SUPPLEMENTARY MATERIAL

Supplementary Figure 1. DNMT1 attenuates UVA-induced decrease of cell vitality in HDFs. (A, B, C,) HDFs were transfected with or without the indicated expressing lentivirus, then cell vitalities were determined by MTT assay following UVA irradiation (n = 3). * vs Control, DNMT1-vector or control-shRNA, P< 0.05, # vs DNMT1-vector+UVA or control-shRNA+UVA, P< 0.05

Supplementary Table 1. The sequences of DNMT1-shRNA oligoribonucleotides.

NO.	5'	STEM	Loop	STEM	3'
DNMT1- RNAi(19531-1)-a	Ccgg	aaCGGTGCTCATGCTTACAAC	CTCGAG	GTTGTAAGCATGAGC ACCGTT	TTTTTg
DNMT1- RNAi(19531-1)-b	aattca aaaa	aaCGGTGCTCATGCTTACAAC	CTCGAG	GTTGTAAGCATGAGC ACCGTT	

binding si te 1	Forward:5'- TTCTCGCTGCTTTATCCCCA -3'
	Reverse: 5'- CATTCATTCATTCATTCTTT -3'
binding site 2	Forward:5'- GGTGCAATTACCCCGTTTTA -3'
	Reverse: 5'- CTACGGCTCAGCCTCTGTGT -3'
binding site 3	Forward:5'- CTCCTAACCTCAAGCGATCC -3'
	Reverse: 5'- TCCCAGTGCTTTGAGAGGCC -3'
binding site 4	Forward:5'- CTCCCAAGTAGCTAGGATTA -3'
	Reverse: 5'- GATTTGCTGGGCATGGTGAC -3'

Cumplementers Table 2	The prime are	for omplifying	سنام مناط ام معام ما	a sites in ChiD seesus
Supplementary Table 2	. The primers	for amplifying	predicted bindir	ig sites in Chip assays.

Supplementary Table 3. The primers that used for cloning DNMT1 promoter and deletion mutation of predicated binding sites.

DNMT1	Forward:5'-CAGCCTACACTGCCAGGG-3'
promoter	Reverse: 5'-GTACGCGCCGGCATCTCG-3'
DNMT1 m1	Forward:5'- CTCCCAAGTAGCTAGGATTAGTCACCATGCCCAGCAAATC -3'
	Reverse: 5'- GATTTGCTGGGCATGGTGACTAATCCTAGCTACTTGGGAG -3'
DNMT1 m2	Forward:5'- GATTTGCTGGGCATGGTGACTAATCCTAGCTACTTGGGAG -3'
	Reverse: 5'- TCCCAGTGCTTTGAGAGGCCGGATCGCTTGAGGTTAGGAG -3'
DNMT1 m3	Forward:5'- GGTGCAATTACCCCGTTTTAACACAGAGGCTGAGCCGTAG-3'
	Reverse: 5'- CTACGGCTCAGCCTCTGTGTTAAAACGGGGGTAATTGCACC -3'
DNMT1 m4	Forward:5'- TTCTCGCTGCTTTATCCCCAAAAGAATGAATGAATGAATG
	Reverse: 5'- CATTCATTCATTCATTCTTTTGGGGGATAAAGCAGCGAGAA-3'

Supplementary Table 4. The average mathylation of 24 senescent-associated genes.

The	Average Mathylation					
abbreviation of	Non-sun exposed		sun	sun exposed		
genes	Mean	SD	Mean	SD	value	
pRb	0.06275	0.04303	0.0100	0.002273	0.2667	
АТМ	0.0285	0.001190	0.04333	0.01011	0.1441	
NF-ĸB1	0.01975	0.01020	0.008000	0.001000	0.3761	
Sirt1	0.1560	0.1460	0.0160	0.003512	0.3920	
NANOG	0.2390	0.005307	0.2393	0.005121	0.9741	
SP1	0.8185	0.07694	0.8935	0.04056	0.4217	
SOX2	0.0545	0.03053	0.0860	0.06502	0.6499	
VDR	NA	NA	NA	NA	NA	
ZEB1	NA	NA	NA	NA	NA	

ZEB2	0.9240	0.01251	0.9300	0.01002	0.7387
PTEN	0.03475	0.01026	0.0440	0.02301	0.7012
Foxd3	0.3925	0.1482	0.4863	0.1204	0.6621
Dnmt3a	0.8033	0.08352	0.7217	0.09033	0.5409
Dnmt3b	0.9177	0.08233	0.8405	0.1595	0.6616
p53	0.6860	0.04623	0.4945	0.06067	0.0459
p21	0.01567	0.007688	0.01033	0.002028	0.5391
p16	0.1858	0.07477	0.1985	0.07331	0.9071
LEF1	0.03525	0.004661	0.07333	0.03405	0.2463
UTF1	0.0485	0.01850	0.0300	0.01384	0.4539
TERT	0.7320	0.05921	0.8125	0.03422	0.2639
SFRP2	0.09975	0.05778	0.04275	0.03580	0.4338
KIT	0.03775	0.03042	0.01225	0.005072	0.4400
GRB7	0.3618	0.1162	0.1597	0.06757	0.2322
CTNNB1	0.04075	0.0008539	NA	NA	NA

NA: Not Applicable

Supplementary Table 5. The primers for amplifying p53, p21, p16 GpC island regions.

p53	Forward:5'- GAGTAGGTAGAAGATTTTYGGGAG -3' Reverse: 5'- AAACCTACTACRCCCTCTACAAAC -3'
p21	Forward:5'- GGAGTGTAGGTGGTATGATTTTAG -3' Reverse: 5'- TTCCTAACATCACAAATCTAAAATAC -3'
p16	Forward:5'- AGTTTAGAAAGGATYGGTGATGTG -3' Reverse: 5'- AAACAAACACCRAATCCTTTATATC -3'

SUPPLEMENTARY METHODS

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay

HDFs cells were planted on 96-well plates at a density of 4000 cells per well in triplicate, and exposed to UVA or not. After additional incubation for 24, 48, or 72h, 20ml of MTT stock solution (5 mg/mL MTT reagent diluted in PBS; Sigma-Aldrich, USA) was added to each well. The plates were further incubated for 4 h at 37°C and 5% CO₂ in the dark. The supernatant was carefully removed without disturbing the sediment and 150 μ L dimethyl sulfoxide (Sigma-Aldrich, USA) was added to the wells

to dissolve the purple formazan crystals. The absorbance at 490 nm was obtained from a micro-plate reader (BioRad). All experiments were performed in triplicate, and the data presented represent the means of 3 independent experiments \pm SD.