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INTRODUCTION 
 
Age-associated DNA methylation (DNAm) changes 
have been reported for a long time [1-3]. One of the first 
studies to indicate that age-associated DNAm changes, 
termed epigenetic drift, could be largely tissue specific 
was a study by  Christensen  et  al. [4].  This  first  study  

 

however only sampled a small percentage of the DNA 
methylome, was largely underpowered and did not 
adjust for potentially confounding cell-type hetero-
geneity [5, 6]. Building on an observation that DNAm 
over specific Polycomb Repressor Complex-2 (PRC2) 
promoter loci correlates with age across many different 
tissue-types [7] , it was demonstrated that age-associat-
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ABSTRACT 
 
Age‐associated DNA methylation  changes  have  been widely  reported  across many  different  tissue  and  cell
types. Epigenetic ‘clocks’ that can predict chronological age with a surprisingly high degree of accuracy appear
to  do  so  independently  of  tissue  and  cell‐type,  suggesting  that  a  component  of  epigenetic  drift  is  cell‐type
independent. However, the relative amount of age‐associated DNAm changes that are specific to a cell or tissue
type versus the amount that occurs independently of cell or tissue type is unclear and a matter of debate, with
a recent study concluding that most epigenetic drift is tissue‐specific. Here, we perform a novel comprehensive
statistical analysis, including matched multi cell‐type and multi‐tissue DNA methylation profiles from the same
individuals and adjusting  for  cell‐type heterogeneity, demonstrating  that a  substantial amount of epigenetic
drift, possibly over 70%, is shared between significant numbers of different tissue/cell types. We further show
that ELOVL2  is not unique and that many other CpG sites, some mapping to genes  in the Wnt and glutamate
receptor signaling pathways, are altered with age across at least 10 different cell/tissue types. We propose that
while most age‐associated DNAm changes are shared between cell‐types that the putative functional effect  is
likely to be tissue‐specific. 
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ed DNAm changes can be used to build remarkably 
accurate predictors of chronological age, termed 
epigenetic clocks [8-11], which also appear to work 
independently of tissue or cell-type [9].  
 
Interestingly, a recent study has suggested however that 
most age-associated DNAm changes are tissue-specific 
[12]. Indeed, the study concluded that, with the 
exception of the ELOVL2 promoter, epigenetic drift is 
not shared between tissues. This is a surprising 
conclusion given that several pan-tissue epigenetic 
clocks have been constructed [9, 13, 14]. It led us to 
investigate the tissue and cell-type specific nature of 
epigenetic drift in more detail. In doing so, we have 
identified a number of critical issues with the statistical 
analyses performed in [12], which may have led to 
premature conclusions. First, the study performs the 
primary analyses using very stringent Bonferroni-
corrected thresholds. While this controls for the Family-
Wise-Error-Rate (FWER), the use of a Bonferroni 
threshold is known to suffer from a very large False 
Negative Rate (FNR), i.e. to a substantial reduction in 
power. This is particularly pertinent because their 
analyses generally compare age-associated differentially 
methylated positions (aDMPs) between studies and 
tissues, which according to our estimates were not 
adequately powered. Second, the authors do not report 
P-values of overlap, only overlapping fractions, which 
does not allow the statistical significance of the overlaps 
to be assessed. Assessing statistical significance is 
important because if aDMPs are not preferentially 
shared between tissue-types, then the reported overlaps 
should not deviate significantly from random. Third, the 
authors perform additional analyses using an arbitrary 
threshold on the effect size, as an alternative to statistics 
and P-values to select aDMPs, to argue that the “lack of 
overlap of aDMPs derived from different tissues” is not 
due to a lack of power. As we shall show here, using 
only a threshold on the effect size to select aDMPs is a 
highly problematic procedure, because of issues like 
heteroscedasticity, selection bias and study-specific 
confounding factors. Indeed, a fourth key concern is 
that the analysis performed in[12] does not always fully 
adjust for cell-type heterogeneity, especially in complex 
tissues such as buccal, kidney, brain or liver. As shown 
recently by us, tissues like buccal, kidney or liver are 
highly heterogeneous, containing a substantial amount 
of immune-cell infiltrates [15], which means that 
adjustment for variations in the amount of infiltrating 
leukocytes and other stromal cells is critically important 
[5, 15, 16]. 
 
To address these issues, we here provide a com-
plementary analysis to the one presented in [12], 
adjusting for cell-type heterogeneity, and using, 
wherever possible, matched multi cell-type or multi-

tissue EWAS data from the same individuals, since such 
data allows for a more objective comparison between 
tissues and cell-types. This new analysis demonstrates 
that the conclusions drawn in [12] are too premature, 
and that the evidence so far points to at least 70% of 
epigenetic drift being shared by at least two different 
cell or tissue types. 
 
RESULTS 
 
Most age-associated DMPs are shared between blood 
cell subtypes 
 
First, we aimed to demonstrate that age-associated 
DMPs (aDMPs) derived from different cell or tissue 
types do exhibit a highly statistically significant 
overlap. We note that a highly significant overlap would 
be a strong cue that aDMPs shared between relevant 
cell or tissue-types is the norm and not the exception. In 
order to avoid the confounding effect of cell-type 
heterogeneity we first focused on three DNAm datasets 
profiling purified blood cell subtypes. Specifically, we 
analysed Illumina 450k DNAm data of 1199 purified 
CD14+ monocyte and 214 purified CD4+ T-cell 
samples from Reynolds et al. [17], and of 100 purified 
CD8+ T-cells from Tserel et al. [18]. For each dataset, 
we derived age-associated DMPs (aDMPs), adjusting 
for potential technical confounders (Methods). We used 
two different significance thresholds: a false discovery 
rate (FDR) < 0.05, and a Bonferroni-adjusted Pbonf < 
0.05 thresholds. The former admits 5% of false 
positives but ensures that the FNR is not abnormally 
high, whereas the Bonferroni threshold ensures in 
principle no false positive but at the expense of a much 
larger FNR. Using an FDR < 0.05 threshold, we 
observed a very strong and highly statistically sig-
nificant overlap of aDMPs between all 3 cell-types (Fig. 
1A). For instance, almost 4000 aDMPs were found to 
be shared between all 3 cell-types using an FDR < 0.05 
threshold (Fig. 1A). The high statistical significance of 
the overlaps remained if Bonferroni thresholds were 
used (Fig. 1B). Thus, even though “only” 198 aDMPs 
were in common between all 3 cell-types when using 
Bonferroni thresholds, this number was highly sig-
nificant, i.e. much higher than what would be expected 
if aDMPs were cell-type specific. 
 
An alternative to estimating significance of overlaps, is 
to evaluate the consistency of the t-statistics between 
aDMPs, which therefore also takes into account the 
directionality of DNAm change. This can be done by 
generating scatterplots of the t-statistics of selected 
aDMPs in one dataset against the corresponding t-
statistics in another dataset, the rationale being that if an 
aDMP declared in one dataset is not an aDMP in 
another, then its t-statistic in this other set will be 
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distributed with a mean value of 0. Thus, if aDMPs are 
cell-type specific and only valid in one dataset, their t-
statistics in the other set profiling a different cell-type 
should form a data cloud centered around 0. Applying 
this strategy to the three purified blood cell type data-
sets above, revealed in each case that t-statistics were 
strongly skewed away from 0 and very strongly po-
sitively correlated (Fisher-test P-values <1e-100, Fig. 
1C).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In order to validate these findings, we analyzed 
independent data from a multi cell-type EWAS from the 
BLUEPRINT consortium [19], encompassing Illumina 
450k data from CD4+ T-cells, CD14+ monocytes and 
CD16+ neutrophils for a total of 139 individuals. We 
note that the matched nature of this dataset naturally 
adjusts for age-range and sample size, since all 3 cell-
types are available for each of the 139 individuals. We 
performed exactly the  same  analysis  as  before,  which  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Most age‐DMPs are shared between blood cell subtypes. (A) Landscape overlap diagram for age‐DMPs defined
using FDR<0.05 threshold in three separate purified blood cell subtype datasets (1199 Monocytes from Reynolds et al, 214 CD4+
T‐cells from Reynolds et al and 100 CD8+ T‐cells from Tserel et al). Barplots indicate the number of aDMPs found in each purified
cell‐type, or  the corresponding aDMP overlap between cell‐types. For  the overlapping categories,  the P‐value of  the overlap  is
indicated by  the  color of  the bar, as  shown.  (B) As A), but now using a Bonferroni  corrected P<0.05  threshold.  (C) Smoothed
scatterplots  of  t‐statistics  of  age‐DMPs  called  in  a  given  blood  cell  subtype  vs.  the  corresponding  t‐statistics  in  another  cell
subtype, as indicated for the 3 pairwise comparisons. In each panel, we only depict the 100 most outlier data points, provide the
number of probes in each significant quadrant and the P‐value assessing agreement is from a one‐tailed Fisher‐test. The vertical
red lines indicate the line of FDR<0.05, whilst the horizontal lines depict the “validation threshold” of P<0.05. 
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confirmed that overlaps were highly statistically 
significant, using either a FDR or Bonferroni-based 
threshold (Fig. 2A-B), and importantly, that there was 
also a very strong correlation between the t-statistics of 
corresponding aDMPs (Fisher test P-values < 1e-100, 
Fig. 2C), further supporting the view that a large 
fraction of aDMPs in one blood cell-type constitute 
aDMPs in another. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Many age-associated DMPs are shared between 
tissue types 
 
Next, we decided to compare aDMPs across different 
tissues. These comparisons are particularly problematic 
if tissues derive from different datasets that profiled 
variable numbers of samples, with different age-ranges 
and subject to potentially different  confounding  factors,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Most age‐DMPs are  shared between blood  cell  subtypes: validation  in BLUEPRINT.  (A)  Landscape overlap
diagram  for  age‐DMPs  defined  using  FDR<0.05  threshold  in  the matched multi  cell‐types DNAm  dataset  from BLUEPRINT  (139
monocyte samples, 139 matched CD4+ T‐cell samples and 139 matched neutrophil samples. Barplots indicate the number of aDMPs
found in each purified cell‐type, or the corresponding aDMP overlap between cell‐types. For the overlapping categories, the P‐value
of the overlap is indicated by the color of the bar, as shown. (B) As (A), but now using a Bonferroni corrected P<0.05 threshold. (C)
Smoothed scatterplots of t‐statistics of age‐DMPs called  in a given blood cell subtype vs. the corresponding t‐statistics  in another
cell subtype, as indicated for the 3 pairwise comparisons. In each panel, we only depict the 100 most outlier data points, provide
the number of probes in each significant quadrant and the P‐value assessing agreement is from a one‐tailed Fisher‐test. The vertical
red lines indicate the line of FDR<0.05, whilst the horizontal lines depict the “validation threshold” of P<0.05. 



www.aging‐us.com  3545  AGING 

all of which could greatly impact on statistical 
significance estimates [20]. Thus, ideally, a cross-tissue 
comparison should include multiple tissue samples from 
the same set of individuals, all profiled as part of the 
same study. Therefore, we analyzed Illumina 850k data 
from an EWAS profiling blood, buccal and cervical 
samples from a common set of 263 women (Methods). 
Because blood is a complex mixture of many immune-
cell (IC) subtypes, and buccal and cervical samples are 
highly contaminated by immune cells [15], we identified 
aDMPs in each tissue after adjustment for batch effects 
and cell-type heterogeneity using EpiDISH [21] (in the 
case of blood) and HEpiDISH [15] (in the case of buccal 
and cervix). Although aDMPs identified with or without 
cell-type correction were highly correlated  (Fig. 3A),  we  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

observed that adjusting or not for cell-type heterogeneity 
did have a marked impact on the number of aDMPs, and 
that the number of aDMPs also varied substantially 
between tissue-types (Fig. 3B). Of note, using either an 
FDR < 0.05 or Bonferroni adjusted P-value < 0.05 
thresholds, the overlap of aDMPs between the 3 tissues 
was highly significant (Fig. 3C, P<1e-100), mimicking 
the result obtained on blood cell subtypes. For instance, 
we observed a total of 2200 aDMPs in common between 
blood, buccal and cervix, an overlap which cannot be 
explained by random chance (Fig. 3C, P<1e-100). 
Scatterplots of t-statistics of aDMPs between tissues 
further supported an extremely strong correlation, sug-
gesting that shared aDMPs between blood, buccal and 
cervix is the norm and not the exception (Fig. 3D-F). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Most age‐DMPs are shared between tissue‐types. (A) Smoothed scatterplots of age‐DMP (aDMP) t‐statistics obtained
after adjustment for cell‐type heterogeneity (x‐axis) against the corresponding t‐statistics without adjustment (y‐axis), for 3 different
tissue‐types  (Blood, Buccal and Cervix) separately.  In each scatterplot, we only depict  the 100 most outlier data points, provide  the
number of probes in each significant quadrant and the P‐value is from a one‐tailed Fisher‐test. The vertical red lines indicate the line of
FDR<0.05, whilst  the horizontal  lines depict  the “validation  threshold” of P<0.05.  (B) Barplot of  the number of aDMPs  (FDR<0.05)  in
each tissue‐type before and after adjustment for cell‐type heterogeneity. (C) Venn‐diagrams representing the number of overlapping
aDMPs between the 3 tissue‐types using an FDR<0.05 threshold for calling aDMPs (top panel) and using a Bonferroni threshold (lower
panel). P‐value as estimated using a nested Hypergeometric test. (D) Smoothed scatterplots of aDMP t‐statistics (adjusted for cell‐type
heterogeneity)  in blood (x‐axis) against their corresponding t‐statistics  in buccal (y‐axis) for top panel, with  lower panel depicting the
reverse analysis, as indicated. (E‐F) As (D), but for the combinations blood‐cervix and buccal‐cervix, respectively. 
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Studies profiling only a few hundred samples are 
underpowered to detect most age-DMPs 
 
The previous analyses clearly support the view that at 
least thousands of aDMPs are shared between two and 
three tissue/cell-types. However, is this lower bound a 
significant underestimate on the true number of aDMPs 
that are shared between any two given cell or tissue 
types? To address this question requires careful 
consideration of the expected power of the studies. To 
estimate empirically the expected power as a function of 
sample size, we devised a subsampling strategy using 
the Reynolds monocyte dataset (Methods). We reasoned 
that this set, due to its large size (n=1199) and purified 
nature of the cell population, would allow us to object-
tively define a gold-standard set of aDMPs in mono-
cytes. Using a stringent Bonferroni-adjusted P<0.05 
threshold and using all 1199 monocyte samples, we thus 
defined a gold-standard set of 18596 monocyte aDMPs. 
We note that although this is certainly only a small 
subset of all true monocyte aDMPs,  that it would never- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
theless allow us to assess the impact of sample size on 
power. We next subsampled 100 samples from the 
1199, and re-derived a new set of aDMPs at the same 
Bonferroni threshold. This subsampling strategy was 
performed for increasing subsampling size (from 100 to 
1000, in units of 100), and a total of 10 times for each 
subsampling size. Sensitivity to detect the 18596 gold-
standard aDMPs was computed and plotted against sub-
sampling size, revealing that for sample sizes on the 
order of 100 or 200, the sensitivity was very low (Fig. 
4A). Indeed, for a subsample of 100, we estimated a 
mean sensitivity of only 0.00001, for a subsample of 
size 200 the mean sensitivity was 0.005, for 300 the 
value was 0.04, and at a value of 600 (i.e. about half of 
the full set) the sensitivity was still only 0.35. Thus, in 
light of this, if we were to now compare aDMPs across 
different tissue-types with some of the corresponding 
datasets in the order of 100-200 samples, as done in 
[12], then even if all aDMPs were shared between 
tissue-types, we would never be able to detect much 
overlap and we would wrongly conclude that most 

Figure 4. Empirical Power Analysis. (A) Boxplot of the sensitivity (y‐axis) to detect gold‐standard aDMPs, defined
at  the  full purified monocyte sample size n=1199, at  random subsampling sizes  (x‐axis), as  indicated. Each boxplot
displays the sensitivity over 10 separate runs, in each run aDMPs were defined at the Bonferroni 0.05 level. (B) As A),
but now defining aDMPs  in each run as those with an FDR<0.05. Because the FDR estimates are more unstable, we
performed 100 runs at each subsampling size. (C) As A), but now defining the gold‐standard set of aDMPs by imposing
a threshold on the effect size (2% DNAm change over 10 years), in addition to a Bonferroni adjusted P‐value < 0.05. At
each  subsampling  run,  aDMPs were  also  defined  using  the  same  criterion  and  10  runs were  performed  at  each
subsampling size. (D) As A), but now only using the threshold on the effect size to define gold‐standard aDMPs and to
define aDMPs each subsampling size. A total of 100 runs at each subsampling size were performed. 
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aDMPs are “dataset-specific”, i.e. tissue-specific in the 
context of the analysis presented in [12]. For instance, 
using a Bonferroni threshold we observed an overlap of 
“only” 213 aDMPs between the 18596 gold-standard 
monocyte aDMPs and the 291 aDMPs derived from the 
214 CD4+ T-cell samples (Fig. 1B), and so we would 
be inclined to conclude that most aDMPs are cell-type 
specific. However, assuming that all aDMPs are shared 
between monocytes and CD4+ T-cells, our subsampling 
analysis (Fig. 4A) would suggest that the expected 
sensitivity to detect the 18596 gold-standard monocyte 
aDMPs using the 214 T-cell samples would be a value 
between 0.005 (n=200) and 0.04 (n=300) (Fig. 4A), 
with the value closer to 0.005. Indeed, under this shared 
aDMP scenario, the detected overlap of 213 aDMPs 
represents a sensitivity fraction estimate of 213/18596 ≈ 
0.01, in line with our subsampling estimate. Thus, the 
observed overlap of aDMPs at the given sample sizes of 
the two studies is not inconsistent with the great 
majority of aDMPs being shared between monocytes 
and T-cells. We note that this result is also highly 
congruent with the statistical significance estimates 
obtained previously via the Fisher-test (Fig. 1B-C).  
 
We further note that using a more relaxed FDR < 0.05 
threshold, sensitivity would be substantially higher: at 
about n=600, sensitivity is already close to 1, and for 
300 samples, sensitivity is over 0.4 (Fig. 4B). Thus, 
when comparing aDMPs between multiple cell or 
tissue-types it is even more critical to use FDR-based 
thresholds, since otherwise using Bonferroni-based 
adjustment, the expected overlap of aDMPs derived 
from say 4 separate studies will be zero, even if all 
aDMPs are common to all 4 cell/tissue-types. Our 
analysis suggests that many hundreds if not thousands 
of samples would be needed to ensure that overlaps 
over 3 or more studies would have the appropriate 
sensitivity to detect the majority of shared aDMPs (Fig. 
4A-B). We verified that all these results are independent 
of whether an additional threshold on the effect size is 
used to select aDMPs (Fig. 4C). Indeed, using an 
additional and identical threshold on the effect size to 
define aDMPs as used in [12], i.e demanding at least a 
2% change in DNAm over 10 years in addition to 
Bonferroni significance, yielded higher sensitivities, but 
at sample sizes of 100 and 200, the expected sensitivity 
was still only 0.0002 and 0.05, respectively (Fig. 4C).  
 
Using only a threshold on effect size for feature 
selection suffers from strong selection bias 
 
If we were to ignore statistical significance estimates 
(which depend on sample size) altogether, and instead 
rank features by effect size using the above mentioned 
threshold (a 2% DNAm  change over 10 years) to 
declare aDMPs, we can see that sensitivities increase 

substantially, exhibiting a much lower dependency on 
sample size (Fig. 4D). For instance, at n=100, the 
sensitivity would be as high as 0.6 (Fig. 4D). At first, 
this seems to support the argument by Slieker et al. that 
an observed lack of overlapping aDMPs defined via an 
effect size threshold would imply that aDMPs are 
largely tissue-specific. However, this argument is 
problematic, primarily for two reasons. First, selecting 
aDMPs based on effect size still suffers from selection 
bias, i.e. the fact that in the dataset where aDMPs are 
selected effect sizes will naturally be higher than in 
independent studies. This selection bias arises in real 
data because of numerous study-specific confounders 
which can significantly inflate or deflate effect sizes. 
Indeed, our subsampling analysis shows that the sen-
sitivity to detect aDMPs at a sample size of 100 to be 
approximately 40% lower than at the full sample size 
(n=1199) (Fig. 4D), which is a substantial reduction 
given that the subsample derives from the same dataset. 
While this also demonstrates that using an effect size to 
rank and select aDMPs does not guarantee that the 
ranking and selection is independent of sample size, as 
claimed in [12], we stress that the selection bias will be 
even more pronounced when comparing across indepen-
dent studies. Thus, the observation made by Slieker et 
al. [12] that the effect sizes of aDMPs selected from one 
dataset appear reduced in another set profiling a 
different tissue could easily be the result of selection 
bias, and nothing to do with the nature of the different 
tissue being profiled.  
 
A second major problem associated with using an effect 
size threshold to select and validate aDMPs is related to 
confounding factors such as cell-type heterogeneity, 
which may artificially deflate effect sizes in spite of 
associations with age remaining highly significant. To 
demonstrate this, we posited that the fraction of aDMPs 
derived in the monocyte set that would validate in a 
large whole blood set [10] (which contains monocytes) 
would be much reduced if an effect size criterion is used 
throughout, as compared to using a statistic and P-value. 
Confirming this, out of the 844 aDMPs with an effect 
size larger than 2% over 10 years in the Reynolds 
monocyte set, only about 40% passed this same 
threshold across the 656 whole blood samples from 
Hannum et al. [10] (Fig. 5A-B). While the fraction 
validating in whole blood was similar if a Bonferroni 
threshold is used (fraction was 41%), the fraction 
doubled to 84% if an FDR<0.05 threshold was used 
instead (Fig. 5B). Thus, using only an effect size 
threshold to select and evaluate overlap of aDMPs 
between studies could lower sensitivities by as much as 
another 40% in relation to using an FDR-based 
threshold. Of note, using effect size thresholds in the 
original beta-value basis, which is highly hetero-
scedastic, may also strongly bias aDMPs towards those 
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with intermediate DNAm values. Indeed, we verified 
that selecting aDMPs using the 2% change over 10-year 
threshold resulted in very few or no aDMPs with mean 
DNAm values close to 0 or 1 (Fig. 5C). Since the mean 
DNAm level of a CpG site in a complex tissue may be 
strongly influenced by cell-type heterogeneity, using an 
effect size threshold to select or validate aDMPs could 
therefore easily miss a large fraction of true aDMPs.  
 
In summary, the implicit assumption made by Slieker et 
al. [12] that the effect size of an aDMP should not 
depend on sample size and on other factors such as cell-
type heterogeneity of the tissue or other confounders, 
appears to not hold and would lead to the false 
conclusion that a lack of overlapping aDMPs, all 
selected using effect size thresholds, is due to a lack of 
shared aDMPs. In fact, our analysis above clearly 
indicates that using only effect sizes to select aDMPs 
could result in a severe overall selection bias, with 
sensitivities reduced by as much as 80% if not more. 
 
FDR analysis suggests that most of the DNA 
methylome is altered with age 
 
A clue as to how many aDMPs are cell/tissue specific 
can also be inferred from the FDR characteristics in the 
largest datasets. For the 1199 monocyte sample set from 
Reynolds et al. we used the estimated FDR values (q-
values) to further estimate that on average only 52419 
of the 482,091 probes (i.e. 10%) are not associated with 
age, suggesting therefore that approximately 90% of the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DNA methylome is altered with age. Because FDR 
estimates are notoriously sensitive to confounding 
factors, it is important to check the consistency of the 
FDR estimates in Reynolds et al. against those obtained 
in smaller studies, ideally profiling identical or related 
cell-types. For the 201 monocyte samples profiled with 
Illumina 450k as part of BLUEPRINT, we estimated 
41% of the probes to be aDMPs, whereas the fraction of 
aDMPs was similar, around 45%, for the 104 monocyte 
samples (52 twin pairs) from Paul et al. [22]. In the case 
of whole blood, in Hannum et al. which encompassed 
656 samples and therefore approximately half of the 
numbers in the Reynolds monocyte set, FDR values 
yielded an estimate of approximately 66% aDMPs. This 
value is very close to the one we estimated for the 689 
whole blood samples profiled in Liu et al. [5]: the 
fraction of probes estimated there to be aDMPs was 
68%. For a smaller set such as the 263 whole blood 
samples from FORECEE, FDR values yielded a 
correspondingly lower estimate of only 12% aDMPs.  
 
Thus, assuming that the fraction of aDMPs (~90%) in 
the Reynolds monocyte set is inflated due to some 
confounder, it is unlikely to be inflated by more than 
25%, since the fraction of predicted aDMPs in two large 
whole blood studies was consistently over 65%. This 
supports the view that a very high fraction (likely to be 
well over 65%) of the DNA methylome of blood cell 
subtypes is altered with age, and therefore this also 
means that there would be a large overlap of aDMPs 
between any two  blood  cell  subtypes,  consistent  with  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5. Pitfalls of using a threshold on effect‐size only to select aDMPs. (A) Boxplots comparing the effect size distribution
for the 844 aDMPs defined in the Reynolds monocyte set against their effect sizes in the whole blood dataset from Hannum et al. (B)
Barplots comparing  the  fraction of aDMPs, defined either by  the effect size  threshold  (blue) or P‐value  threshold  (red & magenta,
Bonferroni‐adjusted), that validate in the whole blood set from Hannum et al. In Hannum et al, validated aDMPs were defined either
as those passing the same effect size threshold (blue), or the same Bonferroni‐threshold (red), or a more relaxed FDR<0.05 threshold
(magenta). The numbers below the bars indicate the absolute number of aDMPs validating in Hannum et al. This panel demonstrates
that using  the  same effect  size  threshold  to define  aDMPs  in  a dataset of  complex  tissue  samples  could miss up  to 40% of  true
aDMPs.  (C) Comparison of the density profiles of the average DNAm  for the 844 aDMPs defined by having an effect size  larger  (in
absolute magnitude) than 0.002 (equivalent to a 2% DNAm change over 10 years) (blue  line) across the 1199 monocyte samples of
Reynolds et al., versus the corresponding density profile of the 18596 gold‐standard aDMPs with Bonferroni adjusted P‐values < 0.05.
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our observations. Moreover, the fact that we observe 
equally strong overlaps of aDMPs between tissues like 
blood and cervix, further suggests that relatively high 
fractions of the DNA methylome of other cell-types 
(e.g. epithelial and fibroblasts) are also altered with age. 
 
Most of Horvath’s clock CpGs are pan-tissue 
aDMPs 
 
Finally, to demonstrate that there are indeed many 
examples of aDMPs that are shared between tissues, we 
analyzed in detail the 353 CpGs that make up Horvath’s 
clock [9]. Specifically, we computed their t-statistics 
and P-values using linear models against age, including 
potential covariates as confounding factors, across a 
total of 10 different cell/tissue types, which included 
Monocytes, CD4+ and CD8+ T-cells, B-cells, Neutro-
phils, Buccal, Cervix, Liver, Brain and Fibroblasts 
(Methods). In the case of buccal, cervix and liver we 
adjusted for variations in the epithelial, fibroblast and 
immune cell fractions, whereas in the case of brain we 
adjusted for variations in neuronal and non-neuronal 
fractions (Methods, Table S1). Although only 3% (i.e 
10 CpGs) of the 353 clock CpGs were aDMPs  in  all 10  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

tissues, approximately 78% were aDMPs across at least 
3 different cell/tissue types, with only 7% appearing to 
be “tissue or cell-type specific” (Fig. 6, Table S2). The 
10 CpGs defining aDMPs in all 10 tissue/cell types 
mapped to genes that included VGF, GRIA2, FZD9, 
KLF14, RHBDD1, KCNC2, NHLRC1, P2RX6 and 
CECR6. Of note, FZD9 is a transmembrane receptor for 
Wnt signaling proteins, whilst GRIA2 is a glutamate 
neurotransmitter receptor, both of which have pre-
viously been demonstrated to be part of interactome 
“hotspots” of age-associated DNAm which occur 
independently of cell or tissue-type [23]. Thus, this 
confirms that ELOVL2 is not unique and that many of 
Horvath’s clock CpGs constitute aDMPs across several 
cell/tissue types. 
 
DISCUSSION 
 
Here we have tried to address what appears to be an 
apparent paradox between a number of studies reporting 
pan-tissue epigenetic clocks that yield DNAm-based 
correlates of age independently of cell or tissue-type [9, 
13, 14], and a recent study suggesting that only sites 
mapping to  the ELOVL2  promoter  constitute  cell  and  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6. Pan‐tissue analysis of Horvath’s clock CpGs. Heatmap displays the signed P‐values of the 353 Horvath Clock
CpGs across 10 independent cell or tissue‐types, where the P‐values derive from a linear model of DNAm against age plus
additional  confounders  as  covariates.  Blue  denotes  highly  significantly  age‐associated  hypermethylation  (hyperM),  red
denotes highly  significant hypomethylation  (hypoM). The 353 clock CpGs have been  ranked according  to  the number of
cell/tissue  types where  they  are  age‐DMPs  (using  FDR<0.05),  indicated  by  horizontal  black  bars  at  top.  The  cumulative
proportion of the 353 CpGs that are age‐DMPs in 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 studies are shown as vertical bars. 
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tissue-type independent aDMPs [12]. While we agree 
with Slieker et al. [12] that specific sites mapping to 
ELOVL2 are special aDMPs in the sense that their effect 
sizes are particularly large across a number of different 
tissue-types, our analysis suggests that most aDMPs are 
valid across multiple different tissue types, suggesting 
that shared aDMPs are common. 
 
In a nutshell, their argument was based on a lack of 
“substantial overlap” of aDMPs derived from different 
tissues, either when using a very stringent Bonferroni-
adjusted threshold, or when using a threshold on the 
effect size, which in principle is sample-size 
independent. In our view, this analysis is problematic. 
First of all, to state that overlaps of aDMPs were not 
substantial without assessing the statistical significance 
of the overlaps themselves is a common pitfall not 
unique to their study. The expected number of over-
lapping aDMPs will naturally be small if a very strin-
gent Bonferroni correction is used to define aDMPs. 
Even so, and as demonstrated here using several multi- 
tissue and multi-cell type EWAS, the overlaps using 
Bonferroni thresholds were highly statistically 
significant, a strong cue that the number of overlapping 
aDMPs between tissues and cell-types is not random. 
Indeed, using a more relaxed FDR<0.05 threshold, we 
have seen that there are at least thousands of aDMPs 
that are shared between blood cell-subtypes and also 
between unrelated tissues such as blood, cervix and 
buccal.  
 
Second, the use of a very stringent Bonferroni threshold 
is specially misleading since most of the studies 
analysed in [12] were not adequately powered. Indeed, 
we devised an empirical subsampling analysis, which 
clearly demonstrated that datasets profiling only a few 
hundred samples or less are inadequate for assessing 
overlaps of aDMPs. If using Bonferroni thresholds, our 
power analysis suggests that many hundreds if not a 
thousand samples in individual studies are needed to 
achieve the desired high sensitivities across independent 
studies. We stress that these power estimates are true 
even for studies profiling the same cell or tissue-type, 
and therefore to reject the null hypothesis that most 
aDMPs are cell-type independent would require studies 
at least as large as these. That many hundreds if not 
thousands of samples are needed to detect large 
numbers of overlapping aDMPs should not be 
surprising: indeed, it has long been known that the 
ranking of features derived from large omic datasets is 
extremely unstable, requiring sample sizes in the order 
of thousands to ensure robustness of rankings under 
even small sample perturbations [24]. This applies 
particularly to data and phenotypes characterized by 
small effect sizes, and would therefore apply to the case 
of DNAm and age. Indeed, Principal Component 

Analysis (PCA) on whole blood sets has consistently 
revealed that age-associated components of DNAm 
variation are generally only ranked 5th or 6th [7, 25], 
which typically account only for a relatively small 
proportion (usually around 1%) of the total DNAm data 
variance. Thus, overlap analysis of aDMPs between 
pairs, or several groups, of datasets is potentially very 
misleading if effect sizes are small and if specific 
datasets are not adequately powered. 
 
The third key problem is the use a threshold on the 
effect size as the sole criterion to select aDMPs, and to 
subsequently argue that the lack of overlap of aDMPs is 
not due to lack of power. While we agree that the effect 
size is in principle not dependent on sample-size, the 
lack of overlap of aDMPs defined in this way could be 
due to other factors. Indeed, our subsampling analysis 
indicated that even when using only an effect size 
threshold to select aDMPs, that this could still lead to 
reductions in sensitivity of at least 40% in studies 
containing only a hundred or a few hundred samples. 
This “selection bias”, which naturally inflates the effect 
sizes of the features in the studies they were derived 
from in comparison to other independent studies, can be 
further aggravated by confounders such as cell-type 
heterogeneity. For instance, we have demonstrated how 
the sensitivity to detect aDMPs defined in a pure cell-
type is reduced by as much as another 40% if assessed 
in a cell-type mixture such as blood. Thus, overall, 
using only effect size thresholds to define aDMPs 
across tissues or cell-types could result in sensitivities to 
detect shared aDMPs being reduced by as much as 80% 
if not more. Moreover, we have shown that selected 
aDMPs whose effect sizes marginally miss what is an 
arbitrary threshold of 2% DNAm change over 10-years 
in independent datasets, could still be highly sig-
nificantly associated with age in these same sets.  
 
We further note that using only an effect size to select 
interesting features represents a “step-back” to the very 
old days when microarray data was first analysed, and 
when using thresholds on “fold-changes” in gene-
expression was a common procedure. In those days, 
fold-changes were used because no, or very few, 
replicate samples were available. It was soon realized 
however that improved statistical inference is achieved 
by ranking features by a statistic. It is therefore surpris-
ing and also extremely unlikely, that an analysis based 
only on effect sizes can lead to critical insight not 
obtainable via statistics. Of note, imposing a threshold 
on the effect size after selecting features by statistics is 
a perfectly acceptable procedure. 
 
Another related problem of using only a threshold on 
effect sizes to select features and which applies 
specifically to DNAm data, is the heteroscedasticity of 



www.aging‐us.com  3551  AGING 

beta-values [26]. Indeed, as shown here, performing 
such feature selection directly on beta-values could 
aggravate the selection bias even further by tuning the 
selection of aDMPs to those exhibiting intermediate 
average DNAm values. This is particularly relevant in 
the context of assessing tissue-specificity of aDMPs, 
since many of the enhancer regions that are known to be 
highly cell-type specific would naturally exhibit such 
intermediate levels of DNAm. Thus, the average 
DNAm of such regions may be particularly variable 
across studies profiling different tissues, which could 
lead to a high FNR and reduced power. 
 
Irrespective of all the above statistical issues, there are 
other strong arguments supporting the view that shared 
aDMPs between cell and tissue-types is the norm and 
not the exception. First, is the observation that in the 
largest studies, FDR estimates consistently indicate that 
most of the DNA methylome is altered with age. Using 
the 1199 monocyte samples from Reynolds we 
estimated that over 90% of the Illumina 450k probes are 
aDMPs. Somewhat smaller but still relatively high 
fractions of approximately 65% were obtained in two 
separate large (n>650) whole blood studies. We further 
note that overlaps between aDMPs from different 
tissues like cervix, buccal and blood were as strong as 
those seen between different blood cell subtypes, a 
strong indication that for other cell-types, say epithelial 
and fibroblasts, most of the DNA methylome is altered 
with age (as otherwise it is unlikely that we would 
observe such strong overlaps). Second, that most of the 
DNA methylome is altered with age is also highly 
consistent with the report of large (>1Mb) age 
hypomethylated blocks where sites that are normally 
methylated lose DNAm, and with CpG islands 
contained within these blocks (where sites are normally 
unmethylated) gaining DNAm [27, 28]. Thus, if these 
large-scale age-associated DNAm alterations apply to 
cell-types generally, and we see no good reason why 
they should not, shared aDMPs must be the norm, not 
the exception. Third, we and others [7, 13, 29, 30] have 
observed how specific PRC2 marked sites in the 
genome, which are constitutively unmethylated across 
many fetal tissue types, consistently acquire DNAm 
during aging, independently of tissue or cell-type. It 
could well be that these specific cell-type independent 
aDMPs were missed in the analysis of Slieker et al. due 
to lack of power and the use of an effect-size threshold 
which would bias selection against these particular sites, 
since these exhibit low average DNAm. Fourth, the 
existence of pan-tissue epigenetic clocks which can 
reliably predict chronological age independently of 
tissue or cell-type is unlikely to happen if not for a 
substantial number of shared aDMPs. Indeed, we 
estimated that at most only 7% of the 353 CpGs making 
up Horvath’s clock may be tissue or cell-type specific. 

For other aDMPs, we estimate that at the very most 
only 30% to 35% are cell or tissue-type specific since 
this is the estimated fraction of non age-DMPs in blood 
cell-types, and only these could be called cell-type 
specific aDMPs in other non-blood cell-types. Fifth, the 
special status of ELOVL2 as defining the only tissue-
independent aDMPs is questionable, since according to 
our analysis, at least another 10 CpGs mapping to 
unrelated genes (e.g. FZD9, GRIA2) constitute aDMPs 
across at least 10 different cell/tissue types, with almost 
80% of the 353 Horvath clock CpGs defining aDMPs 
across at least 3 cell/tissue types. 
 
There are of course several caveats to our analysis, 
which however also apply to the study of Slieker et al. 
[12]. First is the lack of studies profiling thousands of 
purified cell-types. As our empirical power analysis 
strongly indicates, thousands of samples would be 
needed to reliably determine which loci are age and not 
age-associated, and sample purity is important to 
remove cell-type composition as a potential confounder. 
It should be noted that even for FACS sorted cell 
populations, these are still only a composite and that 
age-associated variations in the underlying subpopula-
tions may account for aDMPs that survive cell-type 
adjustment at a coarser resolution level. Another caveat 
is that not all tissue and cell-types analysed here derived 
from the same individuals, meaning that comparisons 
between tissues can be problematic due to differences in 
age-range, age distribution, gender and other study-
specific factors, all of which can affect genome-wide 
statistical significance estimates and confound analyses. 
On the other hand, our analysis did include one matched 
multi cell-type and one matched multi tissue-type 
DNAm dataset, in each case encompassing 3 different 
cell/tissue types from the same individuals, for which 
age-distribution and sex were perfectly matched. 
Results derived from these matched DNAm sets were in 
line with those obtained using unmatched sets, sug-
gesting that the unmatched nature of some of the 
datasets is not a major limitation. In future however, it 
will be important to profile thousands of highly purified 
samples from a significant number of different cell-
types, all from the same individuals to rigorously 
establish the fraction of aDMPs that are shared between 
cell-types. 
 
Finally, we discuss the potential implications of our 
findings. First, it is important to point out that even if 
age-associated DNAm changes are widespread across 
the genome that downstream functional effects may be 
rare. There are several reasons why this would be the 
case. First, we have previously observed that age-
associated promoter hypermethylation in blood 
occurred mostly at genes that are not expressed at birth 
(cord blood), while age-associated hypomethylation was 
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seen mostly at genes that were expressed [28]. Thus, it 
would appear that a substantial proportion of aDMPs at 
regulatory elements may only act to stabilize pre-
existing gene expression levels, and therefore will be 
non-functional. Second, most aDMPs are characterized 
by relatively small changes in DNAm (typically only 
about 1-5% over a decade), which means that the 
changes are occurring only in a relatively small fraction 
(1-5%) of the cells present in the tissue. Thus, while 
age-associated DNAm changes may affect gene 
expression in these 1-5% of cells, when averaged across 
the whole tissue, the associated mRNA changes are 
likely to be insignificant, without affecting tissue/organ 
function. As far as the tissue-specificity of aDMPs is 
concerned, we remark that although our analysis points 
towards shared aDMPs between cell-types being the 
norm and not the exception, that functional effects of 
epigenetic drift may nevertheless be tissue-specific. A 
concrete example is that of CpG sites mapping to the 
promoter of the HAND2 gene, a target gene of the 
progesterone receptor. It has been indicated that gradual 
age-associated epigenetic silencing of HAND2 in the 
endometrial stroma could inactivate the progesterone 
tumor suppressor pathway, sensitizing endometrial 
epithelial cells to oncogenic oestrogen, thus pre-
disposing them to carcinogenic transformation [31]. 
Interestingly, HAND2 promoter sites have also been 
observed to undergo hypermethylation with age in 
blood [28], yet the potential functional and biological 
significance of this hypermethylation in blood is 
unclear. Thus, while specific aDMPs may be shared 
between tissue-types, it is only in specific tissues or 
cell-types that any associated functional deregulation 
may be of biological and clinical significance. It will be 
interesting for future studies to investigate whether the 
example of HAND2 could serve as a more general 
paradigm for how shared aDMPs may exhibit functional 
effects in a tissue-specific manner. 
 
In summary, our novel analysis of existing datasets 
suggests that aDMPs shared between different cell and 
tissue-types is common, and not exceptional. We 
estimate at most 30% of aDMPs to be cell-or-tissue-
type specific. 
 
METHODS 
 
DNAm datasets 
 
DNAm data from purified blood cell types 
We used Illumina 450k DNAm data from Reynolds et 
al. [17], encompassing DNAm profiles for 1202 
purified monocyte and 214 CD4+ T-cell samples. Data 
was downloaded from GEO (GEO accession numbers: 
GSE56581, GSE56046) and further processed and 
normalized as described by us previously [13]. Because 

of confounding by gender and race, we removed 3 
monocyte samples which had unique gender/race 
combination, leaving a total of 1199 monocyte samples. 
Age range for monocytes was 44 to 83. Age range for 
CD4+ T-cells was 45 to 79. The CD8+ T cell data was 
derived from Tserel et al. [18] (GEO accession number: 
GSE59065), containing 100 CD8+ T cell samples, with 
age ranging between 22 and 84. The raw data was 
normalized with BMIQ [32]. Blueprint data was derived 
from the European Genome-phenome Archive (EGA 
accession number: EGAS00001001456, BLUEPRINT 
study) [19], containing 139 CD4+ naive T-cells,  202 
Neutrophil and 201 Monocyte samples with age range 
between 22 and 77. For the matched multi cell-type 
aDMP analysis we used the 139 individuals with all 3 
cell-types measured. Data was normalized as described 
previously [19]. 
 
Multi-tissue (blood, buccal and cervix) DNAm dataset 
DNA methylation data encompassing whole blood, 
buccal swabs and cervical smears from 272 women were 
obtained as part of the ethically approved FORECEE 
study [33]. Briefly, samples from five different European 
centres were sent to UCL for storage at -80C until DNA 
extraction. DNA extraction was performed using a Zymo 
spin column system. Genome-wide DNA methylation 
was profiled using the Infinium MethylationEPIC 
BeadChips (Illumina). In the case of blood and cervical 
samples, 500ng of genomic DNA were bisulfite convert-
ed, whereas in the case of buccal swabs, where yields 
were lower, 200ng were used. Pilot data had confirmed 
the use of 200ng to be sufficient for reliable assay-perfor-
mance. BeadChips were processed by UCL Genomics 
using the standard recommended protocol. DNA was 
hybridized to BeadChips and single nucleotide extension 
followed by immunohisto-chemistry were performed 
using a Freedom EVO robot (Tecan). BeadChips were 
subsequently imaged using the iScan Microarray Scanner 
(Illumina). All idat files were then processed with minfi 
(v.1.22) using the Illumina definition of beta-value. 
Using the detection P-values estimated by minfi, we first 
computed coverage per probe (fraction of samples with 
detection P-value < 0.05), removing low quality probes 
(coverage < 0.99) and subsequently computing coverage 
per sample over the good-quality probes, removing low 
quality samples (coverage < 0.95). The small remaining 
number of missing values were imputed using 
impute.knn (with k=5) from the impute R-package [34]. 
Raw data and all idat files are available from GEO under 
accession number GSE117370.  
 
Liver DNAm dataset 
We constructed a merged Illumina 450k set by 
combining BMIQ normalized data from two separate 
studies (GSE61258 & GSE48325). The merged set was 
defined over 417,123 probes and 164 samples.  
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Fibroblast DNAm dataset 
We used the Illumina DNAm 450k dataset from [35], 
consisting of a merged set of 147 fibroblast samples. 
 
Brain DNAm dataset 
We downloaded the Illumina DNAm 450k set 
GSE74193 [36] from GEO. Only control non-fetal 
samples were used (n=300). Probes were removed if the 
fraction of failed samples (p>0.01) was more than 0.25, 
otherwise values were imputed using impute.knn 
function. The resulting matrix had 473536 probes left. 
Subsequently type-2 probe bias was normalized with 
BMIQ.  
 
Construction of brain DNAm reference 
We used the Illumina DNAm 450k Brain reference 
dataset [37] in RGSet object format from Bioconductor 
package FlowSorted.DLPFC.450k. It was then 
processed with minfi (v.1.22) using the Illumina 
definition of beta-value. Using the detection P-values 
estimated by minfi, we first computed coverage per 
probe (fraction of samples with detection P-value < 
0.05), removing low quality probes (coverage < 0.99). 
The small remaining number of missing values were 
imputed using impute.knn (with k=5) from the impute 
R-package [34]. The resulting beta value matrix had 
471209 probes left and 58 samples with half of them 
being neurons and the other being non-neurons. We 
compared neuron samples to non-neuron samples to 
derive DMCs requiring Bonferroni adjusted P value 
threshold 0.05 from moderated t test. DMCs were 
filtered further by demanding at least a 70% DNAm 
difference between neurons and non-neurons. 
.  
Identification of age-DMPs 
 
In each dataset we used linear models with the DNAm 
value as the response variable and with age of the 
sample as the predictor. Depending on the dataset, 
linear models were run with additional covariates to 
account for potential confounding factors. In the case of 
purified cell samples, covariates included those 
provided by the publications which included batch or 
ethnicity information. In the case of Reynolds et al., 
age-DMPs were derived by linear regression on 482127 
(CD4T) and 482091 (Monocytes) probes, with gender 
and race as covariates (which dominated variation as 
determined by a PCA). In the case of the CD8+ T-cells, 
age-DMPs were derived by linear regression on 472484 
probes, with gender and array number as covariates 
(which dominated variation as determined by a PCA). 
In the case of Blueprint data, age-DMPs were derived 
by linear regression on 473719 probes, with gender and 
batch number as covariates (which dominated variation 
as determined by a PCA). 

In the case of complex tissues, besides adjusting for 
batch effects (if these were present), we also corrected 
for cell-type heterogeneity. Briefly, in the case of whole 
blood, we used our previously validated DNAm 
reference matrix for blood with our EpiDISH algorithm 
[21] to obtain cell-type fraction estimates for the 7 main 
immune cell subtypes: neutrophils, basophils, mono-
cytes, B-cells, NK-cells, CD4+ and CD8+ T-cells. In 
the case of other tissues, like buccal and cervix, we used 
the corresponding DNAm reference matrix from our 
HEpiDISH algorithm [15] to obtain cell-type fractions 
for the total epithelial, total fibroblast and the 7 main 
immune cell subtypes. In the case of liver, we derived 
aDMPs using sex, body-mass index, cohort and cell-
type fractions as covariates. In each case, the estimated 
cell-type fractions were used as covariates in the linear 
models. In the case of brain, we derived aDMPs using 
sex, plate, position and brain cell fraction (neuron and 
non-neuron) as covariates.  
 
Age-DMPs (aDMPs) were generally defined at two 
distinct thresholds: at a false discovery rate (FDR) 
threshold less than 0.05, where FDR values were 
estimated using the q-value procedure [38], and using a 
much more conservative Bonferroni threshold (P < 
0.05/n with n the number of probes for which the linear 
model was run). 
 
Subsampling power analysis in Reynolds Monocyte 
set 
 
We used the large (n=1199) purified monocyte sample 
set from Reynolds et al. to define a gold-standard list of 
18596 monocyte aDMPs using a Bonferroni threshold. 
We then subsampled 100, 200, 300, 400, 500, 600, 700, 
800, 900, 1000 samples from the original 1199 and 
redefined aDMPs at each subsampling size using the 
same Bonferroni threshold. At each subsample size we 
estimated the sensitivity to detect the 18596 aDMPs 
from the full set. A total of 10 different runs were 
performed at each subsample size. We also derived 
aDMPs and sensitivities at each subsample size but now 
using an FDR<0.05 threshold. Because the FDR 
estimation is more unstable, we performed 100 different 
Monte-Carlo runs at each subsampling size.  
 
The whole analysis above was repeated by defining 
aDMP by the additional requirement, that the effect size 
(i.e. slope) is larger than 2% over 10 years, i.e. a slope 
value of absolute magnitude larger than 0.002, which is 
the effect size threshold used in [12]. In a final analysis, 
we repeated the procedure but now defining aDMPs 
using only the threshold on the effect size, discarding 
statistics and P-values. 
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Data availability 
 
All data analyzed in this manuscript are publicly 
available from EGA https://ega-archive.org/ accession 
number EGAS00001001456 and GEO (http: 
www.ncbi.nlm.nih.gov/geo/) under accession numbers 
GSE117370, GSE56581, GSE56046 and GSE59065. 
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SUPPLEMENTARY MATERIAL 
 
Please browse the Full Text version to see the data of 
Supplementary Tables. 
 
Table S1. Contains the DNAm reference matrix for 
estimating neuronal and non-neuronal fractions in a 
brain sample. 
 
Table S2. Contains the t-statistics and P-values of age-
association for all 353 Horvath clock CpGs across 10 
tissue/cell types with CpGs ranked according to number 
of tissue/cell types in which they are significant. 
 


