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ABSTRACT 
 

Background: Some preceding researches have observed that certain neurological disorders, such as Alzheimer’s 
disease and multiple sclerosis, may affect breast cancer risk. However, whether there are causal relationships 
between these neurological conditions and breast cancer is inconclusive. This study was designed to explore 
whether neurological disorders affected the risks of breast cancer overall and of the two subtypes (ER+ and ER-). 
Methods: In the course of this study, genome-wide association study (GWAS) data for nine neurological 
diseases (Alzheimer’s disease, multiple sclerosis, Parkinson’s disease, myasthenia gravis, generalized epilepsy, 
intracerebral haemorrhage, cerebral atherosclerosis, brain glioblastoma, and benign meningeal tumour) were 
collected from the Complex Trait Genetics lab and the MRC Integrative Epidemiology Unit, and single-
nucleotide polymorphisms (SNPs) extensively associated with these neurological ailments had been recognized 
as instrumental variables (IVs). GWAS data on breast cancer were collected from the Breast Cancer Association 
Consortium (BCAC). Two-sample Mendelian randomization (MR) analyses as well as multivariable MR analyses 
were performed to determine whether these SNPs contributed to breast cancer risk. Additionally, the accuracy 
of the results was evaluated using the false discovery rate (FDR) multiple correction method. Both 
heterogeneity and pleiotropy were evaluated by analyzing sensitivities. 
Results: According to the results of two-sample MR analyses, Alzheimer’s disease significantly reduced the risks 
of overall (OR 0.925, 95% CI [0.871−0.982], P = 0.011) and ER+ (OR 0.912, 95% CI [0.853−0.975], P = 0.007) 
breast cancer, but there was a negative result in ER- breast cancer. However, after multiple FDR corrections, the 
effect of Alzheimer’s disease on overall breast cancer was not statistically significant. In contrast, multiple 
sclerosis significantly increased ER+ breast cancer risk (OR 1.007, 95% CI [1.003-1.011], P = 0.001). In addition, 
the multivariable MR analyses showed that Alzheimer’s disease significantly reduced the risk of ER+ breast 
cancer (IVW: OR 0.929, 95% CI [0.864-0.999], P=0.047; MR-Egger: OR 0.916, 95% CI [0.846-0.992], P=0.031); 
however, multiple sclerosis significantly increased the risk of ER+ breast cancer (IVW: OR 1.008, 95% CI [1.003-
1.012], P=4.35×10-4; MR‒Egger: OR 1.008, 95% CI [1.003-1.012], P=5.96×10-4). There were no significant 
associations between the remainder of the neurological diseases and breast cancer. 
Conclusions: This study found the trends towards a decreased risk of ER+ breast cancer in patients with 
Alzheimer’s disease and an increased risk in patients with multiple sclerosis. However, due to the limitations of 
Mendelian randomization, we cannot determine whether there are definite causal relationships between 
neurological diseases and breast cancer risk. For conclusive evidences, more prospective randomized controlled 
trials will be needed in the future. 
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INTRODUCTION 
 

As the most common form and the primary cause of 

death for women with cancers, breast cancer has 

varying degrees of impacts on women’s quality of life 

and survival [1, 2]. Some correlations have been found 

between cancers and neurological diseases, like 

Alzheimer’s disease and multiple sclerosis [3–5]. Based 

on previous researches, Alzheimer’s disease was 

negatively associated with cancers. As compared to the 

control group, Alzheimer’s patients were 42-50% less 

likely to develop cancers, and cancer patients were also 

less likely to develop Alzheimer’s [6–10]. Another 

study indicated that breast cancer patients had a lower 

risk of having previously had Alzheimer’s [11]. Studies 

of large populations have shown an increased cancer 

rate among people with multiple sclerosis [12–14], 

whereas other studies did not pinpoint a clear 

connection [15, 16]. Experimental designs or 

observational studies in the past may have been limited 

or confounded by some factors, resulting in different 

conclusions. There are, therefore, no clear causal 

relationships between certain neurological diseases and 

cancer risks. 

 

It is a promising epidemiological method for determining 

exposure-outcome relationships through Mendelian 

randomization (MR) [5, 17, 18]. According to 

Mendel’s Second Law, random classifications of 

alleles during the process of gametic formation can 

lead to random allocations of exposures associated 

with an allele or group of alleles, which are usually 

independent of environmental risk factors and precede 

risk factors and disease progression [19, 20]. In MR, 

genetic variables act as instrumental variables (IVs) 

[21–23]. Like randomized controlled trials, MR makes 

use of single-nucleotide polymorphisms (SNPs) to 

randomly divide individuals into two companies 

described via genotype, and it assumes that genotype 

distribution is a random action in the course of 

meiosis, making MR less affected by possible 

confounders and reverse causalities [24, 25]. In MR 

analysis, three assumptions must be taken into 

account: (1) genetic variants that are considered as IVs 

should be strongly correlated with the exposure; (2) it 

is imperative that no confounding factors are linked to 

the genetic variants used; and (3) the selected genetic 

variants should affect the outcome only through the 

exposure, not via other means [26–28]. 

 

Based on genome-wide association study (GWAS) 

statistics, we systematically investigated the causal 

relationships between nine neurological diseases and 

breast cancer risk using MR analyses. Our findings may 

offer some insights into breast cancer screening and 

treatment strategies. 

MATERIALS AND METHODS 
 

GWAS data for neurological diseases 

 

Nine neurological disorders were selected for this study, 

including Alzheimer’s disease, multiple sclerosis, 

Parkinson’s disease, myasthenia gravis, generalized 

epilepsy, intracerebral haemorrhage, cerebral athero-

sclerosis, brain glioblastoma, and benign meningeal 

tumour. We retrieved the GWAS data for Alzheimer’s 

disease from the Complex Trait Genetics lab 

(https://ctg.cncr.nl/software/summary_statistics); GWAS 

data for multiple sclerosis came from  

the International Multiple Sclerosis Genetics 

Consortium; GWAS data for Parkinson’s disease 

came from the International Parkinson’s Disease 

Genomics Consortium; and for the remaining 

neurological diseases, the data were from the  

FinnGen consortium, which can be publicly accessed 

from the MRC Integrative Epidemiology Unit 

(https://gwas.mrcieu.ac.uk/). The GWAS data for all 

neurological disorders came from a population of 

European descent. Supplementary Table 1 describes 

the information related to GWAS data for these nine 

neurological disorders. 

 

GWAS data for breast cancer 

 

GWAS data on overall breast cancer and its subtypes 

(ER+ and ER-) for Europeans, including 61282 breast 

cancer patients (38197 ER+ cases and 9655 ER- cases) 

and 45494 controls, were obtained from the Breast Cancer 

Association Consortium (BCAC) and were publicly 

available on the website https://gwas.mrcieu.ac.uk/. 

Supplementary Table 2 describes the detailed information 

on the GWAS data for breast cancer. A detailed 

description of diagnostic criteria, demographic 

characteristics, and quality control can be found in the 

original GWAS [29]. 

 

Instrumental variable selection 

 

For Alzheimer’s disease, multiple sclerosis, and 

Parkinson’s disease, we chose single-nucleotide 

polymorphisms (SNPs) that independently affected 

these neurological disorders at a genome-wide 

significance level (P<5×10-8) and were not in linkage 

disequilibrium (LD, r2 < 0.1) for the Mendelian 

randomization analyses. However, as only a few SNPs 

reached genome-wide significance for the remaining 

neurological diseases, we relaxed the association 

threshold, with P<5×10-6 and LD r2 < 0.001. Earlier 

studies have used this method [30–32]. We calculated 

the phenotypic variance explained through every 

instrument with R2: R2=[2×EAF×(1-EAF)×(β)2]/ 

[(2×EAF×(1-EAF)×(β)2)+(2×EAF×(1-EAF)×N×se(β)2)], 
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where EAF was the effect allele frequency, β was the 

estimated genetic effect on neurological diseases, N 

was the sample size and se (β) was the standard error 

of the genetic effect. We additionally calculated the F-

statistic to examine the statistical strength of every 

instrumental variable by the following formula: 

F=[R2×(N-k-1)]/[(1-R2)×k], and k was the number of 

instrumental variables [32–34]. F>10 indicated that the 

instrumental variables were robust and could be used 

for MR analyses [19, 35, 36]. Next, we extracted SNPs 

for neurological diseases from the breast cancer data 

and eliminated the ones associated with outcomes. A 

coordination process was then carried out to align SNP 

alleles between exposures and outcomes, and we 

discarded palindromic SNPs with medium effective 

allelic frequencies or SNPs with incompatible alleles. 

Then, we screened each SNP strongly associated  

with neurological diseases in the Phenoscanner V2 

website (http://www.phenoscanner.medschl.cam.ac.uk/) 

to explore and eliminate those SNPs related to 

common confounding factors, including age of 

menarche [37], alcohol intake frequency [38], 

oestrogen [39] and mammographic density [40]. MR 

analyses were only conducted on exposures containing 

more than 3 SNPs. 

 

Statistical analyses 

 

In the two-sample MR analysis, odds ratios (ORs) and 

95% confidence intervals (CIs) were calculated by the 

inverse variance weighting (IVW) method [19, 31]. MR 

analyses commonly used the IVW method to pool all 

Wald ratios for every SNP [41]. The IVW assumed all 

genetic variants were valid, making it the most effective 

MR estimation method, while it was shown to be 

susceptible to pleiotropic bias. Causal links between 

neurological diseases and breast cancer risk were 

examined using IVW as the primary method of 

evaluation in our study. Furthermore, MR-Egger 

method was applied along with weighted median 

method. For the purpose of assessing horizontal 

pleiotropy, the MR-Egger regression approach was 

employed if the intercept value deviated from zero [42]. 

To make the results more reliable, false discovery rate 

(FDR) multiple testing method was applied to obtain 

adjusted P-values. P<0.05 represented statistical 

significance. 

 

For detecting the heterogeneity, we used the Cochran Q 

test, which confirmed that differences among effect 

sizes in selected genetic variants were not due to 

sampling errors, but to actual differences among SNPs 

[1, 43, 44]. P<0.05 indicated that heterogeneity was 
present. Horizontal pleiotropy value was assessed on the 

basis of Egger intercepts [35, 42]. Furthermore, we 

carried out leave-one-out (LOO) analyses in order to 

identify the high interference points that drove the 

pooled IVW estimates. 

 

As Alzheimer’s disease and multiple sclerosis are 

genetically linked, there may have been false-positive 

results in the two-sample MR analyses. We then 

conducted multivariable IVW and multivariable MR-

Egger analyses so that we could assess the causal 

connections between these two diseases and breast 

cancer. Using the “MendelianRandomization”, 

“TwoSampleMR”, “data.table”, “VariantAnnotation” 

packages of R version 4.2.3, statistical analyses were 

performed. 

 

RESULTS 
 

Correlations between neurological diseases and 

overall breast cancer risk 

 

Through the two-sample MR analysis using IVW 

method, we found that Alzheimer’s disease significantly 

reduced the overall breast cancer risk (OR 0.925, 95% 

CI [0.871−0.982], P = 0.011) (Figure 1). According to 

the scatterplot, we were able to see the causal estimates 

that were generated from each instrumental variable 

(Figure 2). A similar conclusion was reached with the 

MR-Egger and weighted median methods (Table 1). 

However, after FDR multiple corrections, the adjusted 

P-values showed that Alzheimer’s disease was not 

associated with a significantly lower breast cancer risk 

(Table 2). Neither heterogeneity nor pleiotropy was 

observed (Table 1). The LOO analysis revealed that 

none of the instrumental variables significantly altered 

the degree of causality between Alzheimer’s disease 

and overall breast cancer risk (Supplementary Figure 1). 

For multiple sclerosis, Parkinson’s disease, myasthenia 

gravis, generalized epilepsy, intracerebral haemorrhage, 

cerebral atherosclerosis, brain glioblastoma, and benign 

meningeal tumours, there was no evidence that they 

could significantly affect the overall breast cancer risk 

(Table 1 and Figure 1). 

 

Correlations between neurological disorders and the 

risk of ER+ breast cancer 

 

There was a significant reduction in the risk of breast 

cancer with ER+ in patients with Alzheimer’s disease 

(OR 0.912, 95% CI [0.853−0.975], P = 0.007) 

according to IVW method from the two-sample MR 

analysis. In contrast, multiple sclerosis significantly 

increased ER+ breast cancer risk (OR 1.007, 95% CI 

[1.003-1.011], P = 0.001) (Figure 1). The correlation 

values estimated using the MR-Egger and weighted 

median approaches were generally in agreement with 

those computed by IVW (Supplementary Table 3).  

The results after FDR multiple corrections were 
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consistent with those described above (Table 2). No 

significant heterogeneity was observed. Moreover, 

according to the MR-Egger test, no significant 

pleiotropic effects were observed among the genetic 

instrumental variables (Supplementary Table 3). The 

LOO figures revealed no significant influences of 

instrumental variables on the causal correlations between 

these two neurological ailments and ER+ breast cancer 

(Supplementary Figures 2, 3). Additionally, the 

remaining seven neurological diseases had no significant 

impacts on ER+ breast cancer risk (Figure 1 and 

Supplementary Table 3). 

 

 
 

Figure 1. The effects of nine neurological diseases on the risks of overall, ER+ and ER- breast cancer from IVW method. 
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Then, a multivariable MR analysis for Alzheimer’s 

disease and multiple sclerosis was performed, with the 

outcome of ER+ breast cancer. Both the multivariable 

IVW method and the multivariable MR-Egger method 

indicated that Alzheimer’s disease significantly reduced 

the risk of ER+ breast cancer (IVW: OR 0.929, 95% CI 

[0.864-0.999], P=0.047; MR‒Egger: OR 0.916, 95% CI 

[0.846-0.992], P=0.031). In contrast, breast cancer with 

 

 
 

Figure 2. Scatter plots for the effects of Alzheimer’s disease and multiple sclerosis on breast cancer risk. (A) The effect of 

Alzheimer’s disease on overall breast cancer; (B) The effect of multiple sclerosis on overall breast cancer; (C) The effect of Alzheimer’s disease 
on ER+ breast cancer; (D) The effect of multiple sclerosis on ER+ breast cancer; (E) The effect of Alzheimer’s disease on ER- breast cancer;  
(F) The effect of multiple sclerosis on ER- breast cancer. 

7105



www.aging-us.com 6 AGING 

Table 1. The MR analyses of neurological diseases and overall breast cancer risk from MR Egger and weighted 
median methods. 

Neurological diseases 
Used 

SNPs 

MR Egger  Weighted median 
Pheterogeneity Ppleiotropy 

OR(95% CI) P-value  OR(95% CI) P-value 

Alzheimer’s disease 86 0.913(0.843-0.989) 0.028  0.909(0.842-0.982) 0.015 0.070 0.626 

Multiple sclerosis 192 1.004(0.999-1.009) 0.121  1.003(0.998-1.008) 0.272 0.028 0.848 

Parkinson’s disease 24 1.038(0.959-1.125) 0.366  1.026(0.984-1.070) 0.225 0.119 0.509 

Myasthenia gravis 8 1.001(0.980-1.023) 0.909  1.004(0.988-1.020) 0.639 0.317 0.584 

Generalized epilepsy 12 1.019(0.990-1.048) 0.237  1.005(0.980-1.031) 0.705 0.850 0.197 

Intracerebral haemorrhage 5 1.022(0.964-1.083) 0.518  1.027(0.982-1.073) 0.245 0.457 0.938 

Cerebral atherosclerosis 7 1.005(0.997-1.013) 0.290  1.004(0.996-1.012) 0.297 0.871 0.777 

Brain glioblastoma 8 0.993(0.974-1.012) 0.495  0.997(0.988-1.007) 0.616 0.016 0.567 

Benign meningeal tumor  12 0.992(0.964-1.022) 0.629  1.002(0.978-1.027) 0.871 0.112 0.153 

 

Table 2. The adjusted P-values after the multiple corrections using the 
FDR method. 

Neurological diseases Overall breast cancer ER+ breast cancer 

Alzheimer’s disease 0.099 0.032 

Multiple sclerosis 0.302 0.009 

Parkinson’s disease 0.564 0.629 

Myasthenia gravis 0.564 0.629 

Generalized epilepsy 0.683 0.629 

Intracerebral haemorrhage 0.473 0.629 

Cerebral atherosclerosis 0.473 0.629 

Brain glioblastoma 0.683 0.629 

Benign meningeal tumor  0.564 0.629 

The adjusted P-values were obtained based on the P-values from IVW method. 

 

ER+ was significantly more likely to occur in 

individuals with multiple sclerosis (IVW: OR 1.008, 

95% CI [1.003-1.012], P=4.35×10-4; MR‒Egger: OR 

1.008, 95% CI [1.003-1.012], P=5.96×10-4), according 

to the multivariable MR analysis (Figure 3). 

 

Correlations between neurological disorders and the 

risk of ER- breast cancer 

 

According to the results of two-sample MR analyses, 

none of the nine neurological disorders significantly 

affected the risk of ER- breast cancer (Figure 1).  

The results obtained from the MR-Egger and  

weighted median resembled those obtained from  

IVW. Heterogeneity and pleiotropy were not shown 

(Supplementary Table 4). 

 

DISCUSSION 
 

In this research, the causal connections between nine 

neurological disorders and breast cancer were 

investigated using two-sample MR and multivariable 

MR analyses. We found that Alzheimer’s disease 

significantly reduced overall and ER+ breast cancer 

risks. Although the effect of Alzheimer’s disease on 

overall breast cancer after FDR multiple corrections 

was not statistically significant, it still suggested a 

tendency for Alzheimer’s disease to reduce breast 

cancer risk, in line with previous findings [7, 11]. In 

addition, this study also demonstrated that multiple 

sclerosis can significantly increase ER+ breast cancer 

risk, which was also concluded in previous researches 

[13]. The other seven neurological disorders did not 

appear to be associated with the risk of breast cancer. 

 

This study provided some evidences that Alzheimer’s 

disease and breast cancer were genetically linked. The 

pathophysiological mechanisms of these two diseases 

have been extensively researched but have not been 

clearly defined. Alzheimer’s disease and cancers are 

negatively correlated, which indicates that one disease 

may prevent the other. An Alzheimer’s patient’s cancer 

risk was 61% lower than that of a control participant 

[6]. Other studies have also demonstrated that 
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Alzheimer’s patients were less likely to develop cancers 

[8–11]. Conversely, some comprehensive longitudinal 

studies with large numbers of participants also 

concluded that cancers might reduce Alzheimer’s risk 

[7, 45, 46]. 

 

Cancer and neurodegeneration are viewed as having 

opposite mechanisms: one involves a resistance to cell 

death, while the other involves premature cell death [47, 

48]. The pathophysiology of Alzheimer’s disease plays 

a role in apoptosis, synaptic loss and neuronal 

dysfunction. The growth of cancer is uncontrolled and 

excessive, in contrast [49]. Both diseases share a few 

common risk factors, with aging being the most 

significant one. The key steps in its pathophysiology are 

dysregulation of the cell cycle and inflammation. Both 

diseases are characterized by mechanisms that regulate 

cell survival. Immune function and development can be 

adversely affected by aging. Metabolic disorders and 

reprogramming associated with aging may contribute to 

neurodegeneration and cancer development. Both 

ailments are related to pathways and genes concerned in 

bioenergetics, inflammation, DNA harm and repair, 

oxidative stress and unusual cell cycle activation [47, 

50]. There are several other factors that contribute to 

both conditions, such as obesity, diabetes, physical 

inactivity, smoking and family history. Furthermore, 

Alzheimer’s disease and cancer also share some 

signalling pathways. Among the cyclins, p53 is a 

particularly important protein. Human cancers, such as 

breast cancer, frequently display dysfunctional p53 

activity [51, 52]. Studies have indicated that 

conformationally altered p53 had novel transcriptional 

features, and this change was involved in cancer 

development by affecting genes that regulated 

transcriptional regulators responsible for encoding 

carcinogenic activities. The p53 gene has also been 

shown to be crucial in neurodegenerative diseases such 

as Alzheimer’s. In Alzheimer’s disease, the p53 

controls various neuropathologic processes, such as 

lethal cell cycle reentry, immoderate DNA damages, 

and abnormal cell deaths. The Wnt signalling pathway 

is another related pathway. Researchers have found 

that suppressing Wnt signaling increased susceptibility 

to neuronal death while preventing cancer growth. 

Furthermore, upregulation of the Wnt pathway 

accelerated tumour development while also protecting 

against neurodegeneration [53, 54]. 

 

This study also revealed a link at the genetic level 

between multiple sclerosis and breast cancer. Although 

no statistical significance was observed in the MR 

analysis between multiple sclerosis and overall breast 

cancer, there was still a tendency for multiple sclerosis 

to increase ER+ breast cancer risk. In 2015, a 

systematic review found that cancers of the cervix, 

breast and digestive system had high incidences in 

multiple sclerosis patients [55]. In Sweden, women with 

multiple sclerosis aged 65 years and older were more 

likely to develop breast cancer [56, 57]. Numerous 

studies have found that cases and deaths from bladder 

cancer are higher in multiple sclerosis patients than in 

matched patients [55, 58]. Multiple sclerosis also 

appeared to be associated with an increased incidence  

of cancer in accordance with other previous studies  

[13, 14, 59]. The links between multiple sclerosis and 

cancers are complex, and there are several factors that 

may affect the morbidities of cancers. A person with 

multiple sclerosis is much more likely to smoke, be 

inactive, and be obese, which are all associated with a 

higher cancer risk [60–62]. Chronic immunosuppression 

that is secondary to the use of disease-modifying 

therapy (DMT) may also increase the risk of cancer 

[63–67]. Several studies found that the balance between 

 

 
 

Figure 3. Effects of Alzheimer’s disease and multiple sclerosis on ER+ breast cancer: results from the multivariable MR 
analysis. 
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inflammatory and regulatory T cells was disrupted in 

patients with multiple sclerosis, which correlated with 

the disease activity [68, 69]. It has been suggested that 

excessive inflammation of Th17 cells or excessive 

immunosuppression induced by Treg cells might cause 

cancers [70]. More evidence will be obtained by 

randomized controlled trials. 

 

According to our research, Parkinson’s disease and 

breast cancer were not significantly related, which was 

in agreement with previous studies [71, 72]. Other 

studies, however, have linked Parkinson’s disease with 

a few types of cancers, such as lung cancer and 

pancreatic cancer [73–75]. It is possible, in the absence 

of causal effects, for apparent associations to be 

explained by confounding factors, genetic pre-

dispositions, biological pathways, or the biases 

identified during the evaluation processes [76, 77]. A 

definitive link between Parkinson’s disease and breast 

cancer should also be demonstrated by prospective 

trials. Moreover, the study did not find significant 

associations between several other neurological diseases 

and breast cancer. Previous studies demonstrated that 

elderly myasthenia gravis patients with a longer course 

of disease had higher risks of developing extrathyroidal 

malignancies [78]. We may have reached different 

conclusions due to the small sample sizes in the GWAS 

data. In addition, it is possible that previous results were 

biased or confounded by various factors. There are few 

studies on the relationships between other neurological 

diseases and cancers, and more accurate evidence needs 

to come from randomized controlled trials with large 

sample sizes. 

 

This study has several obvious advantages. Firstly, this 

is the first time that causal relationships between nine 

neurological diseases and breast cancer have been 

assessed using two-sample MR and multivariable MR 

methods. In addition, MR analysis has the advantage of 

making public data more accessible, so research time 

and expenses can be reduced. Furthermore, the MR 

design minimizes reverse causality and residual 

confounding. In our study, multiple methods have been 

used to verify that MR assumptions were not violated in 

order to ensure that MR estimates were accurate. 

Different MR models showed similar directions and 

amplitudes, confirming the robustness. Despite this, our 

study has undeniable limitations. First, the GWAS data 

of breast cancer in this study came from female 

samples, so that we lack evidences on whether neuro-

logical diseases have effects on the risks of male breast 

cancer patients. Second, we didn’t explore the effects of 

breast cancer on neurological diseases in reverse, future 
researches can focus on this topic. Second, the study 

used European population data, and further explorations 

of the effects of neurological disorders on breast cancer 

risk in other populations will be needed in the future. 

Third, the sample size for each neurological disease in 

this study was different, resulting in different standards 

for the screening of SNPs required for our study. In the 

future, more data with large sample sizes will be needed 

for research. Fourth, although we tried to minimize the 

effects of pleiotropy in this study, it is impossible to 

completely eliminate pleiotropy in complex biological 

systems. The MR approach used in this study can only 

provide trends for the associations between neurological 

diseases and breast cancer risk, but cannot definitively 

confirm causal relationships. Therefore, more 

randomized controlled trials with large-sample data are 

needed to draw more accurate conclusions. 

 

Overall, based on the results of this comprehensive MR 

study, Alzheimer’s disease tends to be negatively 

correlated with ER+ breast cancer, while multiple 

sclerosis has a trend towards a positive association, 

which can help the prevention of breast cancer in 

clinical practice. However, this study can only obtain 

trends rather than clear causal relationships between 

them on account of the limitations of MR analyses. In 

the future, the accurate results will be demonstrated 

with more prospective experimental designs, such as 

randomized controlled trials and cohort studies. 
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SUPPLEMENTARY MATERIALS 
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Supplementary Figure 1. Leave-one-out analysis of Alzheimer’s disease and overall breast cancer risk. 
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Supplementary Figure 2. Leave-one-out analysis of Alzheimer’s disease and ER+ breast cancer risk. 
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Supplementary Figure 3. Leave-one-out analysis of multiple sclerosis and ER+ breast cancer risk. 
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Supplementary Tables 
 

 

Supplementary Table 1. Detailed information on GWAS data for neurological disease. 

Neurological disease Year 
Sample 

size 
Consortium Link 

Alzheimer’s disease 2019 455258 Complex Trait Genetics lab https://pubmed.ncbi.nlm.nih.gov/30617256/ 

Multiple sclerosis 2019 115803 
International Multiple 

Sclerosis Genetics Consortium 
https://gwas.mrcieu.ac.uk/datasets/ieu-b-18/ 

Parkinson’s disease 2019 482730 
International Parkinson’s 

Disease Genomics Consortium 
https://gwas.mrcieu.ac.uk/datasets/ieu-b-7/ 

Myasthenia gravis 2021 217288 FinnGen consortium 
https://gwas.mrcieu.ac.uk/datasets/finn-b-

G6_MYASTHENIA/ 

Generalized epilepsy 2021 214313 FinnGen consortium https://gwas.mrcieu.ac.uk/datasets/finn-b-GE/ 

Intracerebral 

haemorrhage 
2021 202833 FinnGen consortium https://gwas.mrcieu.ac.uk/datasets/finn-b-I9_ICH/ 

Cerebral 

atherosclerosis 
2021 203172 FinnGen consortium 

https://gwas.mrcieu.ac.uk/datasets/finn-b-

I9_CERATHER/ 

Brain glioblastoma 2021 218792 FinnGen consortium https://gwas.mrcieu.ac.uk/datasets/finn-b-C3_GBM/ 

Benign meningeal 

tumor 
2021 218792 FinnGen consortium 

https://gwas.mrcieu.ac.uk/datasets/finn-b-

CD2_BENIGN_MENINGES_CEREBRAL/ 

 

Supplementary Table 2. Detailed information on GWAS data for breast cancer. 

Outcome Year Sample size Consortium Link 

Overall breast cancer 2017 106776 
Breast Cancer 

Association Consortium 
https://gwas.mrcieu.ac.uk/datasets/ieu-a-1129/ 

ER+ breast cancer 2017 83691 
Breast Cancer 

Association Consortium 
https://gwas.mrcieu.ac.uk/datasets/ieu-a-1132/ 

ER- breast cancer 2017 55149 
Breast Cancer 

Association Consortium 
https://gwas.mrcieu.ac.uk/datasets/ieu-a-1135/ 

 

Supplementary Table 3. The MR analyses of neurological diseases and ER+ breast cancer risk from MR Egger 
and weighted median methods. 

Neurological diseases 
Used 

SNPs 

MR Egger  Weighted median 
Pheterogeneity Ppleiotropy 

OR(95% CI) P-value  OR(95% CI) P-value 

Alzheimer’s disease 86 0.884(0.809-0.965) 0.007  0.875(0.802-0.954) 0.003 0.100 0.284 

Multiple sclerosis 192 1.006(1.001-1.012) 0.019  1.005(0.999-1.011) 0.113 0.061 0.791 

Parkinson’s disease 25 1.046(0.942-1.162) 0.406  1.028(0.978-1.081) 0.273 0.006 0.525 

Myasthenia gravis 8 0.991(0.968-1.015) 0.504  0.996(0.976-1.018) 0.742 0.199 0.190 

Generalized epilepsy 12 1.010(0.978-1.043) 0.554  0.998(0.969-1.029) 0.908 0.718 0.097 

Intracerebral haemorrhage 5 1.005(0.940-1.075) 0.891  1.031(0.977-1.087) 0.265 0.409 0.728 

Cerebral atherosclerosis 7 1.005(0.995-1.015) 0.401  1.004(0.995-1.013) 0.358 0.379 0.755 

Brain glioblastoma 8 0.993(0.975-1.012) 0.508  0.995(0.983-1.006) 0.351 0.078 0.659 

Benign meningeal tumor  12 0.994(0.960-1.029) 0.742  1.008(0.980-1.038) 0.572 0.107 0.266 

 

  

7117

https://pubmed.ncbi.nlm.nih.gov/30617256/
https://gwas.mrcieu.ac.uk/datasets/ieu-b-18/
https://gwas.mrcieu.ac.uk/datasets/ieu-b-7/
https://gwas.mrcieu.ac.uk/datasets/finn-b-G6_MYASTHENIA/
https://gwas.mrcieu.ac.uk/datasets/finn-b-G6_MYASTHENIA/
https://gwas.mrcieu.ac.uk/datasets/finn-b-GE/
https://gwas.mrcieu.ac.uk/datasets/finn-b-I9_ICH/
https://gwas.mrcieu.ac.uk/datasets/finn-b-I9_CERATHER/
https://gwas.mrcieu.ac.uk/datasets/finn-b-I9_CERATHER/
https://gwas.mrcieu.ac.uk/datasets/finn-b-C3_GBM/
https://gwas.mrcieu.ac.uk/datasets/finn-b-CD2_BENIGN_MENINGES_CEREBRAL/
https://gwas.mrcieu.ac.uk/datasets/finn-b-CD2_BENIGN_MENINGES_CEREBRAL/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-1129/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-1132/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-1135/


www.aging-us.com 18 AGING 

Supplementary Table 4. The MR analyses of neurological diseases and ER- breast cancer risk from MR Egger and 
weighted median methods. 

Neurological diseases 
Used 

SNPs 

MR Egger  Weighted median 
Pheterogeneity Ppleiotropy 

OR(95% CI) P-value  OR(95% CI) P-value 

Alzheimer's disease 86 0.978(0.852-1.123) 0.756  0.981(0.854-1.126) 0.783 0.194 0.921 

Multiple sclerosis 192 0.998(0.990-1.006) 0.608  0.996(0.987-1.006) 0.455 0.081 0.709 

Parkinson's disease 26 1.013(0.890-1.153) 0.848  1.033(0.963-1.108) 0.361 0.285 0.939 

Myasthenia gravis 8 1.020(0.980-1.062) 0.372  1.013(0.983-1.044) 0.406 0.212 0.558 

Generalized epilepsy 12 1.029(0.961-1.101) 0.432  1.018(0.967-1.071) 0.499 0.089 0.858 

Intracerebral haemorrhage 5 1.072(0.975-1.179) 0.245  1.065(0.982-1.154) 0.129 0.976 0.834 

Cerebral atherosclerosis 7 1.006(0.991-1.020) 0.487  1.003(0.988-1.017) 0.714 0.796 0.561 

Brain glioblastoma 8 0.992(0.971-1.014) 0.493  0.999(0.982-1.017) 0.936 0.569 0.330 

Benign meningeal tumor  12 1.006(0.960-1.053) 0.817  1.010(0.966-1.056) 0.666 0.840 0.952 
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