SUPPLEMENTARY MATERIAL

Strain	genotype	comment
N2E		Wild-type
CF3942	glp-1(e2144ts) III	<i>glp-1(e2144ts)</i> from CF1903 [21], outcrossed 12x to N2E
CF3943	muIs84[Psod-3::gfp]	muIs84 from CF1553 [38] outcrossed 12x
CF3949	glp-1(e2144ts) III; muIs84[Psod-3::gfp]	
CF4339	daf-2;(e1370) III; muIs84[Psod-3::gfp]	
CF4054	daf-16(mu86) I	<i>daf-16(mu86)</i> from CF1037 [18], outcrossed 12x to N2E
CF4087	daf-2(e1370) III	<i>daf-16(mu86)</i> from CF1041 [18], outcrossed 12x
CF4096	daf-16(mu86) I; muIs194[Pges-1::ha::gfp::daf-16 + Podr-1::rfp]	muIs194 from CF3628: daf-16(mu86) I; muIs194
CF4117	zcIs18[Pges-1::gfp(cyt)]	Strain SJ4144 (Ron lab/CGC) outcrossed 6x
CF4164	mbk-1(pk1389) X	<i>mbk-1(pk1389)</i> from EK228 [26] (Kandel lab /CGC) outcrossed 6x
CF4165	glp-1(e2144ts) III; mbk-1(pk1389) X	
CF4166	daf-2(e1370) III; mbk-1(pk1389) X	
CF4167	daf-16(mu86) I; muIs145[Pges-1::gfp::daf-16 + Podr- 1::rfp]	<i>muIs145</i> is the integrated version of muEx268 [38]
CF4168	daf-16(mu86) I; glp-1(e2144ts) III; muls145[Pges- 1::gfp::daf-16 + Podr-1::rfp]	
CF4169	daf-16(mu86) I;daf-2(e1370) III; muIs145[Pges- 1::gfp::daf-16 + Podr-1::rfp]	
НМТ029	daf-16(mu86) I; mbk-1(pk1389) X; muIs145[Pges- 1::gfp::daf-16 + Podr-1::rfp]	
HMT030	daf-16(mu86) I; glp-1(e2144ts) III; mbk-1(pk1389) X; muIs145[Pges-1::gfp::daf-16 + Podr-1::rfp]	
HMT031	daf-16(mu86) 1; daf-2(e1370) 111; mbk-1(pk1389) X; muIs145[Pges-1::gfp::daf-16 + Podr-1::rfp]	
CF4173	hpk-1(pk1393) X	<i>hpk-1(pk1393)</i> from EK273 [26] (Kandel lab/CGC) outcrossed 6x
CF4185	glp-1(e2144ts) III; hpk-1(pk1393) X	
HMT001	daf-2(e1370) III; hpk-1(pk1393) X	Very low progeny, reported to be synthetic lethal [34]
CF4183	hpk-1(pk1393) X; muIs84[Psod-3::gfp]	
HMT002	glp-1(e2144ts) III; hpk-1(pk1393) X; muIs84[Psod- 3::gfp]	
CF4184	mbk-1(pk1389) X; muIs84[Psod-3::gfp]	
HMT003	glp-1(e2144ts) III; mbk-1(pk1389) X; muIs84[Psod- 3::gfp]	
HMT004	daf-2(e1370) III; mbk-1(pk1389) X; muIs84[Psod- 3::gfp]	

Supplementary Table 1. List of strains used in this study.

primer name	primer sequence 5'>3'
cdc-42_RT_F	TCA GCG TTG ACG CAG AAG
cdc-42_RT_R	CAT GGA GAC AAG GAA GAC GTT
tba-1_RT_F	TCC ACT GAT CTC TGC TGA CAA
tba-1_RT_R	TGG ATC GCA CTT CAC CAT T
Y45F10D.4_RT_F	AAG CGT CGG AAC AGG AAT C
Y45F10D.4_RT_R	TTT TTC CGT TAT CGT CGA CTC
daf-16_RT_F	TAC GAA TGG ATG GTC CAG AA
daf-16_RT_R	TCG CAT GAA ACG AGA ATGA A
sod-3_RT_F	AAA GGA GCT GAT GGA CAC TAT TAA GC
sod-3_RT_R	AAG TTA TCC AGG GAA CCG AAG TC
aat-1_RT_F	CCC AAA ACG AAA CCT TCC ACT CGC
aat-1_RT_R	TGA AAT TGC TGT GTA GAG AGC CAC
dod-8_RT_F	ACA GGA TGT CTT CAA AAG GAA TAT GG
dod-8_RT_R	TTG CTG GGG TGA TAG CTT GG
gpd-2_RT_F	AAG GCC AAC GCT CAC TTG AA
gpd-2_RT_R	GGT TGA CTC CGA CGA CGA AC
F52H3.5_RT_F	GAA GTT TAC AAA AGC ACT CGA AG
F52H3.5_RT_R	GGT TTA TTT TGA AGT CGG TAT GC
K07B1.4_RT_F	GGT CTT CTT CCA TTC AGA AAA CC
K07B1.4_RT_R	TGT ATG TCT GAT GAA GTG TGT CG
nnt-1_RT_F	CAG TAG AAA CTG CTG ACA TGC TTC
nnt-1_RT_R	GAG CGA TGG GAT ATT GTG CCT GAG
T21D12.9_RT_F	CAT CTA AAT CTA TCA ACT AAT AGA G
T21D12.9_RT_R	GTA GGA CAG GTC CAA AAC TTC CAA G

Supplementary Table 2. List of qPCR primers used in this study.

	Strain	Worm	Fold-cl re	hange exp elative to v	ression wt	Fold-change expression relative to <i>glp-1(-)</i>			
Experiment		number	Mean	SD	SEM	Mean	SD	SEM	P-value
#1	wt	24	1.00	0.15	0.03	0.38	0.06	0.01	
	mbk-1(-)	24	0.91	0.16	0.03	0.34	0.06	0.01	>0.05
	glp-1(-)	22	2.65	1.07	0.23	1.00	0.40	0.09	
	glp-1(-); mbk-1(-)	9	0.99	0.22	0.07	0.37	0.08	0.03	< 0.001
#2	wt	24	1.00	0.20	0.04	0.47	0.09	0.02	
	mbk-1(-)	20	0.82	0.32	0.07	0.39	0.15	0.03	>0.05
	glp-1(-)	15	2.12	0.71	0.18	1.00	0.34	0.09	
	glp-1(-); mbk-1(-)	10	0.87	0.22	0.07	0.41	0.10	0.03	< 0.001
#3	wt	9	1.00	0.08	0.03	0.59	0.05	0.02	
	mbk-1(-)	9	0.83	0.10	0.03	0.49	0.06	0.02	>0.05
	glp-1(-)	8	1.69	0.45	0.16	1.00	0.27	0.09	
	glp-1(-);	9	0.97	0.25	0.08	0.58	0.15	0.05	< 0.001

Supplementary Table 3. Effect of *mbk-1* loss on *Psod-3::gfp*-expression in wild-type and germline-deficient *C. elegans*. Related to Figure 3C.

The effect of the *mbk-1* loss of function mutation *mbk-1(pk1389)* on the expression of a *Psod-3::gfp* reporter gene (*muls84*) relative to *mbk-1(+)* animals was examined in wild-type and germline-less, *glp-1(-)* [*glp-1(e2144ts)*] worms. Fluorescence images were quantified, corrected for background, and fold-changes in reporter gene expression were calculated relative to wild-type and *glp-1(-)* animals. Statistical significance was determined by two-way ANOVA with Bonferroni post tests. Experiment #3 is shown in Figure 3C.

Supplementary Table 4. Effect of *hpk-1* loss on *Psod-3::gfp*-expression in wild-type and germline-deficient *C. elegans.* Related to Supplementary Figure S2A.

	Strain	Worm	Fold-c r	hange exp elative to v	ression vt	Fold-change expression relative to <i>glp-1(-)</i>			
Experiment		number	Mean	SD	SEM	Mean	SD	SEM	P-value
#1	wt	24	1.00	0.15	0.03	0.38	0.06	0.01	
	hpk-1(-)	23	1.65	0.26	0.05	0.62	0.10	0.02	< 0.01
	glp-1(-)	22	2.65	1.07	0.23	1.00	0.40	0.09	
	glp-1(-); hpk-1(-)	22	2.60	0.59	0.13	0.98	0.22	0.05	>0.05
#2	wt	24	1.00	0.20	0.04	0.47	0.09	0.02	
	hpk-1(-)	14	1.27	0.43	0.12	0.60	0.21	0.05	>0.05
	glp-1(-)	15	2.12	0.71	0.18	1.00	0.34	0.09	
	glp-1(-); hpk-1(-)	3	1.71	0.65	0.37	0.81	0.31	0.18	>0.05
#3	wt	9	1.00	0.08	0.03	0.59	0.05	0.02	
	hpk-1(-)	25	1.14	0.20	0.04	0.67	0.12	0.02	>0.05
	glp-1(-)	8	1.69	0.45	0.16	1.00	0.27	0.09	
	glp-1(-); hpk-1(-)	17	1.30	0.14	0.03	0.77	0.08	0.02	< 0.001

The effect of the hpk-1 loss of function mutation hpk-1(pk1393) on the expression of a Psod-3::gfp reporter gene (muls84) relative to hpk-1(+) animals was examined in wild-type and germline-less, glp-1(-) [glp-1(e2144ts)] worms. Fluorescence images were quantified, corrected for background, and fold-changes in reporter gene expression were calculated relative to wild-type and glp-1(-) animals. Statistical significance was determined by two-way ANOVA with Bonferroni post tests. Experiment #3 is shown in Supplementary Figure S2A. Note: In Experiment #3, 3 images were taken for hpk-1(-) and 2 images for qlp-1; hpk-1(-).

	Worm	Fold-c r	hange exp elative to v	ression vt	Fold-cl rel				
Experiment	Strain/RNAi	number	Mean	SD	SEM	Mean	SD	SEM	P-value
#1	wt/control	7	1.00	0.12	0.04	0.47	0.06	0.02	
	wt/ <i>mbk-2</i>	10	1.35	0.27	0.08	0.64	0.13	0.04	>0.05
	glp-1(-)/control	8	2.12	0.76	0.27	1.00	0.36	0.13	
	glp-1(-)/mbk-2	10	2.90	0.65	0.21	1.37	0.31	0.10	< 0.01
#2	wt/control	9	1.00	0.16	0.05	0.51	0.08	0.03	
	wt/ <i>mbk-2</i>	9	1.78	0.22	0.07	0.91	0.11	0.04	< 0.001
	<i>glp-1(-)</i> /control	10	1.96	0.51	0.16	1.00	0.26	0.08	
	glp-1(-)/mbk-2	10	5.10	0.57	0.18	2.60	0.29	0.09	< 0.001
#3	wt/control	10	1.00	0.09	0.03	0.58	0.05	0.02	
	wt/ <i>mbk-2</i>	10	1.22	0.19	0.06	0.71	0.11	0.04	>0.05
	<i>glp-1(-)</i> /control	10	1.72	0.30	0.10	1.00	0.18	0.06	
	glp-1(-)/mbk-2	10	2.30	0.69	0.22	1.34	0.40	0.13	< 0.01
#4	wt/control	16	1.00	0.06	0.01	0.60	0.03	0.01	
	wt/ <i>mbk-2</i>	11	1.06	0.07	0.02	0.64	0.04	0.01	>0.05
	<i>glp-1(-)</i> /control	20	1.65	0.29	0.06	1.00	0.17	0.04	
	glp-1(-)/mbk-2	8	2.02	0.53	0.19	1.22	0.32	0.11	< 0.01
#5	wt/control	10	1.00	0.19	0.06	0.42	0.08	0.03	
	wt/ <i>mbk-2</i>	10	1.79	0.69	0.22	0.75	0.29	0.09	< 0.05
	glp-1(-)/control	10	2.39	0.35	0.11	1.00	0.15	0.05	
	glp-1(-)/mbk-2	10	4.01	1.14	0.36	1.68	0.48	0.15	< 0.001

Supplementary Table 5. Effect of *mbk-2* knockdown on *Psod-3::gfp*-expression in wild-type and *germline-deficient C. elegans*. Related to Supplementary Figure S2B.

The effect of *mbk-2* knockdown on the expression of a *Psod-3::gfp* reporter gene (*muls84*) relative to control-RNAi (vector L4440) treated animals was examined in wild-type and germline-less, glp-1(-) [glp-1(e2144ts)] worms. Fluorescence images were quantified, corrected for background, and fold-changes in reporter gene expression were calculated relative to wild-type and glp-1(-) animals. Statistical significance was determined by two-way ANOVA with Bonferroni post tests. Experiment #5 is shown in Supplementary Figure S2B.

DAF-16 mFOXO1 hFOXO1 hFOXO3	242 254 257 254	TIETTTKAQLEKSRRGAKKRIKERALMGSLH <mark>S</mark> TL-NGNSIAG <mark>S</mark> IQTISHDLYDDDSMQGA -MDNNSKFAKSRGRAAKKKASLQSGQEGPGD <mark>SP</mark> GSQFSKWPA <mark>SP</mark> GSHSNDD -MDNNSKFAKSRSRAAKKKASLQSGQEGAGD <mark>SP</mark> GSQFSKWPA <mark>SP</mark> GSHSNDD -MDNSNKYTKSRGRAAKKKAALQTAPESADD <mark>SP</mark> -SQLSKWPG <mark>SP</mark> TSRSSDE ::* .:.* . ** :* : * : * *	300 303 306 302
DAF-16	301	FDNVPSSFRPRTQSNLSIPGSSSRVSPAIGSDIYDDLEFD-NWSTFRPRTSSNASTISGRLSPIMTEQDDLD-NWSTFRPRTSSNASTISGRLSPIMTEQDDLD-AWTDFRSRTNSNASTVSGRLSPIMASTELDEVQDDAPLSPMLYSSSASLSPSVS:* <td>345</td>	345
mFOXO1	304		351
hFOXO1	307		354
hFOXO3	303		359
DAF-16 mFOXO1 hFOXO1 hFOXO3	346 352 355 360	SVPAIPSDIVDRTDQMRIDATTHIGGVQIKQE MASTLPSLSEISNPENMENLLDNLNLLS <mark>SP</mark> TSLTVSTQS <mark>SP</mark> GSMMQQTP MASTLPSLSEISNPENMENLLDNLNLLS <mark>SP</mark> TSLTVSTQS <mark>SP</mark> GTMMQQTP KPCTVELPRLTDMAGTMNLNDGLTENLMDDLLDNITLPPSQP <mark>SP</mark> TGGLMQR <mark>S</mark> S :* : : : : : : : : : : : : : : : : : :	377 400 403 412
DAF-16	378	SKPIKTEPIAPPFSYHELNSVRGSCAQNPLLRNPIVPSTNFKPMPLPGAYGNYQNGGCYSFAPPNTSLNSPSPNYSKYTYGQSSMSPLPQMPMQTLQDSKSSYGGLNQYNCYSFAPPNTSLNSPSPNYQKYTYGQSSMSPLPQMPIQTLQDNKSSYGGMSQYNSFPYTTKGSGLGSFPSTSSFNSTVFGPSSLNSLRQSPMQTIQENKPATFSSMSHYG.::*:: <td:< td="">::<td:< td="">:</td:<></td:<>	434
mFOXO1	401		453
hFOXO1	404		456
hFOXO3	413		466

Supplementary Figure 1. NLK-sites in FOXO-proteins. Clustal Ω alignment of full-length DAF-16 with murine and human FOXO1 and human FOXO3. Only the part covering the 8 NLK-sites reported in murine FOXO1 is shown [6]. The Ser/Thr-residues phosphorylated by NLK are highlighted in blue, the obligatory Pro immediately following an NLK-phosphorylated Ser/Thr is highlighted in yellow. The only SP-site in this region that is conserved between DAF-16 and murine/human FOXO1s is Ser326/Ser326/Ser329. Note: NLK-phosphorylation of individual residues has been reported to be weak [6].

Supplementary Figure 2. Effect of DYRK-family kinases HPK-1 and MBK-2 on Psod-3::gfp expression. Accompanies Figure 3. (A) The hpk-1 loss of function mutation hpk-1(pk1393) decreases Psod-3::gfpexpression in germline-deficient glp-1(-) [glp-1(e2144ts)], but not in wild-type animals (representative experiment shown, n=5). (B) Depletion of mbk-2 by RNAi increases Psod-3::gfp-expression in glp-1(-), and -to a lesser extentin wild-type background. RNAi treatment was initiated at the L1 stage (representative experiment shown, n=3. Error bars indicate standard deviations. Statistical significance of fluorescence intensity differences was determined by twoway ANOVA with Bonferroni post tests. All experiments in (A) and (B) were performed on day-2 adult worms. Images were taken at 100x magnification.

Supplementary Figure 3. Loss of mbk-1 does not affect DAF-16 subcellular localization in daf-2 mutant C. elegans. Accompanies Figure 4. The effect of the mbk-1 loss of function mutation mbk-1(pk1389) on subcellular localization of an intestine-specific GFP::DAF-16 protein (encoded by transgene muls145[Pges-1::gfp::daf-16]) was determined at the times indicated in wild-type and daf-2(-) [daf-2(e1370)] animals. Images on the left were taken at 100x magnification, images on the right are 6.5x magnifications of the areas boxed in red.