtype of thyroid
cancer, accounts for 80% of reported cases [7-11]. At
present, patients with PTC typically undergo surgical
treatment and radioactive iodine therapy, with an
excellent overall prognosis [12, 13]. Although the
majority of PTCs remain indolent, tumor recurrence and
metastasis stymies clinical management and survival in
certain patients [14-17]. Existing treatments are
insufficient for patients with locally advanced or
distantly metastatic PTC. Careful monitoring of the
progression of PTC with the help of novel and sensitive
biomarkers could reduce numbers of PTC patients not
diagnosed before the onset of aggressive disease.

Cancer immunotherapy has been a major driver of
personalized medicine, with aggressive efforts to
leverage the immune system to fight tumors [18, 19]. In
recent decades, immunotherapy developments have
entered the treatment protocols of many types of
cancers [20, 21]. At present, cutting-edge immuno-
therapies promise PTC patients another alternative
treatment method. In vitro and/or in vivo experiments
proposed that immune checkpoint inhibitors could boost
the effective elimination of thyroid tumor cells [22, 23].
Besides, Bai Y et al. found that the expression of BRAF
V600E is positively correlated with PD-L1/PD-1 in
PTC samples, which indicated that immune checkpoint
therapy might be effective for PTC patients with the
BRAF V600E mutation [24]. More importantly, several
ongoing clinical trials have fueled the field of tumor
immunology in thyroid cancer [25].The thyroid gland is
the largest endocrine organ in the human body, and is a
frequent target of autoimmune disease. Immunological
cells are widespread in the thyroid cancer micro-
environment [26]. Certain studies have proposed that
chronic lymphocytic thyroiditis, a common autoimmune
disease, may trigger or accelerate development of PTC
[27, 28], although a potential causative relationship
therein has yet to be established. While these findings
support the importance of immunology in PTC,
molecular mechanisms still remain unclear, particularly
for with regards to immunogenomic effects. With the
advent of public, large-scale gene expression datasets,
cancer researchers have been able to identify culpable
biomarkers for tumor monitoring and surveillance with
great speed and accuracy [29, 30]. Li et al. (2017)
comprehensively explored the prognostic value of
immune-related genes (IRGs) to develop an individua-

lized immune signature which could improve prognostic
estimations for patients with nonsquamous non—small
cell lung cancer [31]. However, the clinical relevance
and prognostic significance of IRGs in PTC has yet to
be explored.

Our aim in this investigation is to gain insight into the
potential clinical utility of IRGs on prognostic
stratification and their implicational potential as
biomarkers for targeted PTC therapy. We integrated
IRG expression profiles with clinical information,
applying computational methods for the assessment of
progression-free intervals (PFIs) in PTC patients. We
systematically analyzed the expression status and
prognostic landscape of IRGs and developed an in-
dividualized prognostic signature for PTC patients.
Bioinformatics analyses were conducted to explore
underlying regulatory mechanisms. Results from this
study could offer a foundation for subsequent, in-depth
immune-related work with great promise for persona-
lized medicine in the treatment of PTC.

RESULTS
Identification of differentially expressed IRGs

The edgeR algorithm identified 5,498 differentially
expressed genes, 2,258 up-regulated and 3,240 down-
regulated (Figures 1A and 1C). From this set of genes,
we extracted 374 differentially expressed IRGs, including
269 up-regulated and 105 down-regulated (Figures 1B
and 1D). As expected, gene functional enrichment
analysis revealed that inflammatory pathways were most
frequently implicated. “Cell chemotaxis,” “cytoplasmic
vesicle lumen,” and “recep-tor ligand activity” were the
most frequent biological terms among biological
processes, cellular components, and molecular functions,
respectively (Figure 2A). For the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways, cytokine-
cytokine receptor inter-actions were most often enriched
by differentially expressed IRGs (Figure 2B).

Identification of survival-associated IRGs

As monitoring disease outcome is important for clinical
management, we focused our efforts on uncovering
molecular biomarkers that could serve as viable
prognostic indicators. After screening, we found 130
IRGs that were significantly correlated to PFI in PTC
patients. Similar to the results from our gene enrichment
analysis of differentially expressed genes, we found these
survival-associated IRGs was most enriched in several
gene ontology (GO) terms related to cell interaction and
movement. The MAPK signaling pathway was the most
frequently identified KEGG pathway (Figure 3).
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Figure 1. Differentially expressed immune-related genes. Heatmap (A) and volcano plot (C) demonstrating differentially
expressed genes between papillary thyroid cancer (PTC) and non-tumor tissues, blue dots represent differentially expressed genes and
red dots represent no differentially expressed genes. Differentially expressed immune-related genes (IRGs) are shown in heatmap (B)
and volcano plot (D), blue dots represent differentially expressed genes and red dots represent no differentially expressed genes.

Identification of hub IRGs

To extract IRGs which actively participated in the onset
and progression of PTC, we chose differentially expres-
sed IRGs which were significantly correlated with clini-
cal outcomes (P<0.05). A total of 46 IRGs met this crite-

rion (Table 1; Figure 4A). Protein-protein interaction
(PPI) network analysis demonstrated that JUN, AGTRI,
and FOS were the three hub genes among these this data-
set (Figure 4B). Functional enrichment analysis revealed
that these genes were actively involved in a cytokine-cy-
tokine receptor interaction KEGG pathway (Figure 4C).
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Figure 2. Gene functional enrichment of differentially expressed immune-related genes. (A) Gene
ontology analysis; blue, red and green bars represent biological process, cellular component and molecular
function, respectively. (B) The top 10 most significant Kyoto Encyclopedia of Genes and Genomes pathways.
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Figure 3. Gene functional enrichment of survival-associated immune-related genes. (A) Gene
ontology analysis; blue, red and green bars represent biological process, cellular component and molecular
function, respectively. (B) The top 10 most significant Kyoto Encyclopedia of Genes and Genomes pathways.
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Figure 4. Identification of hub immune-related genes. (A) The intersection of differentially expressed IRGs and survival-associated
IRGs. (B) Protein-protein interaction network of hub IRGs. (C) Kyoto Encyclopedia of Genes and Genomes pathway analysis of hub IRGs.

Characteristics of hub IRGs

Identified hub IRGs possess excellent biomarker
potential for monitoring prognosis. A forest plot of
expression profiles revealed that most of the identified
hub IRGs were up-regulated in PTC samples (Figure
5A). A forest plot of hazard ratios indicated that most of
these genes were protective factors (Figure 5B). Owing
to the significant clinical value of these IRGs, we
embarked on a comprehensive exploration of their
molecular characteristics. We examined genetic altera-
tions of these genes and found that mRNA upregulation
and deep deletion were the two most commonly
occurring types of mutation (Figure 6).

TF regulatory network

To explore potential molecular mechanisms correspond-
ing to the clinical significance of our hub IRGs, we
investigated the regulatory mechanisms of these genes.
We examined the expression profiles of 318 transcrip-
tion factors (TFs) and found that 51 were differentially

expressed between PTC and non-tumor thyroid samples
(Figure 7A). Among these 51 TFs, 11 were correlated to
the PFI of PTC patients (Figure 7B). We then constructed
a regulatory network based on these 11 TFs and our 46
hub IRGs. A correlation score more than 0.4 and combin-
ed score more than 0.6 were set as the cut-off values. The
TF-based regulatory schematic acutely illustrated the
regulatory relationships among these IRGs (Figure 7C).

Evaluation of clinical outcomes

Based on the results of multivariate Cox regression
analysis, we constructed a prognostic signature to
separate the PTC patients into two groups with discrete
clinical outcomes with regards to PFI (Figure 8). The
formula was as follows:

[Expression level of AGTR1 * (-0.1212)] + [Expression
level of CTGF * (-0.3284)] + [Expression level of
FAM3B * (-0.1675)] + [Expression level of IL11 *
0.3089] + [Expression level of IL17C * 0.2368] +
[Expression level of PTH2R * (-0.2823) + [Expression
level of SPAGI1A * (-0.9550)].
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Table 1. General characteristics of PTC-specific immune-related genes.

Gene symbol | logFC FDR HR Z-value P-value
ACKR2 -1.687064217 | 4.26E-49 0.696192037 -2.36286581 0.018134235
GHR -1.70049177 9.79E-47 0.685921851 -2.52786588 0.011475818
PLXNA3 1.160096051 2.46E-39 1.710549504 1.982939323 0.047374208
JUN -1.655315234 | 4.09E-36 0.758345613 -2.052977898 | 0.040074721
ANGPTL1 -1.713306014 | 5.04E-35 0.783338142 -2.687442591 | 0.007200148
LIFR -1.841039853 | 7.26E-34 0.788836186 -2.087231692 | 0.036867196
QRFP -1.088374171 | 2.47E-31 0.676925655 -2.007271602 | 0.044720751
F2R 1.49644826 5.58E-31 0.685775226 -2.420224391 | 0.015510932
TGFBR3 -1.00520471 7.94E-30 0.5433445 -3.375986425 | 0.000735515
FGFR2 -1.068993458 | 1.13E-28 0.72401054 -2.004848809 | 0.044979213
CYR61 -1.685846521 1.78E-28 0.785164478 -2.124743187 | 0.033608048
LTF -2.184099931 1.05E-26 0.775433507 -2.735194157 | 0.006234349
ESRRG -1.34743252 2.5E-24 0.762353203 -2.941532873 | 0.003265922
NRI1D1 2.002775191 3.32E-24 1.330937381 2.348481695 0.018850126
NFATC1 -1.053766381 1.97E-23 0.67892188 -2.367286938 | 0.017919034
AVPRI1A -1.880477808 | 3.14E-23 0.829758857 -2.493237563 | 0.012658412
PDGFB 1.024220384 4.43E-23 0.577751758 -2.495217245 | 0.012588004
APLNR 1.419410262 1.07E-22 0.753698008 -2.259657038 | 0.023842545
CRABP2 2.356586586 4.05E-21 1.243529964 2.379146595 0.017352773
PRTN3 2.534878013 6.08E-21 1.209363644 2.026378898 0.042725972
ULBP1 2.594323933 1.83E-20 0.84592328 -2.100203699 | 0.035710926
MLNR -2.104936046 | 3.53E-20 0.780100381 -2.269458162 | 0.023240479
LCN6 3.952072642 3.84E-20 0.8764868 -2.249166036 | 0.024501934
CTGF -1.469118649 | 1.13E-19 0.734379979 -3.093995395 | 0.001974806
NFATC4 1.004724232 2.32E-18 1.992123979 3.548274944 0.000387763
RXFP1 -1.517269947 | 8.68E-18 0.800928632 -2.659068477 | 0.007835704
1L33 -1.137266176 | 7.3E-17 0.758980347 -2.282888161 | 0.022436957
FOS -1.427430135 | 7.51E-17 0.825967325 -2.361681281 | 0.018192275
GDF10 -2.185523784 | 9.59E-17 0.883881161 -2.091835846 | 0.036453203
FAM3B -1.381253974 | 3.69E-14 0.825630975 -2.379265083 | 0.017347196
NOX5 2.588531962 5.89E-13 0.869857077 -2.174717678 | 0.029651279
1IL37 4.958949015 1.81E-12 1.176018299 2.90407439 0.003683406
TG -1.082464079 | 2.11E-12 0.835915361 -2.360188443 | 0.018265654
CMTM5 -1.176756666 | 1.16E-11 0.673526685 -2.951366659 | 0.003163711
CRABPI1 -1.727556563 | 8E-11 0.878968593 -2.738050559 | 0.006180457
IL17C 1.586653222 1.57E-10 1.44017285 3.26184305 0.001106904
GFAP 1.549182091 9.98E-10 0.795114413 -2.060125029 | 0.03938659
NMB 1.295911066 4.07E-09 0.791911007 -2.503776648 | 0.012287558
IL11 1.699033239 0.000000013 | 1.266514138 2.902922992 0.003696975
IL36A 2.7678365 1.81E-08 1.261659287 2.448034461 0.014363792
SCGB3A1 1.673414287 0.000000171 | 0.846990277 -2.322810119 | 0.020189355
PTH2R 1.563089171 0.00000164 | 0.76502175 -2.128669251 | 0.033281635
FABP4 -1.239736536 | 0.00000426 | 0.865867291 -2.745652317 | 0.006039073
AGTRI1 -1.076480549 | 0.0000109 0.795822713 -3.63116516 0.000282145
LCNI15 1.907212684 0.0000225 0.677152854 -2.340634808 | 0.019250987
SPAGI1A 2.715397978 0.00014475 | 0.441582959 -2.183332337 | 0.029011345
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Figure 5. Expression profiles and prognostic values of hub immune-related genes. (A) Forest plot of mean difference showing
gene differences between PTC and non-tumor samples. (B) Forest plot of hazard ratios showing the prognostic values of genes.

This immune-based prognostic index could be an
important tool for distinguishing among PTC patients
based on potential discrete clinical outcomes (Figure
9A). The area under curve of the receiver operating
characteristic (ROC) curve was 0.792, suggesting mo-
derate potential for the prognostic signature based on
IRGs in survival monitoring (Figure 9B). Multivariate
Cox regression analysis suggested that the prognostic
signature could become an independent predictor after
other parameters were adjusted, including age, gender,
pathologic stage, tumor stage, lymph node metastasis
status, distant metastasis status, tumor size, tumor status
and the amounts of nodules (Table 2). The prognostic
signature was also found to be a moderately viable
index for different PTC subtype (classical, follicular,
and tall cell) patients (Figure 9C - E). We also explored
the clinical significance of included genes (Table3).

Clinical utility of prognostic signature

Relationships were analyzed between the immune-
related gene-based prognostic index (IRGPI) and cli-

nical and demographic characteristics, including age,
gender, number of lesions, American Joint Committee
on Cancer (AJCC) stage, and tumor burden. IRGPI was
significantly higher in seniors (Figure 10A), multifocal
patients (Figure 10C), advanced stage cases (Figure
10D), advanced T stage cases (Figure 10E), distant
metastasis cases (Figure 10G), and increased tumor
burden (Figure 10H). However, no difference was
observed between genders (Figure 10B) or with regards
to lymph node metastasis (Figure 10F). To see if the im-
munogenome accurately reflected the status of tumor
immune microenvironment, we analyzed relationships
between IRGPI and immune cell infiltration (Figure 11).

DISCUSSION

Although the significance of IRGs in tumor progression
and immunotherapeutics has been well-established, a
comprehensive, genome-wide profiling study exploring
their clinical significance and molecular mechanisms
has not been conducted. This comprehensive, integrated
analysis of IRGs in PTC enhances our understanding of
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their clinical significance and illuminates potential
molecular characteristics. The large number of PTC
samples we had access to for this study facilitated
robust results. Determination of more precise PFI
clinical endpoints helped to assess potential clinical
outcomes in THCA patients, and these PFIs enabled the
analysis of more endpoint events than simply overall
survival. We exposed several IRGs significantly involv-

GDF10 3%
LTF 2.8%
MLNR 4%

GHR 6%
ACKR2 5%
CYRé1 5%
JUN 5%
RXFP1 5%
CTGF 5%
FOs 6%
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CRABP2 %
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ed in the initiation and progression of PTC; these IRGs
may serve as valuable clinical biomarkers. Bioinfor-
matic systems will enable a more in-depth exploration
of their molecular mechanisms. Most important, an
individualized immune prognostic signature based on
selected, differentially expressed IRGs was proposed to
measure immune cells infiltration and assess potential
clinical outcomes.

Genetic Alteration I Missense Mutation (unknown significance) I Truncating Mutation (unknown significance) I Amplification I Deep Deletion

I mRNA Upregulation I mRNA Downregulation I No alterations -~ Not profiled

Figure 6. Mutation landscape of hub immune-related genes. TG is the gene with the highest mutation frequency. And

there were 25 genes with a mutation rate 2 5%.
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Figure 7. Transcription factor-mediated regulatory network. (A) Differentially expressed transcription factors (TFs). (B)
Survival analysis of differentially expressed TFs. (C) Regulatory network constructed based on clinically relevant TFs and IRGs.

Since the start of the “War on Cancer,” our under-
standing of tumorigenesis and techniques for clinical
management have progressed impressively, but many
aspects of PTC immune-related molecular mechanisms
remain unclear. The initiation of cancer cells often
occurs in densely infiltrated inflammatory environments
[32], which were the first clues that pointed our research
toward differentially expressed IRGs. Other studies
have uncovered differentially expressed genes between
PTC and non-tumor samples [29, 33], providing a
fundamental understanding of the pathogenesis of PTC
at the genetic level. However, the characteristics of

IRGs in PTC had not been systematically explored up to
this point. Tumor immune escape is an indispensable
step in cancer progression. Recently, Na et al. (2018)
proposed an ImmuneScore based on immune cell
abundances as a means to characterize the immune
microenvironment of PTC [34]. They proposed
ImmuneScore based on immune cell intensity and
explored the relationships between ImmuneScore and
thyroid differentiation and BRAFV600E status.
However, the present study mainly focused on the
immuno-genomic profiles and the corresponding
clinical significance. The two studies explored the
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immune landscape of PTC from two distinct per-
spectives. Combination the two results could describe
the immune status of PTC more comprehen-sively.
Indeed, study on the tumor immune micro-environment
is an important buttress to investigations into immu-
notherapeutic PTC management.

Acquisition of invasive traits in cancer cells depends
upon a succession of alterations to the genome. We
focused our investigation on alterations to immuno-
genomic profiles to uncover relationships between these
profiles and the immune microenvironment, and to
suggest potential clinical implications. Gene functional
enrichment analysis suggested that these genes are main-

ly involved in cytokine-cytokine receptor inter-actions
and chemokine signaling pathways.

Chemokines and their receptors actively participate in the
pathogenesis of early-stage PTC; these are virtually
always found to be altered in cancerous cells. Notably,
these are correlated to invasion, aggression, and meta-
stasis of PTC [14, 35, 36]. As such, these chemo-
kines could also act as clinical biomarkers for monitoring
metastasis, assessing survival, and uncovering potential
drug targets [37,38]. Computational biological algo-
rithms provided several clues suggesting that alterations
to the immunogenome could promote the initiation of
PTC via several inflammatory pathways.
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Table 2. Univariate and multiple regression analysis of papillary thyroid carcinoma.

Variables Univariate analysis Multivariate analysis
Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age 1.019 (1.002-1.036) 0.029 1.003 (0.958-1.050) 0.901

Gender (male/female) 1.635 (0.920-2.906) 0.094 1.972 (0.773-5.036) 0.156

Pathologic stage 1.578 (1.249-1.994) <0.001 1.272 (0.654-2.471) 0.478

Tumor stage 1.989 (1.443-2.742) <0.001 0.892 (0.476-1.670) 0.721

Lymph node metastasis 1.679 (0.932-3.024) 0.084 1.342 (0.504-3.575) 0.556
(yes/no)

Distant metastasis 7.559 (2.857-20.004) <0.001 1.085 (0.193-6.110) 0.926
(yes/no)

Tumor size 1.182 (0.997-1.401) 0.060 0.573 (0.371-.886) 0.012
Tumor status (with 16.169 (9.243-28.285) <0.001 15.152 (4.765-48.173) <0.001
tumor/tumor free)

Multifocality 1.095 (0.627-1.913) 0.750 1.176 (0.435-3.174) 0.750
(multifocal/unifocal)
IRGPI 2.711 (2.046-3.592) <0.001 2.425 (1.492-3.943) <0.001
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Table 3. Relationships between the expressions of the immune-related genes and the clinicopathological factors in
papillary thyroid cancer.

Genes Age Gender Tumor status Primary Pathological T stage N stage M stage
(=60/ <60) (male/ (with tumor/ neoplasm focus | stage (T3-T4/ T1- (N1-3/NO) M1/ MO0)
female) tumor free) type (IV-1II/ I-11) T2)
(multifocal/
unifocal)
t P t P t P t P t P t P t P t P
AGTRI1 - 0.673 - 0.036 - 0.032 | 3.444 | 0.001 - <0.001 - <0.001 - <0.001 - <0.001
0.422 2.103 2.145 3.615 4.832 5.088 3.861
CTGF - 0.608 - 0.371 - 0916 | 1.010 | 0.313 - 0.686 - 0.394 1.288 | 0.198 - 0.217
0.513 0.895 0.105 0.405 0.853 1.237
FAM3B - 0.831 - 0.208 - 0.008 | 0.547 | 0.584 | 0.272 | 0.786 | 0.225 | 0.822 | 0.987 | 0.324 - 0.113
0.214 1.261 2.667 1.589
IL11 1.340 | 0.182 | 1.377 | 0.169 | 3.212 | 0.002 - 0.610 | 3.652 | <0.001 | 3.580 | <0.001 | 5.146 | <0.001 | 1.880 0.096
0.510
IL17C 0.878 | 0.380 | 1.260 | 0.208 | 2.144 | 0.037 - 0.015 | 3.746 | <0.001 | 3.918 | <0.001 | 4.199 | <0.001 | 0.899 0.370
2.431
PTH2R - 0.037 | 0.481 | 0.631 - 0.007 - 0.901 - 0.140 | 0.121 0.904 1.968 | 0.050 - 0.591
2.093 2.729 0.125 1.480 0.538
SPAGI11 - 0.013 | 1.884 | 0.061 - 0.843 | 1.025 | 0.306 - 0.113 - 0.558 | 0.756 | 0.450 - 0.879
A 2.551 0.198 1.587 0.586 0.153

Note: t: t value of student's t test; P: P-value of student's t test.

Owing to the favorable prognosis of most PTC cases,
studies focused on the selection of effective prognostic
biomarkers is limited. However, cases of metastasis and
recurrence continue to stymie current clinical manage-
ment protocols. Considering the favorable -clinical
outcome, PTC patients did need a longer follow-up time
to capture more OS events. In TCGA database, the
numbers of OS and DFS events are small, Hence, PFI
was the most suitable clinical endpoints for the current
study. We selected PFI as the key clinical endpoint for
observation of survival. Of the pathways implicated by
IRGs, the MAPK signaling pathway was the most
significantly correlated with survival-associated IRGs.
The MAPK pathway is a conserved signal-transduction
pathway. To date, thyroid carcinoma has been con-
sidered to be a predominantly a MAPK driven cancer,
with approximately 70% of thyroid carcinomas associ-
ated with mutations that activate this pathway [39]. We
explored the expression profiles, prognostic value, and
mutational status thereof and uncovered valuable data
ripe for future clinical exploration.

To explore underlying molecular mechanisms cor-
responding to potential clinical value, we constructed a
TF-mediated network to expose vital TFs that could re-

gulate identified hub IRGs. MYH11, FOS, and FCF7L1
featured prominently in this network. The ChIP-seq and
co-expression-based TF-IRG regulatory networks we
constructed will also help to inform and direct future
mechanism analysis. Previously, a handful of immu-
nological reports have suggested a possible connection
between MYHI1 and FCF7L1 and PTC, but
associations with the FOS and MAPK pathway are new
to immunological study of PTC [40]. Considering the
potential molecular mechanism of the seven IRGs, no
reports of the function and mechanism of AGTRI,
FAM3B, PTH2R or SPAG11A have been published in
PTC. However, among these seven IGRs, three of them
have been studied, including CTGF, IL11 and IL17C.
CTGeF is upregulated in PTC and promotes the growth
of PTC cells [41]. IL11 has been reported to play an
oncogenic role in anaplastic thyroid carcinoma [42].
Moreover, IL17C overexpression was observed in
differentiated thyroid cancer and associated with the
recurrence and mortality [43]. Hence, previous studies
provided limited information about the mechanisms of
seven IRGs in PTC patients survival. In the functional
enrichment analysis, MAPK pathway was the most
significant pathway, we hypothesize that MAPK path-
way may play an important role in the process.
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To develop a simple and convenient protocol for
monitoring the immune status and suggesting clinical
outcomes in PTC patients, we created an immune-based
prognostic signature. Previously, Bisarro et al. (2017)

explored genome-wide DNA methylation profiling and
proposed an algorithm to predict the recurrence of well-
differentiated thyroid carcinoma [44]. Ab Mutalib et al.
(2016) integrated microRNA, gene expression, and TF
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signatures to study the molecular mechanisms of PTC in
patients with lymph node metastasis [45]. Cheng et al.
combined genomic alterations and clinical parameters to
develop a risk index model that could monitor the
progression of PTC [46]. Beyond that, several
researchers also have proposed prognostic signatures for
PTC patients’ survival prediction [47-49]. Comparing
with previous publications, the present study proposed a
signature that chose the PFI as the endpoint, which was
the most suitable for PTC patients’ survival monitoring.
Furthermore, the IRGPI could not only as a prognostic
indicator, but also as an immune status indicator.
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Our prognostic index, based on seven IRGs
differentially expressed in PTC, demonstrated favorable
clinical viability. Of interest, our data showed that
IRGPI performed moderately in prognostic predictions,
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Our analysis indicated that the IRGPI was significantly
negatively correlated to the infiltration of CD4" T cells
and macrophages. Characterization of the immune
infiltration landscape is necessary for the investigation
of tumor—immune interactions. We explored the
relationships between IRGPI and immune cell in-
filtration to reflect the status of immune micro-
environment of PTC. Interestingly, B cell, CD4 T cell
and macrophage cell infiltration levels were sig-
nificantly negatively correlated with IRGPI, while the
infiltration level of CD8 T cells was evidently positively
correlated with IRGPI. These results indicated that the
lower infiltration levels of B cell, CD4 T cell,
macrophage and higher CD8+ T cell might be observed
in high-risk patients. Our results confirmed and
expanded the findings of immune cells is being essential
for PTC progression. These current results also
suggested that the IRGPI owned the potential to act as
predictor for immune cells infiltration elevation, which
is line with previous reports. The role of immune cells
in PTC has not be fully explored. Previously, Ehlers et
al. demonstrated that the frequencies of TPO- and Tg-
specific CD8+ T cells in PTC patients were largely
increased compared to the healthy controls [53].
Aghajani MJ et al as they reported that patients with
low CD8+ and CD3+ expression presented with a
significantly higher incidence of lymph node metastasis
and extrathyroidal extension in papillary thyroid cancer
[54]. High abundances of CD8+ T lymphocytes also
have been reported as a possible independent risk factor
for recurrence prediction in differentiated thyroid cancer
[55]. However, the role of immune cells in PTC is still
unclear. Our preliminary observation could provide a
perspective to explore the problem, further research is
needed in the future.

However, there were some limitations to the present
study, which should be considered when interpreting
our results. First, transcriptomics analysis only could
reflect some aspects of immune status rather than the
global alterations. Second, The lacking of validation
with another independent cohort is also a limitation of
the study. Third, the reliability of our molecular results
was still challenged by lacking in vitro or in vivo
experiments.

As we look to the future, many questions remain. For
example, relationships between immunogenomics,
proteomics, and metabolomics should be explored to
further delineate global immunological changes in PTC.
Of importance, the potential relationship between
disturbed immunogenomes and premalignant lesions
should be further explored. We anticipate that this
prognostic signature may be of great clinical import.
We systematically analyzed the role of IRGs in the mo-

nitoring of the initiation and prognosis of PTC. Our
findings have provided novel insights that could yield
new immunotherapies in PTC.

MATERIALS AND METHODS
Clinical samples and data acquisition

Transcriptome RNA-sequencing data of PTC samples
were downloaded from the TCGA data portal
(https://cancergenome.nih.gov/), which contained data
from 493 primary PTC and 58 non-tumor tissues. Raw
count data was downloaded for further analyses.
Clinical information for these patients was downloaded
and extracted. We also derived a list of IRGs via the
Immunology Database and Analysis Portal (ImmPort)
database [56]. ImmPort is a database that updates
immunology data accurately and timely. Data shared
through ImmPort is a powerful foundation of immu-
nology research. More importantly, the database
provides a list of IRGs for cancer researches. These
genes were identified to actively participate in the pro-
cess of immune activity.

Differential gene analysis

To selected IRGs involved in the onset of PTC,
differentially expressed IRGs between PTC and
adjacent non-tumor thyroid samples were screened via
the R software edgeR package (http://bioconductor.org/
packages/edgeR/) [57]. Trimmed mean of M values
(TMM) implemented in the edgeR Bioconductor
package was used to normalize the raw data. We perf-
ormed differential gene analysis of all transcriptional
data, setting a false discovery rate (FDR) < 0.05 and a
log2 |fold change| > 1 as the cutoff values. Differentially
expressed IRGs were then extracted from all
differentially expressed genes. Functional enrichment
analyses, via the GO and KEGG pathways [58-62],
were conducted to explore potential molecular mecha-
nisms of the differentially expressed IRGs.

Survival analysis

Considering the generally favorable prognoses of most
cases of PTC, the number of death events is small
related to overall survival. We chose PRI as the primary
endpoint, and all follow-up data was derived from
TCGA's Pan-Cancer Atlas [63]. A log2 (normalized
value + 1) data format was used for survival analysis.
Survival-associated IRGs were selected by univariate
COX analysis, which was conducted using the R
software survival package. IRGs which were signi-
ficantly related to PFI survival were also submitted for
functional enrichment analysis.
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Molecular characteristics of hub IRGs

Differentially expressed IRGs which were significantly
correlated to clinical outcomes of PTC patients were
identified as hub IRGs. As these IRGs may have clini-
cal applications, their clinical values were also
systematically explored. Copy number alterations data
was obtained from Cbioportal (http://www.cbioportal.
org/) [64, 65]. To explore the interactions between these
genes, the PPI network was constructed based on data
gleaned from the STRING online database (https://string-
db.org/). PPI network could display many interactions
that connect with hub genes directly or indirectly. The
PPI result was displayed using Cytoscape software
version 3.6.1 [66]. We also focused on their regulatory
mechanisms. TFs are important molecules that directly
control the degree of gene expression. Hence, it is
necessary to explore how TFs that have potential ability
in regulating these clinically relevant IRGs. . Cistrome
Cancer is a data source that integrates cancer genomics
data from TCGA with over twenty-three thousands of
ChIP-seq and chromatin accessibility profiles to provide
the regulatory links between TFs and transcriptomes. The
Cistrome Cancer database is a valuable resource for
experimental and computational cancer biology research
and contains a total of 318 TFs and. [67]. We extracted
clinically relevant TFs to construct the regulatory net-
work of the current IRGs and potential TFs.

Development of the immune-related gene-based
prognostic index (IRGPI)

Hub IRGs were submitted for multivariate analyses, with
integrated IRGs remaining as independent prognostic
indicators to develop the IRGPI. The IRGPI was
constructed based on expression data multiplied by the
Cox regression coefficient. Patients were divided into
high- and low-risk groups about the median PI value. The
prognostic value of the PI was assessed in patients with
different subtypes of PTC. The TIMER online database
analyzes and visualizes the abundances of tumor-
infiltrating immune cells [68]. TIMER reanalyzes gene
expression data, which includes 10,897 samples across
32 cancer types from TCGA to estimate the abundance of
six subtypes of tumor-infiltrating immune cells, including
B cells, CD4 T cells, CD8 T cells, macrophages, neutron-
phils, and dendritic cells. Hence, it can be easily used for
determining the relationship between immune cells
infiltration and other parameters. We downloaded immu-
ne infiltrate levels of PTC patients and calculated asso-
ciations between the IRGPI and immune cells infiltration.

Statistical analysis

Gene functional enrichment analyses were conducted
based on the R software clusterProfiler package of for

identifying biological themes among gene clusters [69].
AUC of the survival ROC curve was calculated via the
survival ROC R software package to validate the
performance of the prognostic signature [70]. Dif-
ferences among clinical parameters were tested using
independent #-tests. P-values of less than 0.05 were
considered statistically significant.
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