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INTRODUCTION 
 
Alzheimer’s disease (AD) is a neurodegenerative 
disease, characterized by the progressive development 
of cognitive impairment, representing one of the 
greatest health challenges worldwide [1]. Despite the 

fact that substantial progress has been made over the 
last decade, the AD-related molecular and cellular 
pathogenesis remain poorly understood [2], and no 
pharmacologic therapies are available to stop the 
disease progression [3]. Moreover, the currently 
available treatments have extremely limited therapeutic 
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ABSTRACT 
 
Although an intriguing potential association of the gut microbiome with Alzheimer's disease (AD) has attracted 
recent interest, few studies have directly assessed this relationship or underlying mechanism. Here, we 
compared the gut microbiota composition and functional differentiation of senescence-accelerated mouse 
prone 8 (SAMP8) mice with control senescence-accelerated mouse resistant 1 (SAMR1) mice using 16S rRNA 
gene and metagenomic sequencing analysis, respectively. Specifically, 16S sequencing results showed that the 
SAMP8 mice displayed a characteristic composition of the gut microbiome that clearly differed from that of the 
SAMR1 mice. Moreover, network analysis revealed that the gut microbiota of SAMP8 mice had decreased 
correlation density and clustering of operational taxonomic units. Metagenomic results revealed that the 
predominant Cluster of Orthologous Groups functional category related to these changes was the metabolism 
cluster in SAMP8 mice. The Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation further 
demonstrated enrichment of the relative abundance of some dominant metabolism-related KEGG pathways in 
the SAMP8 mice, consistent with the suggested pathogenic mechanisms of AD. In conclusion, this study 
suggests that perturbations of the gut microbiota composition and the functional metagenome may be 
associated with AD. Further studies are warranted to elucidate the potential new mechanism contributing to 
AD progression. 
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effect [4]. Therefore, further investigation into the 
pathophysiology and molecular mechanisms underlying 
AD is urgently required. 
 
In recent decades, the potential role of the gut 
microbiome in altering the health status of the host has 
attracted considerable attention. An increasing number 
of studies suggest that gut microbiota, notably the 
intestinal microbiota, is associated with several diseases 
such as type 1 diabetes mellitus [5, 6], Behcet’s disease 
[7], hypertension [8, 9], schizophrenia [10], and 
Parkinson’s disease [11]. Moreover, many converging 
lines of evidence suggest that gut microbiota dysbiosis 
plays a major role in the development of AD-related 
pathogenesis [12]. For example, alteration of the gut 
microbiome was observed in AD transgenic mice [13-
17], AD patients [18, 19], and transgenic AD 
Drosophila [20]. However, all of these previous studies 
were based on a 16S rRNA gene sequencing method to 
determine the microbiota composition, which has 
known limitations such as the potential for skewing the 
results owing to amplification bias [21] and inability to 
identify most microbes at the species and strain level 
[22]. Alternatively, the development of metagenome 
sequencing technology can provide a higher resolution 
of the taxonomic profile with functional classification 
of the microbiome than possible with 16S rRNA 
sequencing [23]. However, no study has yet conducted 
metagenome sequencing analysis of the gut microbiome 
in relation to AD. 
 
Accordingly, in the present study, to further understand 
the role of the gut microbiome in AD, we compared the 
composition and profile of the gut microbiome from 
fecal samples between senescence accelerated mouse 
prone 8 (SAMP8) mice, a well-established deterministic 
model of AD, and control senescence-accelerated 
mouse resistant 1 (SAMR1) mice using both 16S rRNA 

gene sequencing and metagenomics sequencing 
analysis.  
 
RESULTS 
 
Cognitive performance of SAMP8 and SAMR1 mice  
 
As shown in Fig. 1A, compared with the SAMR1 mice, 
the mean escape latency of SAMP8 mice was 
significantly increased (P < 0.05). In the probe trial, the 
SAMP8 mice randomly swam in the tank without 
knowing the target location, whereas the SAMR1 mice 
preferentially searched for the target quadrant (Fig. 1B). 
Moreover, the number of crossings and the time spent in 
the target quadrant significantly decreased in the 
SAMP8 mice compared with those in the SAMR1 mice 
(P < 0.05; Fig. 1C). These results confirmed that the 
SAMP8 mice have severe cognitive impairments even 
at 8 months of age. 
 
Gut microbiome composition of SAMR1 and 
SAMP8 mice using 16S rRNA sequencing 
 
After size filtering, quality control, and chimera 
removal, a total of 959,692 high-quality sequences were 
obtained from fecal samples of 26 mice (13 SAMR1 
and 13 SAMP8). In addition, 560 OTUs were matched, 
including 10 phyla, 206 species, and 103 genera of gut 
microbes that were annotated for subsequent analyses.  
 
To evaluate alterations in the microbiota community 
structure between SAMP8 and SAMR1 mice, we 
measured the microbial alpha diversity, using the Chao, 
Shannon, and ace diversity indices, which showed no 
significant differences between the groups (P = 0.505, 
0.9183, and 0.5727, respectively, data not shown). By 
contrast, the beta diversity analysis showed that the total 
diversity captured by the top three principal coordinates 

 
 
 

Figure 1. MWM test used to evaluate the learning and memory ability in SAMP8 and SAMR1 of 8-month-old mice. (A) 
Mean escape latency in the hidden platform test. (B) Number of crossings in the probe trial test. (C) Time spent in the target quadrant 
in the probe trial test. The data were presented as the mean ± SEM; *P < 0.05. 
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was 56.05% and 63.24% for unweighted and weighted 
UniFrac, respectively, and that the microbiota 
composition of SAMP8 mice was significantly different 
from that of SAMR1 mice. (ANOSIM R = 0.4376, P = 
0.001; and R = 0.1343, P = 0.012, for unweighted and 
weighted distances, respectively, Fig. 2A and B).  
 
To illustrate the differences in the microbiota 
composition between SAMP8 and SAMR1 mice, we 
conducted bar plot, Circos, and pie-plot analyses. The 
bar plot roughly indicated that the relative abundance of 
different  genera  varied  among  the 26 fecal samples at  

the genus levels. As shown in Fig. 3A, five genera were 
predominant in fecal samples from both SAMP8 and 
SAMR1 mice, including norank_f__Bacteroidales_S24-
7_group (17.13% vs 23.10%), Lactobacillus (6.07% vs 
12.91%), Bacteroides (8.24% vs 9.45%), 
Lachnospiraceae_NK4 A136_group(8.83% vs 5.75%), 
and Alistipes (7.73% vs 4.59%). Circos analysis was 
used to visualize the corresponding abundance 
relationship between samples and bacterial communities 
at the genus level, which confirmed the bar plot analysis 
results (Fig. 3B). 

 
 

Figure 2.  Principal Coordinates Analysis of (A) unweighted and (B) weighted UniFrac distances for SAMR1 and 
SAMP8.  The red circles represent the SAMP8 mice (n = 13) and green circles represent SAMR1 mice (n = 13). PC1, PC2 and PC3 
represent the top three principal coordinates that captured the maximum diversity.  
 

 
 

Figure 3: Relative abundance of microbial community for each group at genus level. (A) Bar-plot analysis shows the 
average relative abundance of fecal microbiota in each group. (B) Circos analysis displays the corresponding abundance relationship 
between samples and bacterial communities.   
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To further determine whether specific individual 
bacterial taxa were differentially enriched in SAMP8 
mice compared with SAMR1 mice, we applied the 
LEfSe analysis method, which uses LDA coupled with 
effect size measurements. As shown in Fig. 4, this 
analysis identified 34 genera, which were differentially 
abundant between the SAMP8 and SAMR1 mice. For 
example, a significant enrichment in 
norank_f__Lachnospiraceae, Alistipes, unclassified 

_f__Lachnospiraceae and Akkermansia, and 
Odoribacter was identified in SAMP8 mice. While, 
norank_f__Bacteroidales_S24_7_group, Prevotella_9, 
Parasutterella, or Butyrivibrio were significantly more 
abundant in fecal samples from SAMR1 mice. 
 
Finally, we performed a correlation network analysis to 
evaluate if SAMP8 was associated with changes in the 
correlation structure and putative interaction structure of 

 
 

Figure 4: Gut microbiota bacterial comparisons between SMAP8 and SAMR1 groups analyzed by LEfSe (LDA> 2.5, P< 
0.05).  Histogram of the LDA scores for differentially abundant genera. LDA scores were calculated by LDA effect size, using the linear 
discriminant analysis to assess effect size of each differentially abundant bacterial taxa.   
 

 
 

Figure 5. Correlation network analysis of the 50 most abundant OTUs for (A) SAMR1 and (B) SAMP8. Networks show 
significant positive (red) and negative (green) pairwise correlations between operational taxonomic units (OTUs). OTUs are colored by 
phylum affiliation and sized by mean relative abundance.   
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the gut microbiota and then to identify the putative 
keystone genera. We found that networks constructed 
from samples of SAMP8 mice had fewer edges(138 vs. 
242), a lower mean degree (3 vs. 5), and a lower 
transitivity (0.516 vs. 0.579), indicating that there were 
fewer significant correlations and less clustering of 
OTUs compared to samples from SAMR1 mice (Fig. 
5A and B). Moreover, degree (DC), closeness (CC), and 
betweenness (BC) centrality were computed to evaluate 
the taxa importance within the network. Based on the 
high scores of these topological properties (arbitrarily 
determined as DC＞0.1, CC＞0.2 and BC＞0.1), 4 
OTUs were selected (OTU353, OTU180 for SAMP8, 
and OTU441, OTU286 for SAMR1), representing 
putative keystone genera within this network. 
 
Metagenomic analysis revealed different functional 
profiles between SAMR1 and SAMP8 mice  
 
To investigate the functional profile of the gut 
microbiome in SAMR1 and SAMP8 mice, we also 
performed metagenomic analysis of the microbial DNA 
extracted from fecal samples (four mice per group). A 
total of 602,400,188 filtered reads (89.5 Gb) and 
6,220,223 ORFs were used for functional annotation in 
the COG and KEGG databases. 
 
To determine biologically significant differences, LEfSe 
analysis was also conducted to detect the functional 
COG categories with significantly different abundances 
between SAMR1 and SAMP8 mice. As shown in Fig. 6, 
11 functional COG categories were observed with 
significantly overabundant reads in the SAMP8 group, 
which were assigned to the lipid transport and 
metabolism [I]; nucleotide transport and metabolism 

[F]; cell wall/membrane/envelope biogenesis [M]; 
coenzyme transport and metabolism [H]; translation, 
ribosomal structure and biogenesis [J]; energy 
production and conversion [C]; posttranslational 
modification, protein turnover, chaperones [O]; and 
inorganic ion transport and metabolism [P] categories. 
By contrast, the SAMR1 group had more reads involved 
in the RNA processing and modification [A], 
transcription [K], and signal transduction mechanisms 
[T] categories. Overall, the results could be summarized 
into three categories: information storage and 
processing (cluster I), cellular processes and signaling 
(cluster II), and metabolism (cluster III). Notably, the 
metabolism cluster (cluster III) was predominant in 
SAMP8 mice, and was related to inorganic ion transport 
and metabolism; lipid transport and metabolism; 
coenzyme transport and metabolism; energy production 
and conversion; and nucleotide transport and 
metabolism. 
 
Furthermore, we determined changes in functional 
composition using the KEGG pathway database. LEfSe 
analysis was then also performed to explore KEGG 
pathways with significantly different abundances 
between SAMR1 and SAMP8 mice. Using the threshold 
values (LDA> 2.5, P< 0.05), we found that at KEGG 
level 1 (Fig. 7A), the proportion of sequences associated 
with metabolism was significantly increased in SAMP8 
mice, while environmental information processing and 
cellular processes significantly declined. At level 2 (Fig. 
7B), the functional categories related to glycan 
biosynthesis and metabolism, metabolism of cofactors 
and vitamins, metabolism of other amino acids, and 
lipid metabolism were enriched in the fecal microbiome 
of SAMP8 mice.  At level 3 (Fig. 7C), we found that 20 

 
 

Figure 6.  COG category differences in metagenome between the SAMP8 and SAMR1 analyzed by LEfSe analysis (LDA> 
2.5, P< 0.05). Histogram of the LDA scores for differentially abundant COG categories. 
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KEGG pathways (including carbon metabolism, other 
glycan degradation, pyruvate metabolism, sphingolipid 
metabolism, carbon fixation pathways in prokaryotes, et 
al.) were significantly enriched in SAMR8 mice, and 
six KEGG pathways (including two-component system, 
ABC transporters, bacterial chemotaxis, amino sugar 
and nucleotide sugar metabolism, Phosphotransferase 
system, et al.) were significantly increased in SAMR1 

mice (LDA> 2.5, P< 0.05). Interesting, in the SAMR8 
mice, multiple functional pathways that were more 
highly represented were also involved in metabolism. 
 
In addition, the top 10 genera, including Oscillibacter, 
Lactobacillus, unclassified_p__Firmicutes, Clostridium, 
unclassified_f__Lachnospiraceae, Blautia, 
Akkermansia,   Alistipes,   Prevotella,  and  Bacteroides, 

 
Figure 7. Plots of KEGG pathways comparisons between SAMP8 (green) and SAMR1 (red) at levels 1 (A), 2 (B), and 3 
(C) analyzed by LEfSe analysis (LDA> 2.5, P< 0.05).  Histogram of the LDA scores for differentially abundant KEGG pathway.  
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mainly contributed to differences in KEGG level-1 
pathways between SAMP8 and SAMR1 mice (Fig. 8). 
Among them, the relative abundance of Prevotella and 
Bacteroides was increased, while the abundances of 
unclassified_f__Lachnospiraceae, Clostridium, and 
Blautia decreased in SAMP8 compared to SAMR1 
mice.  
 
DISCUSSION 
 
To our knowledge, this is the first examination of 
specific patterns of gut microbiota composition and 
function in a transgenic mouse model of AD using both 
16S rRNA gene and metagenomics sequencing of fecal 
samples. 
 
In contrast to a previous study using SAMP8 mice [17], 
we did not detect a significant difference in microbiota 
alpha diversity compared to control SAMR1 mice, 
which might be partially due to differences in age 
between the mice used in the two studies. Furthermore, 
a previous report showed no significant difference in 
gut microbe diversity and richness in female R6/1 
transgenic mouse model of Huntington's disease [24] or 
patients with major depressive disorder [25]. Moreover, 
increases in alpha diversity in male R6/1 transgenic 
mouse [24], AD Drosophila [20], and APP/PS1 

transgenic mouse of AD [26] have been previously 
detected. Therefore, the role of microbial diversity in 
AD function remains a subject of debate requiring 
further investigation [27]. 
 
To tackle this question, we first measured microbial 
beta-diversity to determine the similarity in the overall 
community structure between samples [28], 
demonstrating a significant difference in microbiota 
community structure between SAMP8 and SAMR1 
mice, which was confirmed by the 16S rRNA 
sequencing data. SAMP8 microbial dysbiosis was 
mainly characterized by altered abundances of five 
genera, with a significant decrease in the relative 
abundance of the predominant genus 
norank_f__Bacteroidales_S24-7_group. This genus 
belongs to the family Bacteroidales_S24–7_group, 
which was also shown to be depleted in mice fed a 
high-fat diet [29], and plays a role in electron transport 
and oxidative stress to mediate host-microbe 
interactions [30]. We also found higher 
norank_f__Lachnospiraceae and unclassified 
_f__Lachnospiraceae abundance in SAMP8 mice, 
which is consistent with a previous study showing that 
the abundance of Lachnospiraceae was increased in 
patients with AD or mild cognitive impairment [18, 31]. 
However, another study found that the relative 

 
 

Figure 8.  Comparison of functional genes related to KEGG pathways at level 1 and their contributing species in 
SAMP8 and SAMR1.  
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abundance of Lachnospiraceae was significantly 
decreased in patients with AD [19]. These inconsistent 
results warrant further validation and investigation. By 
contrast, the abundance of the genera Alistipes (family 
Rikenellaceae) and Odoribacter (family 
Odoribacteraceae) significantly increased in SAMP8 
mice, which have also been found to be more abundant 
in AD patients [18] and in APP/PS1 transgenic mouse 
model of AD [15]. In addition, the relative proportion of 
Rikenellaceae was reported to be significantly higher in 
patients with major depressive disorder [27].   
 
To determine whether the structure of the gut 
microbiota is also altered in SMAP8, we performed a 
correlation network analysis and found that there were 
fewer correlations, smaller betweenness centrality and 
less clustering of OTUs in SAMP8 than in SAMR1. 
These suggested that the altered network structure in 
SAMR8 may be involved in the decreased fermentation 
capacity of the gut microbiota.  
 
Metagenomic sequencing was then used to determine 
the functional features of the microbiota between the 
two groups. The COG annotations in SAMP8 mice 
were mainly involved in metabolism, including 
inorganic ion, coenzyme, nucleotide, and lipid transport, 
and metabolism. This observation is compatible with 
the hypothesis that AD is fundamentally a metabolic 
disease, and patients with AD often display a coexisting 
metabolic disorder phenotype in conjunction with the 
neurodegenerative pathology [32, 33]. The KEGG 
pathway analysis [34] further indicated that these 
perturbed gut bacteria in SAMP8 mice were strongly 
associated with dysregulation of basic metabolic 
processes such as lipid metabolism, carbon metabolism, 
and pyruvate metabolism. Thus, both the COG and 
KEGG analyses indicated that alternations of gut 
microbiota might contribute to AD pathogenesis 
through metabolic pathways. These results are 
consistent with those of previous studies [14, 18]. For 
example, lipid metabolism in the central nervous system 
has been suggested to be an important factor 
contributing to the pathogenesis of AD, considering the 
identification of the apolipoprotein E gene as a genetic 
risk factor for the disease [35]. Prevailing data suggest 
that abnormal lipid metabolism influences amyloid-beta 
(Aβ) metabolism and deposition in both the brain 
parenchyma and vasculature, as well as tau 
hyperphosphorylation and aggregation, which is then 
likely to trigger a series of downstream catalytic events 
that eventually affect the progression of the 
pathogenesis of AD [36]. Moreover, aberrant pyruvate 
metabolism plays an especially prominent role in 
cancer, heart failure, and neurodegeneration [37]. 
Pyruvate was also shown to prevent the development of 
age-dependent cognitive deficits in a mouse model of 

AD without reducing amyloid and tau pathology [38]. 
In addition, many lines of evidence have recently 
emerged to suggest that carbohydrate metabolism is 
disordered in AD, which contributes to initiation of the 
dementia. Beside these metabolic pathways, ABC 
transporters are dysregulated in SAMP8 mice, which 
constitute one of the largest protein families that are 
widely distributed and evolutionarily conserved, and are 
involved in detoxification and transport processes [39]. 
 
There are some limitations of the present study that 
should be mentioned to place the findings in context 
[40]. First, because of the relatively small number of 
samples used to generate microbiota and metagenomic 
data, these results should be confirmed in a validation 
clinical cohort. Second, we used the fecal microbiome 
to infer changes of the gut microbiome, and only 
focused on microbiota composition and function; thus, 
metabolomics and metatranscriptomics data are needed 
to explore these preliminary findings in further detail. In 
addition, the host functions were not assessed, which 
may largely drive the observed microbiome changes. 
Moreover, associations between the most relevant taxa 
and AD were not validated by real-time quantitative 
PCR. Thus, further studies will be necessary to clarify 
the effect of these limitations on the present findings. 
 
Nevertheless, this work provides new insight into 
differences in the composition and function of the gut 
microbiota between SAMP8 and SAMR1 mice, 
revealing dynamic alterations in fecal microbiota that 
correlated with known changes occurring in the AD 
pathologic processes. Moreover, these perturbed gut 
bacteria were strongly associated with changes of 
several gut microflora-related metabolites, indicating 
that AD progression is associated with disturbance of 
gut bacteria at the abundance level and also substantial 
alteration of the multiple metabolic pathways. These 
findings may provide new mechanistic insights 
regarding the role of perturbations of the gut 
microbiome in AD development and progression. The 
present study also suggests that analysis of the role of 
the gut microbiome in disease benefits from functional 
gene analysis compared to simple comparison of the 
microbial community. 
 
MATERIALS AND METHODS 
 
Animals 
 
Male 6-month-old SAMP8 and age-matched SAMR1 
mice were purchased from the First Teaching Hospital 
of Tianjin University of Traditional Chinese Medicine 
(Tianjing, China). The animals were kept under 
standard conditions of temperature (24 ± 1°C) and 
humidity with a 12-h light/dark schedule, with food and 
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water available ad libitum. All animal experiments were 
conducted in compliance with the Guide for the Care 
and Use of Laboratory Animals and were approved by 
the Ethics Committee of Central South University 
(Changsha, China). 
  
Morris water maze (MWM) test 
 
The spatial learning and memory abilities of SAMP8 
and SAMR1 mice were assessed by the MWM test at 8-
month-old, as previously described with minor 
modifications [41]. In brief, to test the spatial learning 
capacity, the mice were submitted to four trials per day 
for five consecutive days in a circular pool (120 cm 
diameter and 50 cm height) containing a 10-cm-
diameter hidden platform submerged 1 cm below the 
water surface. At each trial, the mouse was placed into 
the water, facing the pool wall, and given 60 s to locate 
the platform. If the mice failed to locate the platform 
within 60 s, they were guided to it and allowed to 
remain for 15 s. On the sixth day, the platform was 
removed, and then the mice were allowed to swim for 
60 s. All trials were monitored by an overhead video 
camera connected to the ANY-maze video tracking 
system (Stoelting Co., USA). 
 
Feces collection    
 
Fresh mouse feces were collected into individual sterile 
EP tubes, quickly frozen on dry ice, and then transferred 
into an −80°C cryogenic freezer for cryopreservation 
until DNA extraction.  
 
16S rRNA gene sequencing analysis   
 
The gut microbiota of the mice was first determined 
with 16S rRNA sequencing analysis as described 
previously [42, 43]. Briefly, the microbial DNA was 
extracted from 26 fecal samples (13 from SAMP8 mice 
and 13 from SAMR1) using E.Z.N.A.® Stool DNA Kit 
(Omega Bio-tek, Norcross, GA, USA) in accordance 
with the manufacturer’s protocols. Then, PCR 
amplification of the V3-V4 hypervariable regions of the 
bacterial 16S rRNA gene was performed using 
universal primers (338F 5′-
ACTCCTACGGGAGGCAGCAG-3′, 806R 5′-
GGACTACHVGGGTWTCTAAT-3′) incorporating the 
FLX Titanium adaptors and a barcode sequence. 
Subsequently, purified amplicons were pooled in 
equimolar amounts, and paired-end sequenced on an 
Illumina MiSeq platform (Illumina, San Diego, USA) 
according to standard protocols described by Majorbio 
Bio-Pharm Technology Co. Ltd. (Shanghai, China). 
Raw FastQ files were demultiplexed, quality-filtered by 
Trimmomatic, and merged using FLASH. Trimmed 
sequences were clustered to operational taxonomic units 

(OTUs) with a 97% similarity cut-off using UPARSE 
(version 7.1 http://drive5.com/uparse/), and chimeric 
sequences were identified and removed using 
UCHIME. The taxonomical assignment of OTUs was 
performed by the RDP Classifier algorithm 
(http://rdp.cme.msu.edu/) against the Silva database 
(https://www.arb-silva.de/) using a confidence threshold 
of 70%. 
 
Metagenomic analysis  
 
The mouse gut microbiota was further investigated with 
a metagenomic sequencing method as described 
previously [44]. Total genomic DNA was extracted 
from 8 fecal samples (4 from SAMP8 mice and 4 from 
SAMR1) using the E.Z.N.A® Stool DNA kit (Omega 
Bio-Tek, USA) following the manufacturer’s 
instructions. DNA was fragmented to an average size of 
approximately 300 bp using TruSeq™ DNA Sample 
Prep Kit with Covaris M220 (Gene Company Limited, 
China) for paired-end library construction. Then, the 
metagenomic sequencing was performed on an Illumina 
HiSeq4000 sequencing platform (Illumina Inc., San 
Diego, CA, USA) at Majorbio Bio-Pharm Technology 
Co., Ltd. (Shanghai, China) according to the 
manufacturer’s protocols. The raw sequence reads were 
trimmed with a quality score lower than 20 and a length 
shorter than 50 bp. The clean raw reads were then 
assembled by using the SOAPdenovo software to obtain 
contigs for the following prediction and annotation. 
Subsequently, the open reading frames (ORFs) from 
each sample were predicted using MetaGene 
(http://metagene.nig.ac.jp). The cluster of orthologous 
groups of proteins (COG) annotation of the ORFs was 
obtained using the eggNOG database (Version 4.5) via 
BLASTP（BLAST Version 2.2.28+) with an e-value 
cutoff of 1e-5. The Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway annotation was performed 
using a BLAST search (Version 2.2.28+) against the 
KEGG database (http://www.genome.jp) at an 
optimized e-value cutoff of 1e-5.  
 
Bioinformatics analysis 
 
For 16S rRNA gene sequencing analysis, diversity was 
calculated using the QIIME tool [45]. Differences in 
alpha diversity were calculated by the Chao, Shannon, 
and ace diversity indices. Beta diversity was determined 
using both unweighted and weighted UniFrac 
phylogenetic distance matrices, and visualized in 
principal coordinates analysis (PCoA) plots. The 
statistical significance was evaluated with analysis of 
similarities (ANOSIM).  A collinearity diagram was 
constructed with Circos software 
(http://circos.ca/software/download/circos/) to visualize 
the corresponding abundance relationship between 
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samples and bacterial communities at the genus levels. 
Statistically significant differences in the relative 
abundance of genera between mouse strains were 
performed using linear discriminant analysis (LDA) 
effect size (LEfSe). Only LDA values > 2.5 at a P value 
<0.05 were considered significantly enriched. 
NetworkX was used to explore and visualize the 
associations between the microbial communities. To 
describe the topology of the resulting networks, degree 
(DC), closeness (CC) and betweenness centrality (BC) 
were calculated [46]. 
 
For metagenomic analysis, significantly different in 
COG and KEGG categories between mouse strains 
were determined using linear discriminant analysis 
(LDA) effect size (LEfSe). Only LDA values > 2.5 at a 
P value <0.05 were considered significantly enriched. 
 
Statistical analysis  
 
For the MWM tests, data are presented as the mean ± 
standard error of the mean. One-way or two-way 
ANOVA analyze was used to evaluate the difference 
between the groups. P< 0.05 was considered 
statistically significant. All statistical analyses were 
performed using the SPSS 21.0. 
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