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SUPPLEMENTARY METHODS 

 

Overview of the phenotypic age estimate 

Using the NHANES training data, we applied a Cox penalized regression model—where the hazard of 

aging-related mortality (mortality from diseases of the heart, malignant neoplasms, chronic lower 

respiratory disease, cerebrovascular disease, Alzheimer’s disease, Diabetes mellitus, nephritis, nephrotic 

syndrome, and nephrosis) was regressed on forty-two clinical markers and chronological age to select 

variables for inclusion in our phenotypic age score. Ten-fold cross-validation was employed to select the 

parameter value, lambda, for the penalized regression. In order to develop a sparse phenotypic age 

estimator (the fewest biomarker variables needed to produce robust results) we selected a lambda of 0.0192, 

which represented a one standard deviation increase over the lambda with minimum mean-squared error 

during cross-validation (Supplementary Fig. S10). Of the forty-two biomarkers included in the penalized 

Cox regression model, this resulted in ten variables (including chronological age) that were selected for the 

phenotypic age predictor.  

These nine biomarkers and chronological age were then included in a parametric proportional hazards 

model based on the Gompertz distribution. Based on this model, we estimated the 10-year (120 months) 

mortality risk of the j-the individual based on the cumulative distribution function 

𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒𝑗 = 𝐶𝐷𝐹(120, 𝑥𝑗) = 1 − 𝑒−𝑒
𝑥𝑗𝑏(exp(120∗𝛾)−1)/𝛾  

where xb= represents the linear combination of biomarkers from the fitted model (Supplementary Table 

S1) 

Next, the mortality score was converted into units of years using the following equation  

𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐𝐴𝑔𝑒𝑗 = 141.50225 +
ln⁡(−.00553 ∗ ln(1 − 𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒𝑗)))

0.090165
 

 

Statistical details on the Gompertz proportional hazards model for phenotypic age estimation 

The Gompertz regression is parameterized only as a proportional hazards model. This model has been 

extensively used extensively for modeling mortality data. The Gompertz distribution implemented is the 

two-parameter function as described in Lee and Wang (2003)[1], with the following hazard and survivor 

functions: 
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The covariates of the j-th individual are including in the model using the following parametrization: 

 which implies that the baseline hazard is given by  where γ is an 

ancillary parameter to be estimated from the data. The cumulative distribution function of the Gompertz 

model is given by  

CDF(t,x)=1-exp(-exp(xb) (exp(γt)-1)/γ) 

where t denotes time (here in units of months) and xb = ∑ xubu + b0
p
u=1 . 

The Gompertz regression analysis resulted in coefficient values and parameter values (Table 1, Table S1) 

and γ =0.0076927. 

In step 2, we used the cumulative distribution function of the Gompertz model to estimate the 120-month 

mortality risk of each individual. Thus, CDF(t=120,xj) denotes the probability that the j-th individual will 

die within the next 120 months. 

In step 3, carried out another parametric proportional hazards model analysis with Gompertz distribution, 

but only including chronological age as a IV. We will refer to this analysis as the univariate Gompertz 

regression model since it only involved one covariate (age). The resulting estimate of the cumulative 

distribution function CDF.univariate(t,age)  

CDF. univariate(t, age) = 1 − e
{−e(age∗b

1+b0)γ−1(eγt−1)}
 

allowed us to estimate the probability that the j-th individual with die within 120 months as follows 

CDF.univariate(120,agej) where agej is the age of the j-th individual. 

In step 4, we solved the equation CDF(120,xj)=CDF.univariate(120,agej) for the variable agej. The resulting 

solution for the j-th individual, referred to as PhenotypicAge, is given by 

PhenotypicAgej = 141.50225 +
ln⁡(−0.00553 ∗ ln(1 − CDF(120, xj)))

0.090165
 

Data used to generate DNAm PhenoAge 

Participants ages 20 and over in NHANES III (1988-94) were used as the training sample to develop a new 

and improved measure of phenotypic aging (n=9,926), while participants ages 20 and over in NHANES 

IV (1999-2014) were used to validate the association between phenotypic aging and age-related morbidity 

and mortality (n=6,209). Overall, NHANES III had available mortality follow-up for up to 23 (n= deaths) 

and NHANES IV had available mortality follow-up for up to 17 years (n= deaths). InCHIANTI included 

longitudinal (two time-points—1998 and 2007) phenotypic and DNAm data on n=456 male and female 

participants, ages 21-91 in 1998, and 30-100 in 2007. Participants from WHI included 2,107 post-

menopausal women, who were ages 50-80 at baseline and were followed-up for just over 20 years. 

 

DNA methylation data 

All but one cohort used the DNAm data sets used the Illumina Infinium 450K platform. However, the data 

from the Jackson Heart Study were generated on the EPIC array. 
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The Illumina BeadChips measures bisulfite-conversion-based, single-CpG resolution DNAm levels at 

different CpG sites in the human genome. These data were generated by following the standard protocol 

of Illumina methylation assays, which quantifies methylation levels by the β value using the ratio of 

intensities between methylated and un-methylated alleles. Specifically, the β value is calculated from the 

intensity of the methylated (M corresponding to signal A) and un-methylated (U corresponding to signal 

B) alleles, as the ratio of fluorescent signals β = Max(M,0)/[Max(M,0)+Max(U,0)+100]. Thus, β values 

range from 0 (completely un-methylated) to 1 (completely methylated). For WHI we used background 

corrected beta values, while InCHIANTI and the JHS data were normalized using the NOOB method [2]. 

Main Validation Studies 

A number of validation studies were used to test the associations between DNAm PhenoAge and various 

aging-related traits. WHI (samples 1 and 2), FHS, and NAS comprised the main validation data for 

mortality and morbidity analyses. The two separate WHI subsamples were aggregated for our study within 

the WHI (BA23 and AS315). WHI sample 1 included 2,091 for whom complete data was available for 

DNAm PhenoAge, morbidity, mortality, and confounder variables. Participants were part of a subsample 

from the Women's Health Initiative (WHI), who were enrolled as part of an integrative genomics study, 

with the primary focus on identifying determinants of CHD risk as detailed in [3]. This sample included 

women ages 50-79 at baseline, with an overrepresentation of racial/ethnic minorities. About half of the 

samples developed coronary heart disease after the baseline measurement. The integrative genomics 

subsample employed a case-control sampling design. All incident cases and controls were required to have 

already undergone genome wide genotyping at baseline as well as profiling of seven cardiovascular 

biomarkers, as dictated by the aims of other ancillary WHI studies.  

The second WHI data set was part of the Women’s Health Initiative – Epigenetic Mechanisms of PM-

Mediated CVD (WHI-EMPC, AS315) is an ancillary study of epigenetic mechanisms underlying 

associations between ambient particulate matter (PM) air pollution and cardiovascular disease (CVD) in 

the Women’s Health Initiative clinical trials (CT) cohort. The WHI-EMPC study population is a stratified, 

random sample of 2,200 WHI CT participants who were examined between 1993 and 2001; had available 

buffy coat, core analytes, electrocardiograms, and ambient concentrations of PM; but were not taking anti-

arrhythmic medications at the time. As such, WHI-EMPC is representative of the larger, multiethnic WHI 

CT population from which it was sampled: n=68,132 participants aged 50-79 years who were randomized 

to hormone therapy, calcium/vitamin D supplementation, and / or dietary modification in 40 U.S. clinical 

centers at the baseline exam (1993-1998) and re-examined in the fasting state one, three, six, and nine years 

later [4]. 

The Normative Aging Study (NAS)  

The US Department of Veterans Affairs (VA) Normative Aging Study (NAS) is an ongoing longitudinal 

cohort established in 1963, which included men who were 21-80 years of age and free of known chronic 

medical conditions at entry[5]. Participants were subsequently invited to medical examinations every three 

to five years. At each visit, participants provided information on medical history, lifestyle, and 

demographic factors, and underwent a physical examination and laboratory tests. DNA samples were 

collected from between 1999-2007 from the 675 active participants and used for DNAm analysis. We 

excluded 18 participants who were non-whites or had missing information on race, leaving a total of 657 

individuals. 

Official death certificates were obtained for decedents from the appropriate state health department and 

were reviewed by a physician. Experienced research nurse coded the cause of death using ICD-9. Both 

participant deaths and cause of death are routinely updated by the research team and last update available 

was December 31, 2013. 
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Jackson Heart Study 

The JHS is a large, population-based observational study evaluating the etiology of cardiovascular, renal, 

and respiratory diseases among African Americans residing in the three counties (Hinds, Madison, and 

Rankin) that make up the Jackson, Mississippi metropolitan area [6]. Data and biologic materials have been 

collected from 5306 participants, including a nested family cohort of 1,498 members of 264 families. The 

age at enrollment for the unrelated cohort was 35-84 years; the family cohort included related individuals 

>21 years old. Participants provided extensive medical and social history, had an array of physical and 

biochemical measurements and diagnostic procedures, and provided genomic DNA during a baseline 

examination (2000-2004) and two follow-up examinations (2005-2008 and 2009-2012). The study 

population is characterized by a high prevalence of diabetes, hypertension, obesity, and related disorders. 

Annual follow-up interviews and cohort surveillance are ongoing. 

In our analysis, we used Illumina EPIC array data from n=1756 African Americans (n=1203 women and 

n=653 men) that were generated as part of project JHS ancillary study ASN0104. The blood samples were 

collected at the baseline of the study (visit 1). At the time of the blood draw, the individuals ranged from 

22 to 93 (median age 57). At the time of the last follow up, 282 individuals were known to be deceased. 

The median number of years of follow up (time to death or last follow up) was 12.2 years (ranging from 

0.14 to 14.5 years). 

DNAmPhenoAgeAccel ranged from -19 to 38. 4.7 and 4.9 percent of individuals had a value of 

DNAmPhenoAgeAccel larger than 10 or smaller than -10, respectively.   

Framingham Heart Study Offspring Cohort (FHS) 

The Framingham Heart Study (FHS) Offspring Cohort began enrollment in 1971 and included 5,124 

offspring and spouses of the offspring of the FHS original cohort. Participants were eligible for the current 

study if they attended the eighth examination cycle (2005-2008) and consented to having their DNA to be 

used for genetic research. All participants provided written informed consent at the time of each 

examination visit. The study protocol was approved by the Institutional Review Board at Boston University 

Medical Center (Boston, MA). The FHS data are available in dbGaP (accession number 

"phs000724.v2.p9"). 

Deaths among FHS participants that occurred prior to January 1, 2013 were ascertained using multiple 

strategies, including routine contact with participants for health history updates, surveillance at the local 

hospital and in obituaries of the local newspaper, and queries to the National Death Index. Death 

certificates, hospital and nursing home records prior to death, and autopsy reports were requested. When 

cause of death was undeterminable, the next of kin were interviewed. The date and cause of death were 

reviewed by an endpoint panel of 3 investigators. 

 

Early menopause and blood methylation data 

We previously reported an association between early menopause and epigenetic age acceleration (based on 

Horvath DNAm Age) [7]. We used the same data from BA23 of the Women's Health Initiative (described 

above) to replicate this finding using DNAm PhenoAge acceleration.  

 

Alzheimer's disease and brain methylation data from the Religious Order Study 

A number of other samples were used to validate the accuracy of DNAm PhenoAge in various tissues or 

for case-control studies. For instance, the Religious Order Study (ROS) and the Memory and Aging Project 

(MAP) were used to test the association between DNAm PhenoAge in DLPCTX and Alzheimer’s disease 
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and/or neuropathology. Both are longitudinal community based cohort studies of aging and dementia. The 

majority of participants in both studies are 75-80 years old at baseline with no known dementia. Inclusion 

in the studies requires participants to consent to undergoing annual clinical evaluations as well as 

postmortem organ donation. The ROS sample includes Catholic priests, nuns, and brothers from across the 

United States, whereas the MAP sample includes a more general community based population from 

northeastern Illinois.  

Breast cancer risk and blood methylation data from the EPIC study 

We previously reported an association between intrinsic epigenetic age acceleration (based on the Horvath 

DNAm age estimator) and breast cancer risk [8]. Using the same data, we studied whether 

DNAmPhenoAgeAcceleration in blood also predicts incident breast cancer. The Illumina 450K DNA 

methylation data came from a nested case-control study embedded in the European Prospective 

Investigation into Cancer and Nutrition (EPIC) cohort (n = 960 females) [8]. The 960 females from the 

EPIC cohort included 480 incident breast cancer cases. According to Ambatipudi (2017), the main criteria 

for selection of case/control pairs included: (1) a balanced representation of the main subtypes of breast 

cancer, and (2) representation of recruiting centres. One control participant was randomly assigned for each 

patient with breast cancer from appropriate risk sets consisting of all cohort participants alive and free of 

cancer (except for non-melanoma skin cancer) at the time of diagnosis (and hence, age) of the index case. 

Matching criteria were: centre, length of follow-up, age at blood collection, time of blood collection, fasting 

status, menopausal status, menstrual cycle day and current use of contraceptive pill/hormone replacement 

therapy. 

Offspring of Italian semi-supercentenarians 

Semi-supercentenarians (aged between 105-109 years) are of great interest to aging researchers because 

they often managed to avoid the onset of major age-related diseases. We previously reported that the 

offspring of semi-supercentenarians are epigenetically younger than age matched controls (i.e. individuals 

of non-centenarians) using the Horvath DNAm age estimator [9]. Using the same blood methylation data, 

we revisited this analysis using DNAmPhenoAgeAcceleration. 

Claudio Franceschi and Paolo Garagnani generated Illumina 450K DNA methylation levels from 

peripheral blood mononuclear cells (PBMCs) from Italian families comprised of 82 semi-

supercentenarians (mean age: 105.6 ± 1.6 years), 63 semi-supercentenarians' offspring (mean age: 71.8 ± 

7.8 years), and 47 age-matched controls (mean age: 69.8 ± 7.2 years). We  find a marginally significant 

reduction of approximately 2.4 years for the DNAm PhenoAge of semi-super centenarian offspring, 

relative to controls (=-2.40, p=0.065) (comprised of 63 semi-supercentenarians' offspring and 47 age 

matched controls). No significant difference could be observed for estimated blood cell counts (such as 

naïve or exhausted cytotoxic T cells or helper T cells). 

Dementia status versus blood methylation 

We evaluated whether DNAm PhenoAge in blood relates to clinically diagnosed dementia in living 

individuals using a blood data set from [10]. Results suggest that those with presumed Alzheimer’s disease 

(AD, n=154) and/or frontotemporal dementia (FTD, n=116) have significantly higher DNAm PhenoAge 

compared to non-demented (n=334) individuals (P=2.2E-2). Patients were enrolled as part of a large 

genetic study in neurodegenerative dementia (Genetic Investigation in Frontotemporal Dementia, GIFT) at 

the UCSF Memory and Aging Center (UCSF-MAC) [10]. The blood DNA methylation data were generated 

on the Illumina 450K array. 

Down syndrome versus blood methylation 
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We previously reported that individuals with Down syndrome are epigenetically older than age matched 

controls according to the Horvath DNAm age estimator [11]. Using the same blood data sets, we replicated 

the results for DNAm PhenoAge. Leukocyte data set 1 (measured on the Illumina 27K platform) involved 

35 participants with DS and 21 controls (mean age 43 ranging from 22 to 64) that were ascertained through 

the New York State developmental disability service system as well as agencies in New Jersey, Connecticut 

and Northern Pennsylvania [12]. Blood data set 2 (measured on the Illumina 450K array) involved 29 

individuals with Down syndrome, their mothers (DSM) and their unaffected siblings (DSS) [11]. The 

individuals investigated in this study were recruited in Emilia-Romagna region (Bologna and Ferrara 

provinces), Italy. In our original article, we showed that DS individuals also exhibited epigenetic age 

acceleration in brain tissue according to the Horvath DNAm age estimator [11]. By contrast, DNAm 

PhenoAge did not reveal a significant epigenetic age acceleration effect in the small brain data set (n=15 

brain samples from DS and 54 controls). 

HIV infection and blood methylation 

We previously reported that HIV infection is associated with accelerated epigenetic age acceleration 

according to the Horvath DNAm age estimator. Here we used the same blood data sets to revisit this 

analysis with DNAm PhenoAge. Specifically, we used two publicly available blood DNA methylation data 

from HIV+ individuals and HIV- controls from [13]. All data sets were generated with the Illumina 450K 

array. The first dat set involved Peripheral blood mononuclear cells (PBMCs) isolated from 92 individuals 

were evaluated. The 24 HIV+cases had a mean age of 49 years (range, 29–67 years). The 68 controls had 

a mean age of 36 years (range, 18–74 years). The second data also involved PBMCs from HIV+ cases and 

HIV negative controls. The 23 cases had a mean age of 45 years (range, 24–68 years). The 69 controls had 

a mean age of 51 years (range, 35–64 years). The HIV+ cases were ascertained by the National 

Neurological AIDS Bank study or Multicenter AIDS Cohort Study in Los Angeles. 

Parkinson's disease and blood methylation 

We previously reported that Parkinson's disease is associated with a weak age acceleration effect according 

to both the Horvath and Hannum DNAm age estimators [14]. Using the same data, we revisited this analysis 

with DNAm PhenoAge. We observe a suggestive relationship between DNAm PhenoAge in blood and 

Parkinson's disease status (p=0.028) the n=508 individuals (n=289 PD cases and n=219 controls) of 

European ancestry. The blood DNA methylation data were measured on the Illumina 450K array. The 

blood samples came from the Parkinson's disease, Environment, and Genes (PEG) case-control study [15]. 

The PEG study is a large population-based study of Parkinson's disease of mostly rural and township 

residents of California's central valley. Cases were identified with the help of local neurologists, clinics, 

and community outreach and controls were randomly sampled from Medicare lists and residential tax 

assessor's records.  

Estimation of blood cell counts based on DNAm levels 

We estimate blood cell counts using two different software tools. First, Houseman's estimation method 

[16] was used to estimate the proportions of CD8+ T cells, CD4+ T, natural killer, B cells, and granulocytes 

(also known as polymorphonuclear leukocytes). Second, the Horvath method, implemented in the 

advanced analysis option of the epigenetic clock software [13, 17], was used to estimate the percentage of 

exhausted CD8+ T cells (defined as CD28-CD45RA-), the number (count) of naïve CD8+ T cells (defined 

as CD45RA+CCR7+) and plasmablasts. We and others have shown that the estimated blood cell counts 

have moderately high correlations with corresponding flow cytometric measures [16, 18].  

Heritability Analysis using SOLAR  
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The polygenic model implemented in SOLAR (Sequential Oligogenic Linkage Analysis Routine) software 

[19] was used to estimate heritability of DNAm PhenoAge in the FHS pedigree cohort based on the known 

KINSHIP coefficients. Heritability is defined as the total proportion of phenotypic variance attributable to 

genetic variation in the polygenic model. The polygenic model was adjusted gender and chronological age. 

GCTA -We performed the REML analysis [20, 21] to estimate the heritability of PhenoAgeAccel, using 

the postmenopausal women of the WHI cohort to estimate heritability of age acceleration. The WHI sub-

studies were genotyped on different platforms. In order to combine the genotype data across the studies 

from WHI EMPC and WHI BA23, we converted the MaCH dosage format into PLINK format with best 

guess genotypes and used both genotyped and imputed markers for analysis. We only used the overlapped 

markers existing in all studies (such that SNP missing rate=0) and controlled the quality of SNPs based on 

MAF > 0.05, Hardy Weinberg equilibrium (HWE) P > 0.0001, and MaCH r2 > 0.8, yielding approximately 

4M markers available for analysis. All analyses were adjusted for 4 principal components (PC).  

Enrichment Analysis using GREAT 

We applied the GREAT analysis to analyze the functional involvements of cis-regulatory regions of the 

513 CpG sites. Of the 513 CpG sites, 242 are positively correlated with chronological age in blood and 271 

are negatively correlated with chronological age in blood. We used three different sets of genes as input—

all, those co-locating to CpGs with positive age associations, and those co-locating to CpGs with negative 

age associations. Enrichment was assessed using the whole genome as background. The GREAT software 

performs both binomial test over genomic regions and hypergeometric test over genes when using a whole 

genome background.   

Estimation of neuronal proportions in brain tissues 

The CETS R package[22] was used to estimate the proportion of neurons based on DNA methylation data. 

We independently confirmed the high accuracy of the CETS algorithm by applying it sorted neurons, which 

led to estimates of the proportion of neurons in excess of 0.99. 

Gene expression analysis of AgeAccelPheno 

DNA methylation and gene expression from the Monocyte[23] and FHS datasets were adjusted for array 

effects using ComBat from the sva R package. The AAP variable was adjusted using linear modeling for 

site, race (in the Monocyte dataset), family structure (in the FHS dataset), gender, and cell proportion 

estimates where designated (Houseman estimates excluding the major cell type to avoid multi-colinearity: 

CD8T, CD4T, NK, Bcell, Mono (excluded in the Monocyte dataset), Gran (excluded in the FHS dataset). 

The individual gene expression probe levels where tested for associations with AAP using a robust 

correlation measure (biweight midcorrelation). The top 5% of genes positively and negatively correlated 

with the AAP where analyzed for GO term enrichment using the topGO R package. 

The purified monocyte samples were from the April 2010-February 2012 examination of 1,264 randomly 

selected MESA participants (55-94 years old, Caucasian (47%), African American (21%) and Hispanic 

(32%), female 51%) from four MESA field centers (Baltimore, MD; Forsyth County, NC; New York, 

NY; and St. Paul, MN). The study protocol was approved by the Institutional Review Boards at Johns 

Hopkins Medical Institutions, University of Minnesota, Columbia University Medical Center, and Wake 

Forest University Health Sciences. All participants signed informed consent. In depth details about the 

purification process can be found in the original publication (doi:10.1038/ncomms6366).  Briefly, 

mononuclear cells were isolated from peripheral blood that was collected in sodium heparin tubes. 

Monocytes (>90% purity by FACS) were isolated using anti-CD14 monoclonal antibody coated beads. 

The methylome and transcriptome of the monocyte samples were profiled using the Illumina 
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HumanMethylation450 BeadChip and Illumina HumanHT-12 v4 Expression BeadChip platforms with 

standard Illumina protocols. 

SUPPLEMENTARY RESULTS 

DNAm PhenAge and other aging-related morbidity outcomes 

Additional independent replication data was used to test for associations with other aging outcomes, which 

have previously been shown to relate to the first generation of epigenetic biomarkers [8-11, 13, 14]. Using 

the five studies described above, we find that women with higher DNAm PhenoAge tended to have an 

earlier age at menopause (Meta P-value=1.32E-2). Among the 527 women who were cancer free at age 50, 

accelerated DNAm PhenoAge in blood predicts incident breast cancer (OR: 1.037, p=0.033) using data 

from [8]. We  find a marginally significant reduction of approximately 2.4 years for the DNAm PhenoAge 

of semi-super centenarian offspring, relative to controls (=-2.40, p=0.065) in a relatively small blood data 

set (comprised of 63 semi-supercentenarians' offspring and 47 age matched controls from [9]). We 

evaluated whether DNAm PhenoAge relates to clinically diagnosed dementia in living individuals using a 

blood data set from [10]. Results suggest that those with presumed Alzheimer’s disease (AD, n=154) and/or 

frontotemporal dementia (FTD, n=116) have significantly higher DNAm PhenoAge compared to non-

demented (n=334) individuals (P=2.2E-2), and the strength of the association is further increased (P=9.4E-

3) when limiting the sample to those ages 75 and older. We also find that DNAm PhenoAge relates to 

Down syndrome in two separate blood methylation datasets (p=0.0046, n=56; and p=4.0E-11, n=87) 

described in [11]. We find that HIV infection is associated (p=6E-6 and p=8.6E-6) with accelerated DNAm 

PhenoAge in two blood datasets (n=92 and n=92) described in [13]. Finally, we observe a suggestive 

relationship between DNAm PhenoAge in blood and Parkinson's disease status (p=0.028) in a large data 

set (n=508) of individuals of European ancestry from [14].   

DNAm PhenAge and social, behavioral, and demographic factors 

In evaluating the relationship between DNAm PhenoAge and additional behavioral, social, and 

demographic characteristics we observe significant differences between racial/ethnic groups (p=5.1E-5), 

with non-Hispanic blacks having the highest DNAm PhenoAge on average, and non-Hispanic whites 

having the lowest (Supplementary Fig. S5). We also find evidence of social gradients in DNAm 

PhenoAge, such that those with higher education (p=6E-9) and higher income (p=9E-5) appear younger. 

DNAm PhenoAge relates to exercise and dietary habits, such that increased exercise (p=7E-5) and markers 

of fruit/vegetable consumption (such as carotenoids, p=2E-27) are associated with lower DNAm PhenoAge 

(Supplementary Fig. S6A & Supplementary Fig. S6B). Cross sectional studies in the WHI also revealed 

that DNAmPhenoAge acceleration is positively correlated with C-reactive protein (r=0.18, p=5E-22, 

Supplementary Fig. S6B), insulin (r=0.15, p=2E-20), glucose (r=0.10, p=2E-10), triglycerides (r=0.09, 

p=5E-9), waist to hip ratio (r=0.15, p=5E-22) but it is negatively correlated with the "good" cholesterol 

HDL (r=-0.09, p=7E-9).   

Effect of obesity on liver and adipose tissue 

Using the Horvath DNAm age measure, we previously found that body mass index correlated with 

epigenetic age acceleration in two independent human liver samples (r=0.42 and r=0.42 in liver data sets 1 

and 2, respectively) [24]. Using the same data, we replicated this finding using the new measure of 

PhenoAge acceleration (r=0.32, p=0.011 and r= 0.48 p=7.7E-6 in liver data set 1 and 2, respectively). 

Interestingly we also find a significant correlation between BMI and DNAm PhenoAge acceleration in the 

first adipose data set (r=0.43, p=1.2E-23 using n=648 adipose samples from the Twins UK study) but not 

in a second smaller adipose data set (n=32 samples). 
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DNAm PhenoAge and Immunosenescence  

To test the hypothesis that DNAm PhenoAge captures aspects of the age-related decline of the immune 

system, we correlated DNAm PhenoAge with estimated[16, 18] blood cell count (Supplementary Fig. 

S7). After adjusting for age, we find that DNAm PhenoAgeAccel is negatively correlated with naïve CD8+ 

T cells (r=-0.35, p=9.2E-62), naïve CD4+ T cells (r=-0.29, p=4.2E-42), CD4+ helper T cells (r=-0.34, 

p=3.6E-58), and B cells (r=-0.18, p=8.4E-17). Further, DNAm PhenoAgeAccel is positively correlated 

with the proportion of granulocytes (r=0.32, p=2.3E-51), exhausted CD8+ (defined as CD28-CD45RA-) T 

cells (r=0.20, p=1.9E-20), and plasma blast cells (r=0.26, p=6.7E-34). These results are consistent with age 

related changes in blood cells[25] and suggest that DNAm PhenoAge may capture aspects of 

immunosenescence in blood. However, three lines of evidence suggest that DNAm PhenoAge is not simply 

a measure of immunosenescnce. First, another measure of immunosenescence, leukocyte telomere length, 

is only weakly correlated with DNAm PhenoAgeAccel (r=-0.087, P=7.6E-3) in the n=905 individuals from 

the Framingham Heart study, for whom both DNA methylation data and LTL data were available 

(Supplementary Fig. S8). Second, DNAm PhenoAge also applies to non-blood tissues. Third, the strong 

association between DNAm PhenoAge and mortality does not simply reflect changes in blood cell 

composition, as can be seen from the fact that in Supplementary Fig. S9 the robust association remains 

even after adjusting for estimates of seven blood cell count measures (Meta(FE)=1.036, Meta p=5.6E-21).  

Additional DNA sequence characteristics of the 513 CpGs in DNAm PhenoAge 

The 513 CpGs in DNAm PhenoAge mapped to 506 distinct genes (Table S5). According to the GenAge 

database, 10 of the genes have implications for aging and/or longevity. These include: CAT, CDKN1A, 

CSNK1E, INSR, HTRA2, NGFR, PMCH, PSEN1, SP1, UCP1. Nevertheless, this does not signify a 

significant enrichment over what’s expected by chance. Additionally, ELOVL2—for which there is 

growing evidence suggesting it harbors very promising DNAm age predictors[26-29]—is not part of our 

gene list, and in fact, the closest CpG is approximately 2,500k bp downstream.  

The Genomic Regions Enrichment of Annotations Tool (GREAT)[30] was used to directly test for 

functional enrichment among the 506 genes. As shown in Table S6, CpGs in our score co-locate with genes 

enriched in the Kallikreins (KLK) gene family (Region Fold Enrichment=66.8, Binomial FDR=2.4E-4), as 

well as genes in the methylglyoxal degradation I pathway (Region Fold Enrichment=63.9, Binomial 

FDR=5.5E-3). However, in general, we find very little enrichment and as a result, we tested whether 

DNAm of each of the 513 CpGs was associated with differential expression in the gene that it co-located 

with. Based on transcriptional data from monocytes (n= 1,264) described in[23], our results show that, in 

general, very few of our CpGs are associated with changes in expression of the genes that they are 

supposedly linked to (Table S7), which may explain why this gene set produces generally null enrichment 

findings.  
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SUPPLEMENTARY TABLES 

 

Supplementary Table S1: Phenotypic Aging Measures and Gompertz Coefficients. The table is 

analogous to Table 1 but includes the regression constant and gamma parameter of the Gompertz model. 

Variable  Units Weight 

Albumin Liver g/L -0.0336 

Creatinine  Kidney umol/L 0.0095 

Glucose, serum Metabolic mmol/L 0.1953 

C-reactive protein (log) Inflammation mg/dL 0.0954 

Lymphocyte percent Immune % -0.0120 

Mean cell volume Immune fL 0.0268 

Red cell distribution width Immune % 0.3306 

Alkaline phosphatase Liver U/L 0.0019 

White blood cell count Immune 1000 cells/uL 0.0554 

Age  Years 0.0804 

Constant  -19.9067 

Gamma   0.0077 

 

 

Supplementary Table S2: Predictions of 10- and 20-Year Mortality Risk Based on Receiver 

Operating Characteristics Curves 

Mortality Risk Predictor Variable ROC (AUC) Std. Err. Bonferroni P-Value 

 DNAm PhenoAge  0.6177 0.0204 (Reference) 

10 Year  Horvath DNAm Age 0.5605 0.0212 0.0185 

 Hannum DNAm Age 0.5670 0.0216 0.04 

 DNAm PhenoAge  0.5615 0.0132 (Reference) 

20 Year  Horvath DNAm Age 0.5038 0.0133 0.0001 

 Hannum DNAm Age 0.5228 0.0133 0.0089 
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Supplementary Table S3: Proportional Hazard Model (Gompertz) with All Three Epigenetic Aging 

Measures 

 
Hazard Ratio SE Z P-Value 95% CI 

Chronological Age 1.078 0.010 8.420 <2.0E-16 1.059 1.097 

DNAm PhenoAge 1.038 0.007 5.730 1.010E-08 1.025 1.051 

Horvath DNAm Age 0.982 0.008 -2.220 2.600E-02 0.966 0.998 

Hannum DNAm Age 1.006 0.009 0.700 4.850E-01 0.989 1.024 

Gamma=3.48E-04 

Person Days= 12,917,217 
    

 

Deaths=757 
     

Log Likelihood=-1558.73 
    

 

 

Supplementary Table S4: Morbidity Associations Stratified by Smoking 

  
Comorbidity Disease Free CHD Risk Physical Functioning 

Sample Coefficient P-value Coefficient P-value Coefficient P-value Coefficient P-value 

SMOKERS 
        

 
WHI BA23 CurrentSmoker 0.013 3.41E-01 0.003 5.67E-01 0.007 6.67E-01 -0.794 1.23E-03 

 
WHI BA23 FormerSmoker 0.021 5.04E-03 -0.006 2.53E-02 0.022 3.51E-02 -0.416 7.38E-04 

 

WHI EMPC 

CurrentSmoker 0.032 2.39E-02 -0.025 3.50E-01 0.007 8.48E-01 -0.552 2.96E-02 

 
WHI EMPC FormerSmoker 0.022 7.36E-04 -0.031 9.11E-03 0.039 6.95E-02 -0.451 1.13E-05 

 
FHS CurrentSmoker 0.014 4.57E-01 -0.067 8.10E-02 0.046 3.35E-01 -0.116 1.85E-01 

 
FHS FormerSmoker 0.021 2.71E-04 -0.024 1.12E-01 0.025 1.09E-03 -0.053 5.04E-02 

 
NAS Smoking 0.027 2.73E-05 -0.076 4.02E-04 0.031 6.23E-02 NA NA 

 
JHS CurrentSmoker 0.014 1.13E-01 -0.018 4.74E-01 0.042 4.09E-01 NA NA 

 
JHS FormerSmoker 0.010 1.99E-01 -0.012 6.21E-01 0.033 1.98E-01 NA NA 

 
Meta P-value (Stouffer) 

 
3.74E-12 

 
9.39E-06 

 
2.13E-05 

 
1.84E-11 

NON-SMOKERS 
        

 
WHI BA23 NonSmoker 0.010 7.73E-02 -0.003 1.30E-01 0.018 2.29E-02 -0.306 1.41E-03 

 
WHI EMPC NonSmoker 0.019 1.07E-03 -0.016 1.19E-01 0.041 2.37E-02 -0.302 1.58E-03 

 
FHS NonSmoker 0.016 3.76E-02 -0.043 1.50E-02 0.025 9.45E-02 0.044 2.53E-01 

 
NAS NonSmoking 0.017 6.84E-02 -0.039 1.28E-01 0.029 1.99E-01 NA NA 

 
JHS NonSmoker 0.022 2.15E-08 -0.052 1.69E-05 0.027 2.68E-01 NA NA 

 
Meta P-value (Stouffer) 

 
7.92E-11 

 
4.01E-07 

 
1.20E-04 

 
2.63E-03 

All models were adjusted for chronological age. Models for smokers were adjusted for pack-years. Models in all 

samples aside from WHI were adjusted for sex. Models in both WHI samples and NAS were adjusted for 

race/ethnicity. 
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Supplementary Table S5. Comparison of DNAm based epigenetic biomarkers of ageing 

In the following pages, we provide a direct comparisons of 6 DNAm based biomarkers of ageing.  

1. Multi-tissue DNAm age estimator based on 353 CpGs (Horvath 2013) [31] 

2. DNA age estimator for blood based on 71 CpGs (Hannum et al 2013) [32] 

3. Our new estimator DNAm PhenoAge estimator based on 513 CpGs (Levine et al 2018) [33] 

4. DNAm Age estimator for blood based on 3 CpGs described in (Weidner et al 2014) [34] 

5. Another version of the 3 CpG based DNAm Age estimator for blood (Weidner et al 2014) that was 

described by the same authors in Lin et al 2016 [35] 

6. DNAm Age estimator for blood based on 99 CpGs (Lin et al 2016) [35]. 

We evaluate these predictors in terms of predicting time to death, relationship to body mass index, 

relationship to blood cell count estimates, telomere length, predicting centenarian status, neuritique 

plaques in postmortem brain samples. 

Supplementary Table S5A. Predicting time to death based on epigenetic age acceleration in blood 

Our comparison is mainly based the Illumina EPIC array data from n= 1756 African American 

individuals from the Jackson Heart study. 

We evaluate whether DNAm age predict time to death. During the following up time, 282 passed away. 

The blood samples were collected at the baseline of the study (visit 1). At the time of the blood draw, the 

individuals ranged from 22 to 93 (median age 57). At the time of the last follow up, 282 individuals were 

known to be deceased. The median number of years of follow up (time to death or last follow up) was 

12.2 years (ranging from 0.14 to 14.5 years). 

In the following, we report the results of this Cox regression analysis which demonstrate that 

DNAmPhenoAge has the most predictive association with time to death. 

The DNAmAge estimator is listed in the heading. 

[1] Covariate: "DNAmAge Horvath 2013" 

  n= 1756, number of events= 282  

                   coef exp(coef) se(coef)     z Pr(>|z|)     

Age             0.06553   1.06772  0.01058 6.194 5.85e-10 *** 

DNAmBiomarker 0.03573   1.03638  0.01267 2.820   0.0048 **  

                exp(coef) exp(-coef) lower .95 upper .95 

Age                 1.068     0.9366     1.046     1.090 

DNAmBiomarker     1.036     0.9649     1.011     1.062 

Concordance= 0.772  (se = 0.018 ) 

Rsquare= 0.15   (max possible= 0.903 ) 

 

[1] "DNAmAge Hannum 2013" 

                   coef exp(coef) se(coef)     z Pr(>|z|)     

Age             0.03770   1.03842  0.01137 3.315 0.000917 *** 

DNAmBiomarker 0.06905   1.07149  0.01263 5.466  4.6e-08 *** 

                exp(coef) exp(-coef) lower .95 upper .95 

Age                 1.038     0.9630     1.016     1.062 
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DNAmBiomarker     1.071     0.9333     1.045     1.098 

Concordance= 0.779  (se = 0.018 ) 

Rsquare= 0.159   (max possible= 0.903 ) 

 

[1] "DNAm PhenoAge" 

                    coef exp(coef) se(coef)     z Pr(>|z|)     

Age             0.038863  1.039628 0.009323 4.168 3.07e-05 *** 

DNAmBiomarker 0.060463  1.062329 0.008456 7.151 8.64e-13 *** 

                exp(coef) exp(-coef) lower .95 upper .95 

Age                 1.040     0.9619     1.021     1.059 

DNAmBiomarker     1.062     0.9413     1.045     1.080 

Concordance= 0.789  (se = 0.018 ) 

Rsquare= 0.168   (max possible= 0.903 ) 

[1] "DNAmAge Weidner" 

                     coef exp(coef)  se(coef)      z Pr(>|z|)     

Age              0.091318  1.095618  0.006788 13.453   <2e-16 *** 

DNAmBiomarker -0.002031  0.997972  0.006871 -0.296    0.768     

                exp(coef) exp(-coef) lower .95 upper .95 

Age                 1.096     0.9127    1.0811     1.110 

DNAmBiomarker     0.998     1.0020    0.9846     1.012 

 

Concordance= 0.768  (se = 0.018 ) 

Rsquare= 0.146   (max possible= 0.903 ) 

[1] "DNAmAgeWeidnerVersion2" 

                    coef exp(coef) se(coef)      z Pr(>|z|)     

Age             0.087910  1.091890 0.007196 12.217   <2e-16 *** 

DNAmBiomarker 0.005020  1.005033 0.009035  0.556    0.578     

                exp(coef) exp(-coef) lower .95 upper .95 

Age                 1.092     0.9158    1.0766     1.107 

DNAmBiomarker     1.005     0.9950    0.9874     1.023 

Concordance= 0.768  (se = 0.018 ) 

Rsquare= 0.146   (max possible= 0.903 ) 

 [1] "DNAmAgeLinWagner" 

                    coef exp(coef) se(coef)     z Pr(>|z|)     

Age             0.062002  1.063965 0.009885 6.272 3.56e-10 *** 

DNAmBiomarker 0.034258  1.034852 0.009617 3.562 0.000367 *** 

 

                exp(coef) exp(-coef) lower .95 upper .95 

Age                 1.064     0.9399     1.044     1.085 

DNAmBiomarker     1.035     0.9663     1.016     1.055 
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Concordance= 0.773  (se = 0.018 ) 

Rsquare= 0.152   (max possible= 0.903 ) 

 

 

Supplementary Table S5B. Body Mass Index versus epigenetic age acceleration in blood 

Using the EPIC DNA methylation data from blood samples from the Jackson Heart study we regressed 

DNAmAge (dependent variable) on age, BMI, and gender.  

[1] "DNAmAge Horvath 2013" 

               Estimate  Std. Error   t value     Pr(>|t|) 

(Intercept)  8.81156753 0.725692568 12.142287 1.242994e-32 

Age          0.75525714 0.008641536 87.398485 0.000000e+00 

BMI          0.05384969 0.014626637  3.681618 2.387880e-04 

Female      -1.50753799 0.221553035 -6.804411 1.388753e-11 

[1] "DNAmAge Hannum 2013" 

               Estimate  Std. Error    t value     Pr(>|t|) 

(Intercept) -3.26768612 0.665873027  -4.907371 1.008795e-06 

Age          0.79985115 0.007929206 100.874059 0.000000e+00 

BMI          0.06136597 0.013420949   4.572402 5.159818e-06 

Female      -1.48772717 0.203290204  -7.318243 3.810522e-13 

[1] "DNAm PhenoAge" 

              Estimate Std. Error   t value     Pr(>|t|) 

(Intercept) -9.6092491 0.99209686 -9.685797 1.197457e-21 

Age          0.8798796 0.01181387 74.478502 0.000000e+00 

BMI          0.1387421 0.01999613  6.938446 5.561863e-12 

Female      -0.8038841 0.30288593 -2.654082 8.024474e-03 

 [1] "DNAmAge Weidner 2014" 

               Estimate Std. Error    t value      Pr(>|t|) 

(Intercept) 14.69188745 1.39338191 10.5440492  3.037441e-25 

Age          0.53816312 0.01659237 32.4343732 4.148625e-181 

BMI          0.01954192 0.02808420  0.6958335  4.866255e-01 

Female       0.27490420 0.42539776  0.6462286  5.182160e-01 

[1] "DNAmAge WeidnerVersion2" 

               Estimate Std. Error    t value      Pr(>|t|) 

(Intercept) 27.73994403 0.98879353 28.0543341 2.541079e-143 

Age          0.44024067 0.01177454 37.3892098 2.187252e-225 

BMI          0.04365288 0.01992955  2.1903596  2.862971e-02 

Female      -0.21365122 0.30187743 -0.7077416  4.792000e-01 

[1] "DNAmAge LinWagner" 

                Estimate Std. Error    t value     Pr(>|t|) 
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(Intercept) -15.65943376 0.94417454 -16.585317 1.718059e-57 

Age           0.86028517 0.01124322  76.515936 0.000000e+00 

BMI           0.07756353 0.01903023   4.075806 4.790863e-05 

Female       -0.96694177 0.28825531  -3.354463 8.121766e-04 

 

Supplementary Table S5C. Leukocyte telomere length versus epigenetic age acceleration 

We used Illumina EPIC DNA methylation data from blood samples of the Jackson Heart Study to test the 

association between the DNAm age estimators (dependent variable) and Leukocyte Telomere Length 

(more precisely Mean Telomere Restriction Fragment) using multivariate regression models that also 

included chronological age and sex as covariates.  

The following analysis reveals that DNAmPhenoAge has the strongest association with leukocyte 

telomere length. 

[1] Dependant variable "DNAmAge Horvath2013" 

              Estimate  Std. Error   t value     Pr(>|t|) 

(Intercept) 12.1545948 1.581513271  7.685421 2.613873e-14 

Age          0.7492805 0.009916796 75.556707 0.000000e+00 

Mean.TRF    -0.1862622 0.179023240 -1.040436 2.982913e-01 

Female      -1.3774774 0.230804282 -5.968162 2.936492e-09 

[1] "DNAmAge Hannum 2013" 

              Estimate  Std. Error   t value     Pr(>|t|) 

(Intercept)  4.1633323 1.429829789  2.911768 3.642645e-03 

Age          0.7782609 0.008965673 86.804516 0.000000e+00 

Mean.TRF    -0.6177930 0.161853059 -3.816999 1.401240e-04 

Female      -1.2028016 0.208667764 -5.764195 9.789582e-09 

[1] "DNAm PhenoAge" 

              Estimate Std. Error    t value     Pr(>|t|) 

(Intercept)  5.3155827 2.16085288  2.4599466 1.399866e-02 

Age          0.8410257 0.01354951 62.0705366 0.000000e+00 

Mean.TRF    -1.2129200 0.24460299 -4.9587291 7.833534e-07 

Female      -0.2312638 0.31535246 -0.7333504 4.634500e-01 

 [1] "DNAmAge Weidner 2014" 

              Estimate Std. Error   t value      Pr(>|t|) 

(Intercept) 24.3774102 2.99735672  8.132969  8.199171e-16 

Age          0.5087108 0.01879477 27.066615 1.306044e-133 

Mean.TRF    -1.0583315 0.33929308 -3.119225  1.844941e-03 

Female       0.6614184 0.43743090  1.512052  1.307139e-01 

[1] "DNAmAgeWeidnerVersion2" 

               Estimate Std. Error    t value      Pr(>|t|) 

(Intercept) 33.36899186  2.1108708 15.8081643  1.726666e-52 

Age          0.42149161  0.0132361 31.8440823 1.585201e-173 



16 
 

Mean.TRF    -0.47549009  0.2389451 -1.9899550  4.676231e-02 

Female       0.08632544  0.3080581  0.2802245  7.793407e-01 

[1] "DNAmAgeLinWagner" 

              Estimate Std. Error   t value     Pr(>|t|) 

(Intercept) -9.8222427 2.04436602 -4.804542 1.693176e-06 

Age          0.8439815 0.01281909 65.837863 0.000000e+00 

Mean.TRF    -0.3591097 0.23141698 -1.551786 1.209070e-01 

Female      -0.7183775 0.29835250 -2.407815 1.615853e-02 

 

Supplementary Table S5D. Current Smoker status versus epigenetic age acceleration in blood 

We regressed DNAm age on current smoker status in the Jackson Heart Study data. 

 [1] "DNAmAge Horvath 2013" 

                 Estimate  Std. Error    t value     Pr(>|t|) 

(Intercept)   10.66505021 0.519203735 20.5411662 4.201095e-84 

Age            0.75211487 0.008638039 87.0700928 0.000000e+00 

currentSmoker -0.08919795 0.307986571 -0.2896164 7.721444e-01 

Female        -1.37481629 0.221213224 -6.2148920 6.417278e-10 

[1] "DNAmAge Hannum 2013" 

                Estimate  Std. Error    t value     Pr(>|t|) 

(Intercept)   -1.3736921 0.475312443  -2.890082 3.899275e-03 

Age            0.7965832 0.007907816 100.733653 0.000000e+00 

currentSmoker  0.8861828 0.281950687   3.143042 1.700297e-03 

Female        -1.2499419 0.202512792  -6.172163 8.367406e-10 

[1] "DNAm PhenoAge" 

                Estimate Std. Error    t value     Pr(>|t|) 

(Intercept)   -5.4308204 0.71140186 -7.6339700 3.734606e-14 

Age            0.8725501 0.01183566 73.7221513 0.000000e+00 

currentSmoker  2.3696247 0.42199662  5.6152693 2.281171e-08 

Female        -0.2372610 0.30310163 -0.7827769 4.338649e-01 

 [1] "DNAmAge Weidner 2014" 

                Estimate Std. Error   t value      Pr(>|t|) 

(Intercept)   14.7588297 0.98899296 14.923089  1.799328e-47 

Age            0.5427897 0.01645396 32.988385 1.143641e-185 

currentSmoker  1.6157787 0.58666094  2.754195  5.945074e-03 

Female         0.4523669 0.42137278  1.073555  2.831714e-01 

[1] "DNAmAge WeidnerVersion2" 

                Estimate Std. Error    t value      Pr(>|t|) 

(Intercept)   29.4805264  0.7032600 41.9198121 7.539043e-266 

Age            0.4357210  0.0117002 37.2404766 1.404731e-223 

currentSmoker -0.7641549  0.4171669 -1.8317725  6.715668e-02 
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Female        -0.1493001  0.2996327 -0.4982771  6.183519e-01 

[1] "DNAmAge LinWagner" 

                 Estimate Std. Error     t value     Pr(>|t|) 

(Intercept)   -12.8628901 0.67757323 -18.9837638 3.626725e-73 

Age             0.8534952 0.01127285  75.7124787 0.000000e+00 

currentSmoker  -0.1575977 0.40192980  -0.3921025 6.950306e-01 

Female         -0.7985192 0.28868852  -2.7660233 5.734593e-03 

 

Supplementary Table S5E. Offspring of centenarians have low epigenetic age acceleration in blood 

We analyzed Illumina 450K data from Italian semi-supercentenarians (individuals aged 105 or more), their 

offspring and age matched controls from [36]. We analyzed peripheral blood mononuclear cells from 

Italian families constituted of 82 semi-supercentenarians (mean age: 105.6 ± 1.6 years), 63 semi-

supercentenarians' offspring (mean age: 71.8 ± 7.8 years), and 47 age-matched controls (mean age: 69.8 ± 

7.2 years). Using a linear regression model, we demonstrate that the offspring of semi-supercentenarians 

have a lower epigenetic age than age-matched controls [36].  

In R language lm(DNAmAge~Age+Status, data=datSample, subset=Age<100)). 

The negative sign of the Student T  statistic indicates that the offspring of centenerians are younger than 

age matched controls. 

 

[1] Dependant variable: "DNAmAge Horvath 2013" 

                Estimate Std. Error t value Pr(>|t|) 

(Intercept)        12.00      5.200     2.4  1.9e-02 

Age                 0.82      0.073    11.0  6.7e-20 

StatusOffspring    -3.00      1.100    -2.7  8.1e-03 

 

[1] Dependant variable: "DNAmAgeHannum" 

                Estimate Std. Error t value Pr(>|t|) 

(Intercept)        16.00      5.400     3.0  3.5e-03 

Age                 0.78      0.076    10.0  1.5e-17 

StatusOffspring    -1.80      1.200    -1.6  1.2e-01 

 

[1] "DNAmPhenoAge" 

                Estimate Std. Error t value Pr(>|t|) 

(Intercept)         7.50      6.100     1.2  2.2e-01 

Age                 0.73      0.085     8.6  8.3e-14 

StatusOffspring    -2.40      1.300    -1.9  6.5e-02 

 

 [1] "DNAmAge Weidner 2014" 

                Estimate Std. Error t value Pr(>|t|) 
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(Intercept)         8.80       9.80    0.90  3.7e-01 

Age                 0.74       0.14    5.40  4.5e-07 

StatusOffspring    -0.25       2.10   -0.12  9.1e-01 

 

[1] "DNAmAge WeidnerVersion2" 

                Estimate Std. Error t value Pr(>|t|) 

(Intercept)         35.0      6.400     5.5  3.1e-07 

Age                  0.5      0.091     5.5  2.8e-07 

StatusOffspring     -1.7      1.400    -1.2  2.3e-01 

 

[1] "DNAmAge LinWagner" 

                Estimate Std. Error t value Pr(>|t|) 

(Intercept)        -0.62      6.000   -0.10  9.2e-01 

Age                 0.79      0.085    9.30  1.9e-15 

StatusOffspring    -0.21      1.300   -0.16  8.7e-01 

 

 

Supplementary Table S5F. Neuritique plaques vs age acceleration in the prefrontal cortex  

We used the DNA methylation data from postmortem prefrontal cortex samples of the Religious Order 

Study and the MAP study [37]. We correlated measures of age acceleration in the prefrontal cortex with 

the abundance of neuritique plaques (adjusted for chronological age and gender).  

 

                   Cor with age adjusted neuritique plaques 

AAHorvath          0.13841331 

AAHannum           0.13489693 

AAPheno            0.09474522 

AAWeidner          0.05201257 

AA.WeidnerVersion2 0.06572580 

AA.LinWagner       0.12125363 

 

Supplementary Table S5F. Body Mass Index versus epigenetic age acceleration in liver  

We used n=85 Illumina 450K data arrays from human liver samples. Liver samples from morbidly obese 

patients with all stages of NAFLD and controls were analysed. The data are described in [24, 38] and 

available from Gene Expression Omnibus (GSE48325).  

Using multivariate linear regression models (dependent variable DNAm Age) we find that high BMI is 

associated with increased DNAm Age even after correcting for gender and age consistent with the 

findings reported in [39].  

[1] Dependant variable: "DNAmAge" 
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            Estimate Std. Error t value Pr(>|t|) 

(Intercept)     5.70      3.200     1.8  7.8e-02 

Age             0.75      0.042    18.0  5.5e-30 

BMI             0.15      0.042     3.7  4.2e-04 

Female         -0.60      1.200    -0.5  6.2e-01 

[1] "DNAmAgeHannum" 

            Estimate Std. Error t value Pr(>|t|) 

(Intercept)   28.000      3.000     9.3  2.0e-14 

Age            0.720      0.039    18.0  1.5e-30 

BMI            0.091      0.039     2.3  2.4e-02 

Female         1.500      1.100     1.3  1.9e-01 

[1] "DNAmPhenoAge" 

            Estimate Std. Error t value Pr(>|t|) 

(Intercept)    -4.50      3.900   -1.20  2.5e-01 

Age             0.64      0.050   13.00  5.3e-21 

BMI             0.13      0.051    2.60  1.0e-02 

Female         -0.81      1.400   -0.56  5.7e-01 

 [1] "DNAmAgeWeidner" 

            Estimate Std. Error t value Pr(>|t|) 

(Intercept)    24.00      4.000     6.0  4.4e-08 

Age             0.58      0.052    11.0  5.5e-18 

BMI             0.12      0.053     2.3  2.6e-02 

Female         -2.00      1.500    -1.3  1.8e-01 

[1] "DNAmAgeWeidnerVersion2" 

            Estimate Std. Error t value Pr(>|t|) 

(Intercept)   77.000      3.200   24.00  2.4e-38 

Age            0.230      0.042    5.50  4.9e-07 

BMI           -0.018      0.042   -0.44  6.6e-01 

Female        -0.640      1.200   -0.54  5.9e-01 

[1] "DNAmAgeLinWagner" 

            Estimate Std. Error t value Pr(>|t|) 

(Intercept)    41.00      6.600     6.2  2.2e-08 

Age             0.79      0.086     9.1  4.2e-14 

BMI             0.15      0.086     1.7  9.5e-02 

Female          3.80      2.400     1.6  1.2e-01 
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Supplementary Table S5G. Naïve CD8+T cell and Granulocyte Cell abundance versus epigenetic 

age acceleration in blood 

We use Illumina 450K DNA methylation data from blood samples from over 2k postmenopausal women 

from the Women's Health Initiative [18].  We estimated blood cell proportions/counts using two different 

software tools. Houseman's estimation method [16] was used to estimate the proportions of cytotoxic 

(CD8+) T cells, helper (CD4+) T, natural killer, B cells, and granulocytes (mostly neutrophils). Another 

method was used to estimate the percentage of exhausted CD8+ T cells (defined as CD28-CD45RA-), 

plasmablasts, and the number (count) of naïve CD8+ T cells (defined as CD45RA+CCR7+) [40], which is 

implemented in the advanced analysis option of the epigenetic age calculator software [41]. Imputed blood 

cell counts have moderately high correlations with corresponding flow cytometric data [18]. All blood cell 

counts were adjusted for chronolgical age, i.e. the reported correlations are not confounded by 

chronological age. 

 

 

 

 

 

 

Supplementary Table S6: Characteristics of the 513 CpGs 

 

[Separate PDF] 

 

 

 

 

 

 

 

Correlation Table

Horvath 353 Hannum 71 PhenoAgeWeidner WeidnerVersion299 LinWagner

PlasmaBlastAdjAge -0.02 0.14 0.19 -0.28 -0.06 0.02

CD8pCD28nCD45RAnAdjAge 0.14 0.21 0.16 0.13 0.13 0.11

CD8.naiveAdjAge -0.11 -0.24 -0.25 -0.15 -0.06 -0.09

CD4.naiveAdjAge -0.04 -0.18 -0.23 -0.07 0.05 -0.08

CD8TAdjAge 0.16 0.03 -0.10 0.51 0.26 0.09

CD4TAdjAge -0.13 -0.24 -0.26 -0.04 -0.18 -0.10

NKAdjAge 0.07 0.08 -0.05 0.27 -0.01 0.07

BcellAdjAge -0.11 -0.11 -0.13 0.11 -0.14 0.04

MonoAdjAge -0.01 0.00 0.02 -0.05 -0.01 0.01

GranAdjAge -0.01 0.14 0.25 -0.33 -0.05 0.01
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Supplementary Table S7: Associations between DNAm and expression for CpG-Gene pairs  

 

 

[Separate excel file] 

 

 

 

Supplementary Table S8: GO for differentially expressed genes as a function of DNAm 

PhenoAgeAccel 

 

 

[Separate excel file] 
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Supplementary Table S9: Comparison with Zhang DNAm Mortality Scores 

 

 Zhang Score DNAm PhenoAge 

 HR  

(95% CI) 

P-value HR  

(95% CI) 

P-value 

Age Adjusted Models     

Categorical Variable (Reference= Category 1)     

Category 2 1.18  

(0.95-1.48) 

1.42E-1 1.21 

(0.92-1.58) 

1.68E-1 

Category 3 1.49  

(1.21-1.83) 

1.63E-4 1.80 

(1.36-2.38) 

3.25E-5 

Category 4 2.25 

(1.34-3.76) 

2.12E-3 2.90 

(1.75-4.80) 

3.41E-5 

Pseudo R-squared 0.096  .099  

Standardized Continuous Variable 1.27 

(1.17-1.39) 

5.19E-8 1.45 

(1.30-1.62) 

4.48E-11 

Pseudo R-squared 0.113  0.105  

Fully Adjusted Models     

Categorical Variable (Reference= Category 1)     

Category 2 1.11  

(0.89-1.39) 

3.67E-1 1.21 

(0.92-1.58) 

1.66E-1 

Category 3 1.31  

(1.06-1.63) 

1.22E-2 1.67 

(1.27-2.21) 

2.89E-4 

Category 4 1.92 

(1.14-3.23) 

1.48E-2 2.62 

(1.57-4.40) 

2.32E-4 

Pseudo R-squared 0.110  .114  

Standardized Continuous Variable 1.20 

(1.10-1.32) 

3.80E-5 1.40 

(1.25-1.57) 

4.10E-9 

Pseudo R-squared 0.113  0.120  

Results come from cox proportional hazard models for all-cause mortality in the WHI (BAA23 sample 

with up to ~20 years of mortality follow-up). Fully adjusted models included chronological age, 

race/ethnicity, and smoking status. Results for continuous predictors represent the hazard ratio for a one 

standard deviation increase in each DNAm variable. Our sample had a total of 559 deaths and 31,025.21 

person-years. 
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Supplementary Table S10: Correlations between DNAm Scores (adjusted for age) 

 

 

DNAm 

PhenoAgeAccel 

Horvath 

DNAm AgeAccel 

Hannum 

DNAM AgeAccel 

DNAm PhenoAgeAccel 1 
  

Horvath DNAm AgeAccel 0.46 1 
 

Hannum DNAM AgeAccel 0.482 0.511 1 
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SUPPLEMENTARY FIGURES 

SUPPLEMENTARY FIG. S1. Association between phenotypic age and morbidity. 

Data on n=6,209 participants from NHANES IV show that phenotypic age (adjusted for chronological age) 

is associated with A) a person’s number of coexisting morbidities and B) physical functioning problems in 

a strong dose-dependent manner. Results are based on Kruskal Wallis test.  

 

 

 

 

 

A

B
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SUPPLEMENTARY FIG. S2. Longitudinal comparisons of phenotypic age and DNAm PhenoAge. 

Over the nine years of follow-up, mean and median change in phenotypic age (A) and DNAm PhenoAge 

(B) was about 9 years. Nevertheless, within person (age adjusted) measures for phenotypic age (C) and 

DNAm PhenoAge (D), remained fairly stable over time—those who are fast agers, remain fast agers. 

Finally, panel E shows the correlation between change in phenotypic age and change in DNAm PhenoAge, 

suggesting that those who experience an acceleration of phenotypic age based on clinical markers also 

experience age acceleration on an epigenetic level.   

 

 

A																																													B

C D

E
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SUPPLEMENTARY FIG. S3. Associations between smoking and DNAm PhenoAge. 

When comparing DNAm PhenoAge by smoking status, we find that current smokers have significantly 

higher epigenetic ages compared to never, and/or former smokers (A). This is also true when comparing 

DNAm PhenoAge as a function of pack-years (B). However, no associations with pack-years are found 

when stratifying by smoking status—current (D) or former (D)—suggesting that the correlation with 

pack-years in (B) merely reflects a difference in smoking status (similar to what is shown in A). 

 

 

 

Never						Former					Current

A

C

B

D
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SUPPLEMENTARY FIG. S4. Fixed effect meta-analysis of the effect of DNAm PhenoAge on the 

hazard of all-cause mortality, stratifying by smoking. In smoking stratified analyses, adjusting for 

pack-years (in smokers) and chronological age, we find that DNAm PhenoAge significantly predicts 

mortality even within groups, and despite much smaller sample sizes (panel A depicts results for non-

smokers and panel B depicts results for smokers). The Hannum measure also relates to mortality in both 

smokers and non-smokers; although to a lesser degree than DNAm PhenoAge. Interestingly, the effect of 

DNAm PhenoAge on mortality appears to be larger for smokers, compared to non-smokers, suggesting 

that it may capture vulnerability to stressors, like cigarette exposure.  
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SUPPLEMENTARY FIG. S5. Associations between DNAm PhenoAge and race/ethnicity in the 

WHI. 

When comparing DNAm PhenoAge by race/ethnicity, we find that non-Hispanic blacks have the highest 

DNAm PhenoAges, whereas non-Hispanic whites have the lowest (A). This is reflective of trends we see 

in life-expectancy. Further, this likely reflects differences between the three groups, rather than variations 

in the reliability of the measure within the three strata, as evidenced by the very consistent age trends across 

all three groups (B, C, & D). 

 

A

C

B

D
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SUPPLEMENTARY FIG. S6. Associations with measures of age acceleration in the WHI. 

Correlations (bicor, biweight midcorrelation) between select variables and DNAm PhenoAgeAccel (A) 

show that education, income, exercise, proxies of fruit/vegetable consumption, and HDL cholesterol are 

negatively associated (blue) with DNAm PhenoAge. Conversely, CRP, insulin, glucose, triglycerides, 

BMI, waist-to-hip ratio, and systolic blood pressure have a positive association (red) with DNAm 

PhenoAge. Similar results are found in multivariate regression models (B).  

 

A) Correlations (marginal) with                      B) Multivariate Lin. Models. DNAmPhenoAgeAccel                      

Outcome=DNAmPhenoAgeAccel                       

 

 

 

 

PhenoAgeAccel

n=2568 β p β p β p β p β p

log(1 + Red meat) 2.91 0.01 2.07 0.05

log(1 + Poultry) -0.75 0.65 -0.91 0.57

log(1 + Fish) 1.60 0.38 1.78 0.32

log(1 + Dairy) -0.63 0.43 -0.54 0.49

log(1 + Nuts) -3.93 0.02 -3.80 0.02

log(1 + Whole grains) 1.14 0.22 1.42 0.12

log(1 + Fruits) 0.30 0.43 0.33 0.37

log(1 + Vegetables) -0.66 0.18 -0.55 0.26

Current drinker -0.84 0.10 -0.61 0.23

African American 0.73 0.02 0.58 0.09 0.50 0.13 0.62 0.05 0.37 0.30

Hispanic 0.54 0.15 1.16 0.37 0.59 0.64 0.78 0.53 0.03 0.98

Education -0.29 2E-5 -0.26 1E-4 -0.26 1E-4 -0.27 4E-5 -0.25 3E-4

BMI 0.14 7E-10 0.12 5E-8 0.02 0.54 0.01 0.60 0.01 0.68

Physically active -0.02 0.14 -0.47 0.08 -0.29 0.26 -0.32 0.21 -0.26 0.33

Current smoker 1.67 2E-4 5.23 5E-4 4.35 3E-3 4.18 4E-3 4.30 4E-3

log(C-reactive protein) 2.09 5E-11 2.18 3E-12 2.10 4E-11

log(Insulin) 0.39 0.52 0.38 0.53

log(Triglycerides) 2.55 0.04 2.22 0.08

log(Glucose) 0.19 0.80 0.07 0.92

HDL Cholesterol -0.01 0.25 -0.01 0.27

Systolic blood pressure 0.01 0.20 0.01 0.20

Diastolic blood pressure 0.01 0.61 0.01 0.59

log(Waist-to-hip ratio) 5.86 0.10 5.67 0.11

Number of MetSyn symptoms 0.42 8E-5

Model 1 Model 2 Model 3 Model 4 Model 5

Minimal Food Biomarkers MetSyn Full
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Supplementary Fig. S7. Age adjusted blood cell counts versus phenotypic age acceleration in the 

Women's Health Initiative (BA23 data). DNAm PhenoAgeAccel (x-axis) is associated with various 

measures of abundance of blood cell counts. (A) plasma blasts (activated B cells); (B) percentage of 

exhausted CD8+ T cells (defined as CD8+CD28-CD45RA- ); (C) naïve CD8+ T cell count; (D) naïve 

CD4+ T cell count; E) proportion of CD+8 T cells; F) proportion of CD4+ helper T cells; G) proportion of 

B cells; H) monocytes and I) proportion of granulocytes (mainly neutrophils). It is not associated with 

proportion of natural killer cells (results not shown). The correlation coefficient and p-value results from 

the Pearson correlation test. Points are colored by race/ethnicity (blue=Hispanic, green=African Ancestry, 

grey=non-Hispanic white). Similar correlations can be found when focusing on individuals of the same 

ancenstry. 

 

 

 

 

 

SUPPLEMENTARY FIG. S8. Association between DNAm PhenoAge and LTL. 
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After adjusting for chronological age, DNAm PhenoAge has a very weak negative correlation with LTL, 

for the whole population, and stratifying by race/ethnicity and/or sex. This suggests that higher DNAm 

PhenoAge is modestly related to shorter LTL. 
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SUPPLEMENTARY FIG. S9. Fixed effects meta analysis of the effect of DNAm phenotypic age 

acceleration on the hazard of death after adjusting for blood cell counts. DNAm PhenoAge is 

significantly predictive of all-cause mortality even after accounting for leukocyte proportions. The Cox 

regression model is adjusted for chronological age, race/ethnicity, smoking pack years, and imputed blood 

cell counts (exhausted CD8+ T cells, naïve CD8+ T cells, CD4T cells, natural killer cells monocytes, 

granulocytes). The meta-analysis p value is colored in red. A significant heterogeneity p value (red font) 

indicates that the hazard ratios differ significantly across studies.  
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SUPPLEMENTARY FIG. S10. Properties of the 513 CpGs that underly DNAmPhenoAge. In our 

functional enrichment analysis of the chromosomal locations of the 513 CpGs, we distinguished CpGs with 

positive age correlation from CpGs with negative age correlation. CpGs with positive age correlation 

exhibited a lower variance but a similar mean methylation level compared to CpGs with negative age 

correlation (B,C). The 149 CpGs whose age correlation exceeded 0.2 tended to be located in CpG islands 

(E) and were significantly enriched with polycomb group protein targets (p=8.7E-5, D). A) Each CpGs was 

correlated with chronological age in whole blood. The histogram shows the correlation coefficients.  

Statistical comments: To avoid biased enrichment results, it is important to use the correct background set 

of CpGs when it comes to characterizing the properties of the 513 CpGs. The set of CpGs on the Illumina 

27K array is the appropriate background set because this set of CpGs was used when training the 

DNAmPhenoAge estimator. While we used the Illumina 450K array to measure DNA methylation levels, 

we only used a small subset of the CpGs (namely those located both on the Illumina 27K and the EPIC 

array) as training set when developing DNAmPhenoAge.  We discarded most of the CpGs on the Illumina 

450K array when it came to training the DNAmPhenoAge estimator because, surprisingly, the resulting 

DNAmPhenoAge estimator exhibited more significant predictive associations with lifespan than DNAm 

estimators built using the full set of CpGs on the Illumina 450K array. 
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SUPPLEMENTARY FIG. S11: Correlation between 1) gene-DNAm PhenoAgeAccel correlations 

and 2) gene-chronological age correlations. Genes have similar correlations with chronological age, as 

they do with DNAm PhenoAgeAccel (DNAm PhenoAge adjusted for age). This suggest that genes that 

tend to increase as a function of age, tend to be upregulated in persons who are epigenetically older than 

expected, compared to other of the same age. Conversely, genes that show decreased expression with age, 

are downregulated among those who are epigenetically older than expected. This can be taken to signify 

that age-related transcriptional alterations are further exacerbated for those with higher DNAmPhenoAge, 

relative to their chronological age. However, these cross sectional association studies do not allow us 

dissect cause and effect relationships between gene transcripts and DNA methylation changes. 
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SUPPLEMENTARY FIG. S12: Correlation between elastic net beta coefficients and age 

correlations. Overall, the coefficients (weights) for the 513 CpGs in the DNAm PhenoAge score (x-axis) 

are not highly correlated with univariate age correlations (y-axis). Moreover, many of the CpGs shown in 

blue have little to know age correlation, while having some of the highest weights. 
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SUPPLEMENTARY FIG. S13. Partial likelihood versus log(lambda) parameter for elastic net 

proportional hazard model. Ten-fold cross-validation was employed to select the parameter value, 

lambda, for the penalized regression. In order to develop a sparse phenotypic age estimator (the fewest 

biomarker variables needed to produce robust results) we selected a lambda of 0.0192, which represented 

a one standard deviation increase over the lambda with minimum mean-squared error during cross-

validation. Of the forty-two biomarkers included in the penalized Cox regression model, this resulted in 

ten variables (including chronological age) that were selected for the phenotypic age predictor. 
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SUPPLEMENTARY FIG. S14. Partial likelihood versus log(lambda) parameter for elastic net 

regression 

The CpGs used in the elastic net represent those that are found on the Illumina Infinium 450k chip, the 

EPIC chip, and the Illumina Infinium 27k chip. Lambda was selected using 10-fold cross-validation; 

however, given that sparseness was not a goal with this model, the lambda with the minimum mean-squared 

error was selected (lambda=0.35). This lambda, produced a model in which phenotypic age is predicted by 

DNAm levels at 513 CpGs. 
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SUPPLEMENTARY FIG. S15: Scatterplots of top genes vs DNAm PhenoAgeAccel and 

chronological age in the FHS PBMC data. Scatterplots depict the associations (negative in blue and 

positive in red) between expression in top genes and either DNAm PhenoAgeAccel (top six panels), or 

chronological age (bottom six panels). Results suggest that genes relate similarly to age adjusted DNAm 

PhenoAgeAccel and chronological age. 
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SUPPLEMENTARY FIG. S16: Scatterplots of top genes vs DNAm PhenoAgeAccel and 

chronological age in the MESA Monocyte data. Scatterplots depict the associations (negative in blue 

and positive in red) between expression in top genes and either DNAm PhenoAgeAccel (top six panels), 

or chronological age (bottom six panels). Results suggest that genes relate similarly to age adjusted DNAm 

PhenoAgeAccel and chronological age. 
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SUPPLEMENTARY FIG. S17. The 513 CpGs from DNAm PhenoAge Mapped to Genomic 

Locations 

CpGs were mapped to genomic locations. Overall, CpGs from the DNAm PhenoAge score do not tend to 

cluster in specific genomic regions.  

 

 

 

 

 

 

 

 

 

 

Mapped genome location by module (nothing stands out). 
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