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INTRODUCTION 
 

Thyroid cancer (THCA) is the most prevalent 

endocrine malignancy worldwide, with its incidence 

and morbidity steadily increasing [1]. Papillary thyroid 

cancer (PTC) is the predominant subtype of THCA, 

accounting for approximately 80% of all THCA cases 

[2]. The prognosis for PTC is typically favorable, with 

a 5-year survival rate exceeding 95% and a 10-year 

survival rate over 90% when treated with radioiodine 

ablation and/or revision surgery [3]. But it is important 

to note that approximately 20% of patients experience 

a reduced survival rate due to factors such as 

recurrence, metastasis, and other complications [4, 5]. 

Therefore, exploring the key molecules that promote 

the progression of PTC is necessary to improve the 

prognosis and quality of life of PTC patients [6]. 

 
Anoikis is a term used to describe a form of 

programmed cell death triggered by the detachment  

of cells from the extracellular matrix (ECM) or 

neighboring cells [7]. It is a crucial mechanism that 

regulates tissue homeostasis, development, and the 

prevention of cancer cell metastasis. When cells lose 

contact with their surrounding ECM, they undergo  

a series of biochemical and morphological changes 

that ultimately lead to their death [7]. During anoikis, 

various signaling pathways are activated, including 

integrin-mediated signaling, growth factor receptor 

signaling, and apoptotic pathways. These pathways 
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ABSTRACT 
 

Thyroid cancer, notably papillary thyroid cancer (PTC), is a global health concern with increasing incidence. 
Anoikis, a regulator of programmed cell death, is pivotal in normal physiology and, when dysregulated, can 
drive cancer progression and metastasis. This study explored the impact of anoikis on PTC prognosis. Analyzing 
data from GEO, TCGA, and GeneCards, we identified a prognostic signature consisting of six anoikis-related 
genes (ARGs): EZH2, PRKCQ, CD36, INHBB, TDGF1, and MMP9. This signature independently predicted patient 
outcomes, with high-risk scores associated with worse prognoses. A robust predictive ability was confirmed via 
ROC analysis, and a nomogram achieved a C-index of 0.712. Differences in immune infiltration levels were 
observed between high- and low-risk groups. Importantly, the high-risk group displayed reduced drug 
sensitivity and poor responses to immunotherapy. This research provides insights into anoikis in PTC, offering a 
novel ARG signature for predicting patient prognosis and guiding personalized treatment strategies. 
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converge to induce apoptosis, characterized by DNA 

fragmentation, mitochondrial dysfunction, cytoskeletal 

rearrangement, and caspase activation [7, 8]. Anoikis 

plays a significant role in normal physiological pro-

cesses such as tissue remodeling and the maintenance 

of epithelial cell layers [9, 10]. Dysregulation of 

anoikis can have detrimental effects, contributing to 

cancer progression and metastasis [8]. Cancer cells 

often acquire resistance to anoikis, allowing them to 

survive and invade distant tissues [11]. 
 

Recently, there is a growing number of research 

focusing on the significance of anoikis resistance in 

tumorigenesis. The endocytic degradation of epidermal 

growth factor receptor (EGFR) can induce cancer cells 

to detach from the extracellular matrix, ultimately 

triggering apoptosis, known as anoikis. Targeting EGFR 

could be effective for anoikis suppression [12]. Upon 

stimulation by specific extracellular matrix components, 

such as cancer-related fibroblasts (CAFs), tumors 

acquire anoikis resistance and develop invasive and 

metastatic capabilities [13]. Emerging studies have 

demonstrated that the anoikis-related signature holds the 

potential to predict treatment response and prognosis in a 

wide range of cancer types. Until now, the establishment 

of clinical prognostic models based on anoikis-related 

genes has explored in head and neck squamous cell 

carcinoma, clear cell renal cell carcinoma, hepatocellular 

carcinoma, and others [14–16], but remains unexplored 

in PTC. Gaining insight into the mechanisms of action of 

anoikis-related genes may enhance our understanding of 

the development process of PTC. 
 

In this study, we conducted an analysis of 

differentially expressed genes (DEGs) between PTC 

and adjacent normal tissues using publicly available 

databases. By integrating this data with clinical 

information, we developed a six-gene signature related 

to anoikis to predict the prognosis of PTC patients and 

elucidate immune cell infiltration patterns. This 

approach aims to enhance treatment options and 

improve patient outcomes in PTC. 
 

MATERIALS AND METHODS 
 

Data acquisition 
 

The messenger RNA (mRNA) expression data of  

PTC and normal tissues were downloaded from the 

GEO (including the GSE29265, GSE33630, and 

GSE60542 datasets; https://www.ncbi.nlm.nih.gov/geo). 

Additionally, the mRNA sequencing data (FPKM value) 

and corresponding clinical-pathologic information of 

PTC patients were obtained from the TCGA (https:// 

cancergenome.nih.gov/). A total of 498 PTC patients 

were obtained and randomly assigned to either the 

training cohort (n = 349) or the test cohort (n = 149). 

Identification of anoikis-related DEGs and functional 

enrichment analysis 

 
Anoikis-related genes (ARGs) were extracted from 

GeneCards [17]. In the GeneCards database, each gene 

has a corresponding relevance score value, which is 

used to evaluate the correlation between the gene and 

the elements (chemical substances and diseases). The 

higher the score, the stronger the statistical correlation 

between genes and related elements [17]. Using a 

relevance score >0.4, 551 ARGs were selected. The 

“limma” R package was employed to screen DEGs 

(|log2(fold change)| > 1 and adjusted P-value < 0.05) 

between tumor tissue and normal tissues in GEO 

datasets. Then, the anoikis-related DEGs (ADGs) were 

obtained by overlapping the intersection of DEGs and 

ARGs using Venny (version 2.1) [18]. The ADGs were 

submitted to Metascape Online (https://metascape.org/), 

which incorporates a core set of default ontologies  

such as Gene Ontology (GO) and Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathways to conduct 

functional analysis and construct a PPI network [19]. 

 
Establishment of the prognostic genes signature of 

the ADGs 

 
To establish a prognostic model for ADGs in PTC 

patients from TCGA database, a univariate Cox analysis 

of progression-free interval (PFI) was first conducted 

using the R packages “survival” and “survminer” to 

identify the survival-related genes among the ADGs 

with a prognosis value (P < 0.05). These survival-

related genes were then included in the subsequent 

Least Absolute Shrinkage and Selection Operator 

(LASSO) Cox regression analysis by using “glmnet”  

R package. The 10-fold cross validation and 1,000 

iterations were performed to minimize the potential risk 

of overfitting and select optimal prognostic genes. The 

prognostic genes signature was calculated based on the 

normalized gene expression level and corresponding 

regression coefficients. The risk score for prognosis was 

determined by using a linear combination of the 

regression coefficient in the LASSO regression and the 

gene’s expression level. 

 
The assessment of the prognosis model 

 
PTC patients in both the training cohort and test cohort 

were respectively divided into high- and low-risk 

groups by the risk scores. The Kaplan-Meier (K-M) 

survival curve was performed to assess prognostic 

significance. The receiver operating characteristic curve 

(ROC curve) was created by using the R package 

“timeROC.” The area under the curve (AUC) in 1-, 3-, 

and 5-year progress-free survival was used to evaluate 

the performance of the prognostic model. The GEPIA 
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database (http://gepia.cancer-pku.cn/) was used to 

perform survival analysis for the prognostic genes [20]. 

 

Nomogram construction and evaluation 

 

Univariate and multivariate Cox analyses of patient risk 

score of the prognostic signature and clinical factors, 

including gender, pathological stage, and focal type, 

were performed to determine the significance of each 

factor in predicting PFI in patients with PTC. Based on 

the results of multivariate Cox regression, the R package 

“rms” was used to construct a nomogram to provide the 

1-, 3- and 5-year survival probabilities. The calibration 

curve evaluated the predictive ability of the nomogram. 

 

Functional analysis related to risk score 

 

The “limma” R package was employed to screen DEGs 

(|log2(fold change)| > 1 and adjusted P-value < 0.05) 

between high- and low-risk groups in TCGA database. 

Heatmap was performed using the “pheatmap” and 

“ggplot2” R packages. GO and KEGG enrichment 

analyses were utilized to explore the biological 

functions of DEGs. 

 

Evaluation of tumor immune microenvironment 

 

The ESTIMATE algorithm was used to calculate the 

stromal score, immune score, and tumor purity between 

high-risk and low-risk groups [21]. The CIBERSORT 

algorithm was used to estimate the abundance of 22 

immune cell types. The infiltration levels of 22 immune 

cell types between the high-risk and low-risk subgroups 

were compared [22]. 

 

Drug sensitivity and immunotherapeutic response 

analyses 

 

The “pRRophetic” R package was employed to 

calculate the half-maximal inhibitory concentration 

(IC50) values of chemotherapeutic and targeted drugs 

for each PTC patients in TCGA cohort [23]. The  

tumor immune dysfunction and exclusion (TIDE; 

http://tide.dfci.harvard.edu/) was used to calculate the 

TIDE score of each patient according to myeloid-

derived suppressor cell (MDSC), macrophage M2, 

T cell Dysfunction and Exclusion [24]. 

 

Statistical analysis 

 

R software (version 4.3.0) was used to perform data 

analysis. The statistical value P < 0.05 indicates that the 

difference is statistically significant. 

 

Data accessibility 

 

The datasets used and/or analyzed during the current 

study are available from the corresponding author on 

reasonable request. 
 

RESULTS 
 

Figure 1 illustrates the cohort design and analytical 

concepts for the entire study. 

 

 
 

Figure 1. Flow chart of the current study. 
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Table 1. Overview of each dataset associated with PTC from GEO and TCGA. 

 Platform Cases of normal Cases of tumor Scanned items Clinical files 

GSE29265 GPL570 20 20 mRNA No 

GSE33630 GPL570 45 49 mRNA No 

GSE60542 GPL570 30 33 mRNA No 

TCGA NA − 498 mRNA Yes 

 

ADGs in PTC patients and functional enrichment 

analysis 

 

The data of PTC was obtained from three GEO cohorts 

and TCGA database, and the details are shown in 

Table 1. By comparing tumor tissues and adjacent non-

neoplastic tissues, 561 DEGs were obtained from GEO: 

GSE29265, with 288 genes showing upregulation and 

273 showing downregulation in tumor tissues (Figure 

2A). 806 DEGs were obtained from GEO: GSE33630, 

with 459 genes showing upregulation and 347 showing 

downregulation in tumor tissues (Figure 2B). 745 DEGs 

were obtained from GEO: GSE60542, with 381 genes 

showing upregulation and 364 showing downregulation 

in tumor tissues (Figure 2C). The DEGs obtained from 

the GEO datasets were intersected with the 551 anoikis-

related genes to obtain ADGs. 64 ADGs overlapped 

between the four datasets (Figure 2D). The modulation-

specific biological processes and pathways features  

of the 64 ADGs were then analyzed. Results were 

visualized by bar graphs and PPI networks. The GO and 

KEGG analyses showed that enrichments were  

mainly focused on positive regulation of cell  

migration, pathways in cancer, response to wounding, 

proteoglycans in cancer, and positive regulation of 

programmed cell death et al. (Figure 2E, 2F). 

 

Construction of the ADGs-related prognostic model 

 

Gene expression data (FPKM) with corresponding 

patient information were obtained from TCGA database 

of 498 PTC patients. The clinical characteristics of 

these two cohorts are summarized in Table 2, and there 

are no significant clinical differences between these two 

cohorts. Univariate Cox regression analysis in training 

cohort showed that six ADGs were significantly 

associated with tumor progression (Supplementary 

Table 1). Both six genes were subsequently identified  

as prognostic signature in a LASSO Cox regression 

analysis (Figure 3A, 3B). Thus, the anoikis-related 

genes signature was established based on the coefficient 

in the LASSO regression analysis. A risk score for each

 

 
 

Figure 2. Overview of the differentially expressed anoikis-related genes in PTC. (A–C) Volcano plots of differentially expressed 

gens (DEGs) between PTC and normal tissues in GSE29265, GSE33630, and GSE60542. (D) Venn diagram showing the dysregulated anoikis-
related genes common to the four datasets. (E) Bar graph showing the GO and KEGG analysis. (F) PPI network showing the distribution and 
relationship of the different enriched functions. 
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Table 2. The clinical characteristics of 498 PTC patients in TCGA. 

Categories Total (n = 498) Training (n = 349) Test (n = 149) P-value 

Age at diagnosis 

<55 333 (66.9) 239 (68.5) 94 (63.1) 
0.242 

≥55 165 (33.1) 110 (31.5) 55 (36.9) 

Gender 

Male 134 (26.6) 86 (24.6) 48 (32.2) 
0.081 

Female 364 (73.1) 263 (75.4) 101 (67.8) 

T stage 

T1 143 (28.7) 97 (27.8) 46 (30.9) 

0.174 

T2 162 (32.5) 118 (33.8) 44 (29.5) 

T3 168 (33.7) 112 (32.1) 56 (37.6) 

T4 23 (4.6) 20 (5.7) 3 (2.0) 

Tx 2 (0.4) 2 (0.6) 0 (0.0) 

Pathological stage 

Stage I 281 (56.4) 208 (59.6) 73 (49.0) 

0.051 

Stage II 51 (10.2) 34 (9.7) 17 (11.4) 

Stage III 110 (22.1) 66 (18.9) 44 (29.5) 

Stage IV 54 (10.8) 39 (11.2) 15 (10.1) 

Unknown 2 (0.4) 2 (0.6) 0 (0.0) 

Status 

Progress free 448 (90.0) 314 (90.0) 134 (89.9) 
0.990 

Progress 50 (10.0) 35 (10.0) 15 (10.1) 

 

patient was calculated as follows: 1.4829 × (expression 

of EZH2) + (−0.2218) × (expression of PRKCQ) + 

(−0.0188) × (expression of CD36) + (−0.2417) × 

(expression of INHBB) + (−1.1662) × (expression of 

TDGF1) + (0.1198) × (expression of MMP9). 

 

Estimations of the prognosis signature in the TCGA 

database 

 

We employed K-M and ROC curves to evaluate the 

prognostic significance of the anoikis-related prognostic 

signature across training, test, and overall cohorts.  

The K-M analysis showed that patients with high-risk 

scores had significantly worse progression-free survival 

(FPS) rates compared to patients with low-risk score  

in both the training (P = 0.0022), test (P = 0.043), and 

overall (P = 0.00049) cohorts (Figure 3C–3E). The 

AUC values for 1-, 3-, and 5-year FPS rates obtained 

from the prognostic signature in the training cohort 

were 0.805, 0.705, and 0.703, respectively (Figure 3F), 

while those in the test cohort were 0.632, 0.649, and 

0.813, respectively (Figure 3G), and in the overall 

cohort were 0.703, 0.683, and 0.69, respectively (Figure 

3H). The distribution of the risk score is shown in 

Figure 4. The progression rate of PTC patients increases 

proportionally with their risk scores (Figure 4A, 4D). 

Furthermore, this pattern remains consistent across both 

the test (Figure 4B, 4E) and overall (Figure 4C, 4F) 

cohorts. Significantly, patients with high-risk scores 

exhibited elevated expression levels of EZH2 and 

MMP9, while PRKCQ, CD36, INHBB, and TDGF1 

demonstrated decreased expression levels across all 

three cohorts (Figure 4G–4I). Utilizing the GEPIA 

database, we conducted survival analysis on the six 

genes featured in the prognostic signature. Our findings 

revealed that PRKCQ, CD36, INHBB, and TDGF1 

were correlated with better prognosis and disease-free 

survival (DFS) in THCA patients, whereas EZH2 and 

MMP9 were linked to an unfavorable prognosis and 

reduced DFS among individuals with THCA (Figure 5). 

 

Establishment and evaluation of the nomogram 

 

The univariate and multivariate Cox regression analyses 

showed that the risk score and T stage were the 

independent significant prognostic factors in predicting 

PFS in patients with PTC (Supplementary Table 2 and 

Figure 6A). We subsequently constructed a predictive 

nomogram with these factors (Figure 6B). Besides, the  

C-index calculated by R for the nomogram was 0.712, 

suggesting that the nomogram had a superior predictive 

performance. The calibration curves were used to evaluate 

the accuracy of the nomogram, in which a standard curve 

represented the best prediction. The predicted outcomes  

of 1-, 3- and 5-year progress-free survival rates showed 

excellent consistency (Figure 6C–6E). 
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Functional enrichment analysis of the DEGs between 

the high- and low-risk patients 

 

567 DEGs were obtained between high- and low- 

risk groups (Supplementary Figure 1). In order to gain  

a deeper comprehension of the potential biological 

mechanisms underlying the DEGs associated with high- 

and low-risk patients, we performed an analysis utilizing 

the GO and KEGG databases. The investigation revealed 

that the biological processes primarily encompassed the 

production of molecular mediator of immune response, 

immunoglobulin production, and immune response-

regulating and activating cell surface receptor signaling 

pathway. Additionally, the molecular functions were 

found to be associated with antigen binding, receptor 

ligand activity, cytokine activity, and cytokine receptor 

binding. The cellular components analyzed in this study 

encompassed the external side of plasma membrane, 

plasma membrane signaling receptor complex, T cell 

receptor complex, and immunoglobulin complex. 

(Figure 7A, Supplementary Table 3). Through KEGG 

analysis, it was determined that these DEGs were 

primarily associated with cytokine-cytokine receptor 

interaction, viral protein interaction with cytokine and 

 

 
 

Figure 3. Prognostic analysis of the six anoikis-related genes signature in the TCGA cohort. (A, B) LASSO regression was 

performed with the minimum criteria. (C–E) Kaplan-Meier survival analyses comparing the progress-free survival of patients in the high- 
and low-risk groups were conducted in both the TCGA training cohort (P = 0.0022), test cohort (P = 0.043), and overall cohort (P = 0.00049). 
(F–H) The ROC curves validated the prognostic performance of the risk score in both the TCGA training, test, and overall cohort. 
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Figure 4. Verification of the anoikis-related genes signature was conducted in the training, test, and overall cohorts. (A–F) 

Dot plots illustrating the survival and risk score for the training, test, and overall cohorts. (G–I) The heatmaps of six anoikis-related genes in 
the training, test, and overall cohorts. 

 

 
 

Figure 5. Kaplan-Meier curves of genes associated with the six gene prognostic risk signature. 
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cytokine receptor, chemokine signaling pathway, and 

hematopoietic cell lineage (Figure 7B, Supplementary 

Table 4). 

 

Assessment of the immune microenvironment in 

PTC 

 

The ESTIMATE algorithm was used to calculate  

the stromal score, tumor purity, immune score, and 

ESTIMATE score. The high-risk group had a higher 

stromal score, immune score, and ESTIMATE score, 

and a lower tumor purity than the low-risk group 

(Figure 8A). To explore the correlation between 

anoikis-related genes signature and immune landscape 

in PTC, we employed the CIBERSORT algorithm  

to assess the relative proportions of 22 immune cell 

types in a cohort of 498 PTC patients from the  

TCGA database (Figure 8B). Immune cells, including  

B cells naïve, plasma cells, T cells CD8+, T cells CD4+ 

memory activated, T cells follicular helper, T cells 

regulatory (Tregs), T cells gamma delta, NK cells 

resting, monocytes, macrophages M0, macrophages 

M1, macrophages M2, mast cells resting, eosinophils, 

and neutrophils were statistically different between the 

high- and low-risk groups (Figure 8C). 

 

Prediction of drug sensitivity and immunotherapy 

efficacy 

 

Using the R package “pRRophetic”, we investigated  

the IC50 values of six common chemotherapeutic  

and targeted drugs (Cisplatin, Doxorubicin, Paclitaxel, 

Sorafenib, Axitinib, and Sunitinib) in both the high-  

and low-risk groups of PTC patients. PTC patients  

in the low-risk group demonstrated greater sensitivity  

to Sorafenib and Axitinib. Conversely, PTC patients  

in the high-risk group exhibited increased sensitivity  

to Cisplatin, Doxorubicin, Paclitaxel, and Sunitinib 

 

 
 

Figure 6. Forest plot of the multivariate Cox regression analysis and the construction and evaluation of the nomogram. 

(A) Forest plot showing the risk score and T stage were the significant prognostic factors in predicting progress-free survival in patients with 
PTC. (B) Nomogram based on the risk score of the model and clinical information of PTC patients in the TCGA cohort. (C–E) Calibration 
curves of the nomogram for the probability of 1-, 3- and 5-years. 
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(Figure 9A–9F). To evaluate the risk model’s value  

in immunotherapy, we compared the TIDE and other 

immune-related scores between high- and low-risk 

groups. The high-risk group showed higher TIDE score 

and Dysfunction score, and lower Exclusion score 

(Figure 9G–9I), indicating a limited immunotherapy 

benefit for PTC patients in the high-risk group. 
 

DISCUSSION 
 

An important aspect of cancer progression is the  

ability of tumor cells to detach from their primary site 

and invade surrounding tissues or spread to distant 

organs [25, 26]. In PTC, Lymph node metastasis  

has been associated with a lower overall survival rate 

[27], furthermore, distant metastasis serves as the 

primary cause of death in PTC patients [28]. Therefore, 

construction of a metastasis-related signature to predict 

the prognosis may provide important insights into disease 

management and early intervention [29]. Anoikis, a 

form of programmed cell death, is initiated when cells 

lose adhesion to the extracellular matrix [30]. A pivotal 

process in metastasis involves the capability of cancer 

cells to survive without adhesion, evading anchorage-

dependent cell death [31]. 

Under normal physiological conditions, anoikis serves 

as a safeguard, thwarting the survival of detached  

cells and the formation of secondary tumors [32]. 

Nonetheless, cancer cells can evolve strategies to  

elude anoikis, thus bolstering their metastatic potential 

[33]. Anoikis resistance in PTC arises from intricate 

pathways, underscoring the significance of targeting 

anoikis-related genes to counteract PTC progression and 

metastasis. Multifaceted analyses reveal the intricate 

interplay among diverse factors influencing anoikis 

resistance in PTC [34–38]. Understanding the molecular 

mechanisms underlying anoikis resistance in PTC is 

crucial for developing targeted therapies to prevent 

metastasis and improve patient outcomes [39]. 

 

This study was the first attempt at establishing an 

anoikis-related prognostic genes signature in PTC.  

In our study, we analyzed DEGs in PTC patients  

from three GEO datasets. 64 ADGs were subsequently 

selected by intersecting DEGs and anoikis-related 

genes. Functional analysis showed positive regulation 

of cell migration, pathways in cancer, response to 

wounding, and et al were major enriched, which 

highlighted the role of ADGs in tumor progression. By 

using univariate and LASSO Cox regression analyses,

 

 
 

Figure 7. Enrichment analysis of differentially expressed genes between patients in high- and low-risk groups in the TCGA 
cohort. (A, B) GO (A) and KEGG (B) analysis results of differentially expressed genes. 
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we proposed 6-gene signature, including EZH2, 

PRKCQ, CD36, INHBB, TDGF1, and MMP9. Their 

role in the process of anoikis resistance has been 

demonstrated. 

EZH2 could reduce ITGα2 transcription, leading to 

decreased focal adhesions between the extracellular 

matrix and the cytoskeleton, enhancing cell mobility 

and increase anoikis resistance [40]. PRKCQ could 

 

 
 

Figure 8. Correlation between immune cell infiltration and different risk scores. (A) Differences of TME between different risk 

groups by ESTIMATE algorithm. (B) Immune cell proportions for each tumor patient. (C) Analyzing the immune cell infiltration levels of PTC 
samples between different risk groups by CIBERSORT algorithm. *P < 0.05; **P < 0.01; ***P < 0.001. 
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promote anoikis resistance via kinase-activity-dependent 

stimulation of Erk/MAPK in breast cancer [41]. 

Blocking CD36 function or reducing its transcription 

could limit demethyl fruticulin A intake and integrin 

sequestration, restoring cell division and preventing 

anoikis [42]. INHBB could suppress anoikis resistance 

and migration of nasopharyngeal carcinoma cells by the 

TGF-β signaling pathway [43]. TDGF1 could enhance 

the anoikis resistance and the invasion ability of  

breast cancer cells [44]. MMP9 exerts its effects on  

the epithelium by cleaving one or more components  

of cell-cell junctions and triggering anoikis [45]. 

The risk score was subsequently calculated, and the 

ROC curves and AUC values confirmed the predictive 

power of our signature. In addition, our K-M analyses 

showed that the expression of each of these six  

genes was associated with the prognosis of PTC. 

Furthermore, we developed a nomogram incorporating 

the risk score and T stage. The nomogram demonstrated 

excellent predictive ability, as indicated by a high  

C-index of 0.712. This may have the potential to 

introduce novel insights into clinical decision-making 

processes. Additionally, we divided patients into high- 

and low-risk groups by the median risk score, and

 

 
 

Figure 9. Evaluation the value of the anoikis-related prognostic model in drug sensitivity and immunotherapy. (A–F) 

Correlation between risk score and drug sensitivity. (G–I) Differences in TIDE, Exclusion, and Dysfunction between low- and high-risk 
groups. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. 
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performed enrichment analysis, immune infiltration 

analysis, and drug sensitivity evaluation between two 

groups of PTC patients in TCGA. 

 
The GO enrichment analysis showed that the biological 

processes involved the production of molecular mediator 

of immune response, immunoglobulin production, and 

immune response signaling pathway, etc., which 

indicated that our prognostic model may be closely 

related to the biological immune process. Thus,  

these results motivated us to study the relationship 

between our prognostic model and tumor immune 

microenvironment (TME). Additionally, the KEGG 

enrichment analysis results showed the significance of 

cytokine-cytokine receptor interaction, which could 

regulate the immune mechanism of PTC patients and 

then affect the progression, metastasis and migration  

of the disease [46]. Besides, the KEGG enrichment 

analysis results highlighted the significance of pathways 

such as chemokine signaling pathway. The chemokine 

could be involved in recruitment and maintenance of 

immune cells within the THCA microenvironment [47], 

and this process may involve thyroid cancer cell 

growth, aggressiveness and metastasis [48]. 

 
The immune microenvironment refers to the complex 

network of immune cells, cytokines, chemokines, and 

other factors present within the tumor microenvironment 

[49]. A balanced TME can recognize and eliminate 

cancer cells, a process known as immunosurveillance 

[50]. However, tumors often develop various strategies 

to evade immune recognition and destruction, leading  

to immune evasion and tumor growth [51]. Therefore, 

we explored the TME between our two groups. The 

high-risk group exhibited higher stromal score, immune 

scores, and ESTIMATE score, and lower tumor purity 

compared to the low-risk group. Studies have suggested 

that an increase in stromal cells is associated with a 

poorer prognosis in THCA, a finding consistent with 

our results [52]. Furthermore, the augmentation of 

stromal cells can enhance the expression of diverse 

immune checkpoints, facilitating tumor cell immune 

evasion [52]. 

 
The differences in immune scores suggested different 

infiltration of immune cells between the two groups. We 

found that the infiltration of immune cells, including  

B cells naïve, plasma cells, T cells CD4+ memory 

activated, T cells follicular helper, T cells regulatory 

(Tregs), T cells gamma delta, macrophages M0,  

and macrophages M1, were higher in high-risk group, 

while T cells CD8+, NK cells resting, monocytes, 

macrophages M2, mast cells resting, eosinophils, and 

neutrophils were lower in high-risk group. These 

findings showed that aberrant immune cell infiltration 

may facilitate the progression of PTC, and may provide 

guidance for us to further analyze the correlation 

between TME and anoikis-related genes in PTC. 

 

In this study, we analyzed the drug sensitivity of 

chemotherapy drugs and targeted drugs commonly  

used for PTC patients. The high-risk group showed 

increased sensitivity to Sorafenib and Axitinib, but 

reduced sensitivity to Cisplatin, Doxorubicin, Paclitaxel, 

and Sunitinib. Furthermore, tumor immunotherapy has 

gained significant popularity, but the immunotherapy  

of THCA is still in the initial stage of exploration  

[53]. TIDE scores serve as a predictive tool for patient 

response to immunotherapy, as they predict the tumor’s 

potential capacity for immune evasion [24]. In our study, 

the high-risk group exhibited higher TIDE scores and 

Dysfunction score, and lower Exclusion score. These 

findings indicate that PTC patients in the high-risk 

group may experience high immune escape potential due 

to immune cell dysfunction, and the immunotherapy 

efficacy may be limited. 

 

However, our study has certain limitations. Firstly, our 

research primarily relies on data from public databases, 

necessitating the need for further cohort studies with 

larger sample sizes to validate our findings. Secondly, the 

underlying mechanisms of the association between ARGs 

and PTC warrant further experimental verification. 

 

CONCLUSION 
 

In conclusion, we developed a six anoikis-related genes 

signature capable of predicting progression in PTC 

patients. Further investigations into the molecular 

mechanisms underlying these features will enhance  

our understanding of their impact on PTC progression, 

potentially providing valuable insights for precision 

medicine approaches. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Heatmap of the DEGs between high- and low-risk groups. Abbreviations: Con: low-risk group; Treat: high-

risk group. 
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Supplementary Tables 
 

Supplementary Table 1. The results of univariate Cox regression analysis of the 64 ARGs. 

Gene HR HR.95L HR.95H P-value 

PDK4 0.813384 0.418117 1.582319 0.542944 

CXCL12 0.672002 0.341532 1.322236 0.249698 

TNFRSF10B 1.618241 0.815094 3.212761 0.16893 

F10 0.678121 0.344754 1.333844 0.260432 

PRKCQ 0.371878 0.174224 0.793766 0.010558* 

BLNK 1.730454 0.871564 3.435744 0.117085 

CEACAM6 1.135419 0.583849 2.208067 0.708219 

FN1 1.430055 0.727176 2.812329 0.299886 

ITGA2 1.289573 0.660118 2.519243 0.456675 

TIMP1 0.936598 0.482296 1.818835 0.846622 

CCND1 0.700209 0.359639 1.363293 0.294483 

PLAUR 1.334809 0.678455 2.626137 0.402929 

LGALS3 0.994759 0.512557 1.930607 0.987608 

SFN 1.436135 0.73027 2.824274 0.294188 

CLDN1 1.160057 0.596391 2.256459 0.661843 

CDKN1A 0.784467 0.403266 1.52601 0.474594 

PLAU 1.003439 0.517052 1.947368 0.991903 

BID 0.900536 0.463154 1.750962 0.757468 

FAS 0.817365 0.420266 1.589671 0.552373 

LAMB3 1.248822 0.639242 2.439696 0.515482 

CDH2 1.022473 0.526885 1.984208 0.947618 

SERPINA1 1.080092 0.555243 2.101063 0.820467 

MET 1.116252 0.573934 2.171015 0.745915 

INHBB 0.435113 0.215994 0.876521 0.01987* 

H19 NA NA NA NA 

CRYAB 0.605292 0.30488 1.201714 0.151339 

IL1RAP 1.028818 0.529971 1.997215 0.933101 

LMO3 0.56777 0.285925 1.12744 0.105824 

CDH3 0.95003 0.489177 1.845052 0.879689 

TGFBR3 0.609496 0.30695 1.210246 0.15715 

COL13A1 0.840768 0.43232 1.63511 0.609305 

TNFRSF12A 0.722052 0.370535 1.407043 0.338706 

TIAM1 1.151504 0.588941 2.251433 0.680073 

PRDM1 1.238724 0.636916 2.409165 0.528186 

S100A11 1.449379 0.736937 2.850583 0.28218 

SLPI 0.856398 0.441236 1.662191 0.646836 

CXCL14 0.677088 0.346172 1.324339 0.254593 

LTF 0.516769 0.252919 1.055873 0.070167 

CD36 0.41095 0.197321 0.855865 0.017512* 

PAK3 0.769079 0.395404 1.495895 0.439216 

TDGF1 0.430439 0.206679 0.896448 0.024322* 

PPARG 0.828337 0.425794 1.611445 0.579105 

CD151 1.047616 0.537916 2.040281 0.891207 

CRABP2 1.390912 0.706797 2.737189 0.339427 
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DAPK2 0.871217 0.44879 1.691257 0.683753 

ITGA3 1.368697 0.6958 2.692343 0.36322 

MUC1 1.376781 0.700026 2.707791 0.354168 

S100A4 1.123145 0.577457 2.184502 0.732238 

ETV4 0.630625 0.320552 1.240635 0.181742 

NOX4 0.952772 0.490779 1.849662 0.88634 

KL 1.123588 0.577429 2.186328 0.731537 

SPP1 1.311797 0.671443 2.562857 0.427049 

TLE1 0.921292 0.474671 1.788143 0.808558 

CXCL8 1.015485 0.521409 1.977739 0.963962 

LGALS1 0.764104 0.392676 1.486861 0.428289 

MMP9 2.23077 1.092652 4.554361 0.027575* 

EZH2 3.5077 1.593143 7.723072 0.00183* 

LPAR1 0.827049 0.425263 1.608439 0.575795 

IFI27 0.553241 0.278584 1.09868 0.090815 

TNC 1.184466 0.606089 2.314774 0.620447 

ARHGDIB 0.644484 0.327665 1.267634 0.203074 

ID2 0.712185 0.36443 1.391781 0.320758 

KRT14 0.912598 0.470287 1.770908 0.786857 

EFHD2 0.64788 0.329414 1.274226 0.208485 

*P < 0.05. 

 

 

Supplementary Table 2. Univariate and multivariate Cox regression analyses of clinical parameters. 

 
Univariate Cox regression analysis Multivariate Cox regression analysis 

HR HR 95L HR 95H P-value Coef HR HR 95L HR 95H P-value 

Risk score 2.145516949 1.588845036 2.897225893 6.32E-07* 0.773546345 2.167439128 1.574175931 2.98428675 2.13E-06* 

Gender 1.475298614 0.821308281 2.650047555 0.193179932 − 

T stage 2.812650703 1.578300772 5.012355132 0.000451474* 0.985046675 2.677936873 1.502513612 4.772899118 0.000835459* 

Focal type 0.912484255 0.520015815 1.601158066 0.749558197 − 

*P < 0.05 

 

 

Supplementary Table 3. The result of GO enrichment analysis. 

Ontology ID Description GeneRatio BgRatio p-value p.adjust q-value Count 

BP GO:0002377 Immunoglobulin production 71/443 212/18614 2.86E-62 9.08E-59 8.05E-59 71 

BP GO:0002440 
Production of molecular mediator 
of immune response 

75/443 328/18614 3.46E-52 5.49E-49 4.86E-49 75 

BP GO:0002768 
Immune response-regulating cell 
surface receptor signaling 
pathway 

35/443 329/18614 1.25E-13 1.33E-10 1.18E-10 35 

BP GO:0002429 
Immune response-activating cell 
surface receptor signaling 
pathway 

33/443 302/18614 3.03E-13 2.40E-10 2.13E-10 33 

BP GO:0002757 
Immune response-activating 
signaling pathway 

38/443 423/18614 2.18E-12 1.23E-09 1.09E-09 38 

BP GO:0046651 Lymphocyte proliferation 32/443 306/18614 2.33E-12 1.23E-09 1.09E-09 32 

BP GO:0070661 Leukocyte proliferation 34/443 348/18614 3.23E-12 1.34E-09 1.19E-09 34 
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BP GO:0002764 
Immune response-regulating 
signaling pathway 

39/443 450/18614 3.38E-12 1.34E-09 1.19E-09 39 

BP GO:0032943 Mononuclear cell proliferation 32/443 313/18614 4.28E-12 1.51E-09 1.34E-09 32 

BP GO:0030098 Lymphocyte differentiation 37/443 422/18614 8.87E-12 2.81E-09 2.49E-09 37 

BP GO:0002253 Activation of immune response 40/443 495/18614 1.58E-11 4.54E-09 4.03E-09 40 

BP GO:0050863 Regulation of T cell activation 34/443 377/18614 2.97E-11 7.86E-09 6.97E-09 34 

BP GO:1903131 Mononuclear cell differentiation 38/443 474/18614 6.58E-11 1.60E-08 1.42E-08 38 

BP GO:0050851 
Antigen receptor-mediated 
signaling pathway 

24/443 201/18614 8.87E-11 2.01E-08 1.78E-08 24 

BP GO:0002449 Lymphocyte mediated immunity 29/443 300/18614 1.72E-10 3.64E-08 3.22E-08 29 

CC GO:0019814 Immunoglobulin complex 64/484 108/19518 3.77E-75 1.11E-72 1.08E-72 64 

CC GO:0042101 T cell receptor complex 68/484 147/19518 7.64E-70 1.12E-67 1.10E-67 68 

CC GO:0098802 
Plasma membrane signaling 
receptor complex 

72/484 319/19518 2.97E-48 2.90E-46 2.84E-46 72 

CC GO:0009897 
External side of plasma 
membrane 

78/484 426/19518 3.79E-45 2.77E-43 2.72E-43 78 

CC GO:0042105 
Alpha-beta T cell receptor 
complex 

4/484 12/19518 0.000157807 0.009247507 0.009069766 4 

CC GO:0001533 Cornified envelope 7/484 59/19518 0.000618179 0.030187746 0.029607525 7 

CC GO:0072562 Blood microparticle 11/484 144/19518 0.000942559 0.039452845 0.038694546 11 

MF GO:0003823 Antigen binding 41/348 118/18369 5.80E-41 2.50E-38 2.28E-38 41 

MF GO:0005125 Cytokine activity 22/348 235/18369 7.94E-10 1.71E-07 1.56E-07 22 

MF GO:0005126 Cytokine receptor binding 22/348 270/18369 1.06E-08 1.52E-06 1.39E-06 22 

MF GO:0008009 Chemokine activity 9/348 49/18369 2.99E-07 2.66E-05 2.42E-05 9 

MF GO:0048018 Receptor ligand activity 28/348 497/18369 3.08E-07 2.66E-05 2.42E-05 28 

MF GO:0140375 Immune receptor activity 13/348 141/18369 2.89E-06 0.000208288 0.000189814 13 

MF GO:0042605 Peptide antigen binding 7/348 39/18369 7.53E-06 0.000464576 0.000423371 7 

MF GO:0042379 Chemokine receptor binding 9/348 74/18369 1.06E-05 0.000572551 0.000521769 9 

MF GO:0005164 
Tumor necrosis factor receptor 
binding 

6/348 30/18369 1.79E-05 0.000859425 0.000783199 6 

MF GO:0015026 Coreceptor activity 7/348 48/18369 3.11E-05 0.001222713 0.001114266 7 

MF GO:0032813 
Tumor necrosis factor receptor 
superfamily binding 

7/348 48/18369 3.11E-05 0.001222713 0.001114266 7 

MF GO:0004222 Metalloendopeptidase activity 10/348 122/18369 0.000110295 0.00397062 0.00361845 10 

MF GO:0042287 MHC protein binding 6/348 42/18369 0.000130633 0.00416982 0.003799983 6 

MF GO:0001664 
G protein-coupled receptor 
binding 

16/348 289/18369 0.000135133 0.00416982 0.003799983 16 

MF GO:0045236 
CXCR chemokine receptor 
binding 

4/348 18/18369 0.000313967 0.00904225 0.008240257 4 

 

 

Supplementary Table 4. The result of KEGG enrichment analysis. 

ID Description GeneRatio BgRatio p-value p.adjust q-value Count 

hsa04060 
Cytokine-cytokine receptor 
interaction 

29/153 297/8622 3.21E-14 6.92E-12 6.28E-12 29 

hsa04061 
Viral protein interaction with 
cytokine and cytokine receptor 

16/153 100/8622 1.64E-11 1.77E-09 1.61E-09 16 

hsa05340 Primary immunodeficiency 10/153 38/8622 7.12E-10 5.12E-08 4.65E-08 10 
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hsa04640 Hematopoietic cell lineage 12/153 99/8622 1.55E-07 8.37E-06 7.58E-06 12 

hsa04062 Chemokine signaling pathway 15/153 192/8622 1.43E-06 6.16E-05 5.59E-05 15 

hsa04672 
Intestinal immune network for IgA 
production 

8/153 49/8622 1.99E-06 7.17E-05 6.50E-05 8 

hsa05330 Allograft rejection 7/153 38/8622 3.84E-06 0.000118548 0.000107455 7 

hsa05323 Rheumatoid arthritis 10/153 93/8622 5.28E-06 0.000142496 0.000129163 10 

hsa04660 T cell receptor signaling pathway 11/153 121/8622 9.16E-06 0.000219757 0.000199195 11 

hsa04064 NF-kappa B signaling pathway 9/153 104/8622 9.01E-05 0.001946043 0.001763957 9 

hsa04940 Type I diabetes mellitus 6/153 43/8622 0.000100335 0.00197022 0.001785872 6 

hsa04514 Cell adhesion molecules 11/153 158/8622 0.000109874 0.001977739 0.001792687 11 

hsa05144 Malaria 6/153 50/8622 0.000236127 0.003868426 0.003506468 6 

hsa04657 IL-17 signaling pathway 8/153 94/8622 0.000250731 0.003868426 0.003506468 8 

hsa05320 Autoimmune thyroid disease 6/153 53/8622 0.000326537 0.004702139 0.004262173 6 

hsa05332 Graft-versus-host disease 5/153 42/8622 0.000825575 0.011145267 0.010102435 5 

hsa05321 Inflammatory bowel disease 6/153 65/8622 0.000986645 0.012536201 0.011363224 6 

hsa04650 
Natural killer cell mediated 
cytotoxicity 

8/153 132/8622 0.002355524 0.028266288 0.025621489 8 

hsa04662 B cell receptor signaling pathway 6/153 84/8622 0.003687196 0.041917599 0.037995484 6 

hsa05143 African trypanosomiasis 4/153 37/8622 0.003993356 0.041933578 0.038009969 4 

hsa04668 TNF signaling pathway 7/153 114/8622 0.004076876 0.041933578 0.038009969 7 
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