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ABSTRACT 
 

Background: Observational studies have previously shown a possible link between fatty acids and aging-related 
diseases, raising questions about its health implications. However, the causal relationship between the two 
remains uncertain. 
Methods: Univariable and multivariable Mendelian randomization (MR) was used to analyze the relationship 
between five types of fatty acids—polyunsaturated fatty acid (PUFA), monounsaturated fatty acid (MUFA), 
saturated fatty acid (SFA), Omega-6 fatty acid (Omega-6 FA), and Omega-3 fatty acid (Omega-3 FA) and three 
markers of aging: telomere length (TL), frailty index (FI), and facial aging (FclAg). The primary approach for 
Mendelian randomization (MR) analysis involved utilizing the inverse variance weighted (IVW) method, with 
additional supplementary methods employed. 
Results: Univariate MR analysis revealed that MUFA, PUFA, SFA, and Omega-6 fatty acids were positively 
associated with TL (MUFA OR: 1.019, 95% CI: 1.006-1.033; PUFA OR: 1.014, 95% CI: 1.002-1.026; SFA OR: 1.016, 
95% CI: 1.002-1.031; Omega-6 FAs OR=1.031, 95% CI: 1.006-1.058). PUFA was also associated with a higher FI 
(OR: 1.033, 95% CI: 1.009-1.057). In multivariate MR analysis, after adjusting for mutual influences among the 
five fatty acids, MUFA and PUFA were positively independently associated with TL (MUFA OR: 1.1508, 95% CI = 
1.0724-1.2350; PUFA OR: 1.1670, 95% CI = 1.0497-1.2973, while SFA was negatively correlated (OR: 0.8005, 95% 
CI: 0.7045-0.9096). 
Conclusions: Our research presents compelling evidence of a causal association between certain fatty acids and 
indicators of the aging process. In particular, MUFA and PUFA may play a role in slowing down the aging 
process, while SFAs may contribute to accelerated aging. These findings could have significant implications for 
dietary recommendations aimed at promoting healthy aging. 
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INTRODUCTION 
 

Aging in organisms is marked by declining biological 

functions and notable genetic and epigenetic changes 

[1]. Chronic diseases, frailty, and cognitive decline  

[2] constitute notable aging traits [3]. Accelerated 

aging leads to heightened disease and mortality risks, 

alongside diminished life expectancy and quality of 

life [4]. To evaluate accelerated aging, proxy indicators 

such as telomere length (TL), facial aging (FclAg), and 

frailty index (FI) play a pivotal role in evaluating 

biological age [5]. Efficiently identifying and managing 

influencing factors will contribute to averting premature 

mortality, prolonging healthy life expectancy, and 

enhancing overall quality of life. 

 

Recent research has revealed that advancements in 

genetic engineering techniques have linked alterations  

in lipid metabolism with the process of aging and the 

development of age-related diseases [6]. Accumulation of 

lipids and compromised fatty acid utilization in organs 

are correlated with age-related pathophysiological traits. 

Variations in adipokine levels further contribute to the 

aging process by influencing systemic metabolism and 

inflammation [7]. There is evidence that dietary fatty 

acids may hasten aging [8, 9]. However, some studies 

have demonstrated that some fatty acids (e.g., Omega-3 

[10, 11], non-long-chain saturated fatty acids [12, 13], 

and lower n-6:n-3 PUFA ratios [14], etc.) may mitigate 

aging. A definitive connection between fatty acids and 

the aging process has yet to be established [12]. 

 

Due to evidential constraints, the possibility of  

reverse causality, and lingering confounding factors, 

observational studies have struggled to establish a 

causal link between fatty acids and the aging process 

[15]. Randomized controlled trials (RCTs) serve as a 

valuable tool for establishing causality in this context. 

However, it’s essential to note that RCTs come with 

substantial financial, temporal, and human resource 

costs, and some interventions may not be eligible or 

suitable for evaluation through this method [16]. In 

recent years, Mendelian randomization (MR) has gained 

prominence as a widely used and effective approach  

for causal inference. It leverages genetic variation,  

often in the form of single nucleotide polymorphisms 

(SNPs), as instrumental variables (IVs) to ascertain 

causal connections between exposure and outcome. 

This method effectively mitigates the confounding bias 

frequently encountered in traditional epidemiological 

studies [17]. There are three main hypotheses in MR. 

First hypothesis: There should be a significant correlation 

between lipid-related traits and genetic variants used  

as IVs. The second hypothesis states that no potential 

confounding variables should be connected to the IVs 

being used. The third hypothesis states that exposed 

genetic variants should only influence risk factors and no 

other potential pathways when determining the likelihood 

of an outcome. Figure 1 depicts the experiment’s study 

design. 

 
In this Mendelian randomization (MR) investigation, 

we aimed to evaluate the causal relationship between 

fatty acids and the aging process. To achieve this,  

we analyzed summary-level data from genome-wide 

association studies (GWAS) encompassing various 

fatty acids, including saturated, monounsaturated, poly-

unsaturated, Omega-6, and Omega-3 fatty acids, as well 

as age proxy indicators such as telomere length (TL), 

frailty index (FI), and facial aging (FclAg), along 

 

 
 

Figure 1. A brief flow chart of our Mendelian randomization study. 
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with other related traits. Univariate MR analyses  

were designed to explore the relationship between 

individual fatty acids of each type and each indicator of 

aging, and multivariate MR analyses were employed to 

differentiate and compare the distinct effects of each 

fatty acid type on various aging indicators. To rule  

out the possibility of reverse causality, we performed 

reverse MR analyses to examine the effects of aging on 

five fatty acids. 

 

MATERIALS AND METHODS 
 

Data source 

 

Genetic variants that exhibited significant associations 

with various fatty acid types (Saturated fatty acid, 

Monounsaturated fatty acid, Polyunsaturated fatty 

acid, Omega-3 fatty acid, and Omega-6 fatty acid) 

were extracted from a substantial Genetic Investigation 

of UK Biobank GWAS dataset, comprising a sample  

size of 114,999 individuals. Genetic variants linked to 

telomere length (TL) and facial aging (FclAg) were 

identified in two separate samples. The TL-associated 

sample comprised 472,174 individuals (216,187 males 

and 255,987 females) with an average age of 56.1±7.9 

years. The FclAg-related sample included 423,999 

individuals (194,391 males and 229,601 females) aged 

between 40 and 69 years. Telomere length in the  

mixed leukocyte population was measured in the UK 

Biobank using the multiplex quantitative polymerase 

chain reaction (qPCR) technique [18]. Facial aging 

(FclAg) was assessed using a questionnaire-based  

non-subjective perceived age. Participants’ responses 

were coded as 1, 0, or 0.5 depending on whether they 

thought they appeared younger, older, or similar to 

their age. FclAg is a variable that has an ordered 

categorical structure. Then, using a Taylor expansion 

series, a log odd ratio (OR) was used to convert linear 

scale statistics. OR > 1 denotes a higher likelihood of  

looking young [19]. A meta-analysis of GWAS carried 

out by Atkins et al., involving 164,610 participants 

(comprising 79,791 males and 84,819 females) with  

an average age of 64.1±2.8 years, as well as 10,616 

participants (consisting of 5,039 males and 5,577 

females) with an average age of 58.3±7.9 years, 

identified genetic variants significantly associated with 

the frailty index (FI) [20]. All GWAS sources used  

in the text can be found in Supplementary Table 1. 

This study exclusively utilized publicly accessible 

summary-level statistics, obviating the need for ethical 

approval. 

 

IV selection criteria 
 

From the GWAS datasets, SNPs were chosen as IVs  

if they were found to be significantly associated with 

either exposures or outcomes (p<5×10-8, respectively). 

When linkage disequilibrium was detected in the 

candidate IVs (r2> 0.001), the variants within 1000  

kb of other IVs with a stronger association were 

discarded. Palindromic SNPs are characterized by 

alleles that match nucleotides that form complementary 

base pairs at the DNA molecule, while intermediate 

allele frequencies are those that fall between 0.01 and 

0.30 [21]. The process of IV selection should exclude 

palindromic SNPs. To meet the first Mendelian 

assumption, we calculated the R2 and F-statistic [22]. 

R2 was used as a tool of genetics to explain a portion 

of the trait’s variance. The calculation for R2 utilized 

the formula: R2 = 2 × (1 - MAF) × MAF × β2/ (SE2 × 

N), where β represents the effect size, SE is the 

standard error, N denotes the sample size, and MAF 

signifies the minimum allele frequency for each SNP. 

The F-statistic is a common metric for assessing the 

strength of instrumental variables and can be computed 

using the following formula [23]: F = beta2/se2. We 

deem the genetic variation used as a weak instrumental 

variable when the F-statistic falls below 10, which 

could introduce a potential bias in the results. F > 10 

was considered to be sufficient strength, whereas an  

F-statistic of 10 indicates “weak instruments”. 

 
Statistical analysis 

 
In the context of univariate Mendelian randomization 

(MR) analyses, we employed the inverse variance 

weighted (multiplicative random effects) (IVW-MRE) 

method for conducting a two-sample MR analysis. 

This approach was utilized to evaluate the potential 

causal relationships between exposures, including 

SFA, MUFA, PUFA, Omega-3 fatty acid, and Omega-

6 fatty acid, and outcomes such as TL, FclAg, and  

FI. Additionally, for further analysis, we employed  

the weighted median, weighted mode, simple mode 

and MR Egger methods [24]. We also conducted 

multivariate inverse variance weighted (IVW) analysis 

to assess the independent causal effects of the relevant 

fatty acid traits on aging proxy indicators. The  

results of the Mendelian randomization (MR) analysis 

have been presented as odds ratio (OR) with 95% 

confidence intervals (CIs). We used MR Egger method 

and MR Pleiotropy RESidual Sum and Outlier (MR-

PRESSO) tests to assess the potential multiplicity of 

effects, with a p-value greater than 0.05 indicating  

no evidence of the multiplicity of effects. In addition, 

we performed sensitivity analyses to validate and 

enhance the reliability and stability of the results. 

These analyses encompassed: 1. Heterogeneity Test: 

This included Cochrane’s Q test, MR-Egger test,  

and the Inverse Variance Weighted test to assess 

heterogeneity among the studies. 2. Pleiotropy Test: 

We conducted tests such as the MR Egger intercept 
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test and MR-PRESSO global test to assess and account 

for pleiotropy, which is the phenomenon where a 

single genetic variant affects multiple traits. 3. Leave-

One-Out Test: We also carried out a leave-one-out 

test, systematically excluding one study at a time, to 

evaluate the impact of individual studies on the overall 

results. These sensitivity analyses were implemented 

to ensure the robustness of our findings [24–27]. 

 

We employ the Bonferroni correction for multiple 

comparisons in our univariate MR analyses, in our 

analysis, p-values falling within the range of 0.05 to 

0.0033 were considered as suggestive evidence of 

potential causality, whereas p-values less than 0.0033 

(calculated as 0.05 divided by the total number of 

tests, which is 5 times 3) were viewed as statistically 

significant evidence of causality. Additionally, p-

values less than 0.05 were considered statistically 

significant proof of causality. P < 0.05 was taken into 

account statistically significant proof of causation 

because the Bonferroni method was not applicable  

to multivariate MR analyses. The current study was 

carried out using the R software (version 4.2.1). 

 

Data availability statement 

 

The datasets of GWASes are available from the 

website: https://gwas.mrcieu.ac.uk/. 

RESULTS 
 

Univariate MR 

 

Fatty acid and TL 

Figure 2 depicts the primary findings of the MR 

analysis. The IVW-MRE method revealed significant 

causal relationships between genetically predictive 

MUFA on TL. (OR: 1.019, 95% CI= 1.006-1.032, 

p<0.0033). In addition, we also found a suggestive 

causal relationship between PUFA (OR: 1.014, 95% 

CI= 1.002-1.026, p<0.05), SFA (OR: 1.016, 95% 

CI= 1.002 -1.031, p<0.05) and Omega-6 fatty acid 

(OR: 1.032, 95% CI= 1.006-1.058, p<0.05) respectively 

on TL. We can see that their F-statistics are all greater 

than 10, indicating that the instrumental variables are 

appropriately selected and are strongly correlated 

variables.  
 

We also performed TL reverse association  

analyses on MUFA, PUFA, and SFA, which did not 

reveal any reverse causality (Supplementary Table 2). 

Our study incorporated sensitivity analysis, wherein 

leave-one-out tests underscored the efficacy of the 

associations between fatty acids and telomere length 

(TL). Nevertheless, heterogeneity was observed in the 

analysis of TL with MUFA, PUFA, SFA, and Omega-

6 fatty acid (P < 0.01). Notably, the MR-Egger’s test 

 

 
 

Figure 2. Mendelian randomization analysis of the effect of FA on TL. FA, fatty acid, TL, telomere length. 
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revealed a p-value of 0.045, which is less than the 

significance threshold of 0.05, indicating horizontal 

multiplicity of PUFA for TL (Supplementary Table 3 

and Supplementary Figure 1). 

 

Fatty acid and FI 

Figure 3 shows the primary findings of the MR analysis. 

The IVW-MRE method revealed significant causal 

relationships between genetically predictive MUFA and 

PUFA on FI. (OR: 1.039, 95% CI= 1.018-1.061, p 

<0.0033; OR: 1.033, 95% CI= 1.009-1.057, p <0.0033). 

Also, we found a suggestive causal relationship between 

SFA and FI (OR: 1.032, 95% CI= 1.006-1.058, p<0.05). 

Besides, its F-statistic is also greater than 10. Similarly, 

we found no pleiotropy or heterogeneity, nor any 

anomalous outliers in MUFA, PUFA and SFA on FI 

(Supplementary Table 3 and Supplementary Figure 1). 

While heterogeneity and pleiotropy were identified in 

the MR analyses of Omega-6 and FI, the results of  

the sensitivity analyses were non-significant due to the 

absence of a discernible causal link between the two. 

 

We also performed FI reverse association analyses on 

MUFA, PUFA, and SFA, However, we found a reverse 

causality association of FI on MUFA, and FI on SFA 

with a robust result (Supplementary Table 2). Thus, 

there is bi-directional causality in the relationship of  

FI with MUFA and SFA, which is dropped due to the 

instability of the results. 

 

Fatty acid and FclAg 

The results proved that there was no causal association 

between any kind of aging proxy indicators and FclAg. 

Heterogeneity and pleiotropy were observed between 

PUFA and FA, as well as between Omega-6 fatty acid 

and FclAg. However, given the lack of significance  

in the primary outcome using the Inverse Variance 

Weighting (IVW) method, we can dismiss this finding. 

Furthermore, leave-one-out tests revealed that the 

relationships were robust, as indicated in Supplementary 

Table 3 and Supplementary Figure 1. 

 
Multivariate analysis 

 
We used multivariate MR analyses to further assess  

the relationships between fatty acids (FA) and proxy 

indicators of aging. We analyzed the univariate results 

in the previous section again by adjusting the variables 

with positive results for each other. For TL, after 

adjusting for MUFA, PUFA, SFA, and Omega-6  

fatty acid at once, the causal association of MUFA  

(p = 0.0001) PUFA (p = 0.0043) and SFA (p = 0.0006) 

remained significant (Figure 4). And we can see that 

MUFA (OR: 1.1508, 95% CI = 1.0724-1.2350) and 

PUFA (OR: 1.1670, 95% CI = 1.0497-1.2973) are 

positively correlated with TL, while SFA is negatively 

correlated with TL (OR: 0.8005, 95% CI = 0.7045-

0.9096). The significance is more significant than when 

it is univariate. 

 

However, causal relationships between MUFA, PUFA, 

SFA, and FI all become uncorrelated after adjusting for 

each other. 

 

DISCUSSION 
 

In this study, we investigated how five types of fatty 

acids affect aging. Our main findings suggest that 

MUFA and PUFA have a positive effect on TL, a 

marker related to aging. In contrast, SFA appears to 

shorten TL. These relationships remained even after 

adjustments were made for other variables. Thus, 

MUFA and PUFA help alleviate aging (TL increased). 

In addition, SFA accelerates aging (TL decreased). 

 

It is well known that telomeres are strongly  

associated with aging characteristics [28]. A commonly 

used clinical tool for frailty, which reflects increased 

vulnerability to adverse health outcomes in individuals 

of the same actual age, is the frailty index, which is  

also a marker of aging [29]. Additionally, skin aging can 

be a visible sign of aging [30]. Evaluating accelerated 

aging through the measurement of changes in biological 

age proxy indicators like TL, FI, and FclAg is of 

paramount importance. This approach aids in identifying 

contributing factors to accelerated aging and devising 

interventions to combat aging-related diseases, including 

but not limited to cardiovascular disease, cancer, arthritis, 

type 2 diabetes, and Alzheimer’s disease [7]. 

 

Additionally, due to their potential anti-inflammatory 

and antioxidant effects, fatty acid consumption is 

associated with many diseases [31–33]. It has been 

demonstrated that the pathophysiological phenotypes of 

aging are associated with lipid buildup and impaired 

fatty acid utilization in organs. The aging process is 

accelerated by changes in adipokine levels, which control 

changes in systemic metabolism and inflammation [34, 

35]. However, it is challenging to pinpoint and affect 

the genes that cause accelerated aging. A technique for 

determining causality based on genetic variation that 

can be used to investigate accelerated aging is MR 

analysis. In this study, we collected extensive genome-

wide association study (GWAS) data on telomere length 

(TL), frailty index (FI), and fatty acids (FA) from the 

UK Biobank. Subsequently, through MR analysis, we 

discovered that MUFA and PUFA were linked to an 

increase in TL after adjusting for MUFA, PUFA, FA, 

and Omega-6 fatty acid, while SFA was associated with 

decreased TL. Because a decrease in TL, an increase  

in FI, and an increase in FclAg may be indicators of 

accelerated aging, the study’s findings suggest that 
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supplementation with MUFA and PUFA may be causally 

related to aging alleviation, whereas supplementation 

with SFA will accelerate aging. Overall, MUFA and 

PUFA appear to slow down aging, whereas SFA appears 

to increase the risk of premature aging. This implies that 

the structure of fatty acid intake is crucial for slowing 

down the effects of aging. Additionally, this encourages 

us to eat more foods containing unsaturated fatty acids 

and less saturated fatty acid foods, thereby easing the 

progression of aging and further reducing the incidence 

of aging-related diseases. 

 

This study’s key point is to investigate the causal 

impact of fatty acids on the aging process. The  

accurate detection and monitoring of dietary fatty  

acid (FA) intake values can be challenging, which 

represents a limitation in traditional epidemiological 

studies. However, MR analyses offer a strength in  

this regard, as they can provide valuable insights into 

the causal relationships involving fatty acids without 

relying on self-reported intake values. In conventional 

epidemiological studies, the relationship between fatty 

acids (FA) and aging can be heavily influenced by diet 

and other lifestyle habits, and the effect of diet and other 

habits on fatty acids levels is difficult to determine. Our 

study, on the other hand, looked into the risk of aging 

variability in fatty acids levels determined by genetic 

variation. By introducing instrumental variables, MR 

analyses were designed to avoid traditional confounders 

and to monitor their interference through sensitivity 

analyses. Thus, it is possible to balance the effects of diet 

and other habits without affecting the outcomes. 

 

Fatty acids, a significant part of the Western diet, and  

their effects on aging have been thoroughly researched. 

It is recognized that the Mediterranean diet is correlated 

with improved cognitive function, enhanced brain health, 

and a diminished risk of attention deficit disorder  

[36]. These favorable effects are believed to stem, at  

least partially, from the elevated levels of Omega-3  

fatty acids, present in the Mediterranean diet [37]. 

According to studies, MUFA may lower the risk of 

 

 
 

Figure 3. Mendelian randomization analysis of the effect of FA on FI. FA, fatty acid, FI, frailty index. 
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dementia [38, 39]. In a sample of 1,223 individuals, 

they found unsaturated fatty acids (MUFA, PUFA)  

may attenuate the risk associated with mild cognitive 

impairment (MCI), The OR (95% CI) for total PUFA 

was 0.44 (0.29-0.66; p for trend = 0.0004), for Omega-6 

fatty acids was 0.44 (0.30-0.67; p for trend = 0.0004), 

for Omega-3 fatty acids was 0.62 (0.42-0.91; p for  

trend = 0.012), and for (MUFA+PUFA) was 0.56  

(0.38-0.83; p for trend = 0.01) [40]. Significantly, the 

sustained supplementation of DHA over 24 months 

demonstrated enhanced cognitive function in patients 

with MCI, accompanied by alterations in blood Aβ-

related biomarkers. These modifications encompassed 

reduced levels of Aβ-42 and APP mRNA expression, 

alongside increased expression of Beclin-1, LC3-II, and 

LC3-II mRNA [41]. Long-chain SFA, MUFA, and 

PUFA did not significantly correlate with aging in a 

study of the relationship between total dietary food fat 

and type and peripheral leukocyte telomere length was 

measured in a cohort of 4,029 healthy postmenopausal 

women who participated in the Women’s Health 

Initiative study, but short-to-medium-chain saturated 

fatty acids (SMSFAs; aliphatic tails of 12 carbons) did. 

In addition, there are many studies demonstrating that 

telomere length increases as the n-6:n-3 ratio decreases 

[8, 10, 14]. Supplementation of dietary Omega-3 fatty 

acid may also be beneficial in reducing aging [42–44]. 

Furthermore, a recent MR study, which investigated  

the association between different fatty acids types and 

FI, found that, while there wasn’t a strong correlation 

observed with MUFAs or PUFAs, plasma stearic acid 

levels, which is one of the saturated fatty acids, showed 

a statistically significant association with a higher FI  

(β = 0.178; 95% CI = 0.050-0.307; p = 0.007) [45]. The 

results of our MR analysis are similar to the results of 

most existing high-quality studies that tend to suggest 

that unsaturated fatty acid-rich diets slow down aging 

and saturated fatty acid-rich diets and promote aging, 

and we genetically performed causal associations and 

multivariate analyses to ensure that the results are 

reliable and valid. 

 

The aging process is accompanied by a persistent 

inflammatory state within the central nervous system. 

Significantly, astrocytes enriched with DHA exhibited 

diminished responsiveness to interleukin-1β (IL-1β). 

This reduction was mediated through the activation  

of inhibitory nuclear factor κB (NFκB) and activator 

protein 1 (AP-1) transcription factors. Furthermore, 

there were decreased levels of inducible nitric oxide 

 

 
 

Figure 4. The result of multivariate analysis of FA on telomere length and frailty index.  
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synthase (iNOS) and cyclooxygenase-2 (COX-2), as 

well as a decline in the release of the pro-inflammatory 

cytokines tumor necrosis factor (TNF) and interleukin-

6 (IL-6) [46]. Several PUFAs, such as arachidonic 

acid, play critical roles in cell signaling pathways, 

controlling a variety of bodily functions such as 

vasodilation, inflammation, and cell growth [47]. 

Other essential PUFAs are also involved in a wide 

range of cellular processes [39]. Indeed, Omega-3 fatty 

acids are recognized for their potent anti-inflammatory 

properties, achieved by facilitating the resolution 

phase of inflammation [48]. Besides, oxidative stress 

arises from an imbalance between free radicals and 

antioxidants in the body [49]. Free radicals, recognized 

as reactive oxygen species (ROS) or reactive nitrogen 

species (RNS), can instigate oxidative damage by 

disrupting cell membranes, DNA, and other vital 

cellular components [50]. Furthermore, a high-fat diet 

rich in DHA (45 kcal% fat, 1% DHA, W/W) prevented 

hippocampal insulin resistance induced by the high-fat 

diet in aged rats, leading to cognitive enhancement 

[51]. These beneficial effects can be attributed to  

the improvement of glucose homeostasis, alleviation 

of hippocampal neuroinflammation, and reduction of 

oxidative stress. Nuclear receptors (NRs) belong to  

the ligand-activated transcription factor superfamily, 

regulating the expression of numerous genes associated 

with various biological processes, energy regulation, 

and lipid metabolism in response to environmental  

and dietary cues [52]. Significantly, supplementation 

with DHA (403 mg/kg) and EPA (395 mg/kg) in  

rats has demonstrated the mitigation of age-related 

declines in RXRγ, calmodulin-dependent protein 

kinase II (CAMKII), protein kinase B (PKB/AKT), 

and recombinant extracellular signal-regulated kinase 

1 (ERK1). This ultimately leads to enhanced spatial 

memory [53]. There are some recent examples of the 

life extension effects of lipid-related interventions 

[54]. Caenorhabditis elegans lifespan has increased  

as a result of several genetic modifications related  

to lipids [55]. It’s intriguing to highlight that Han  

et al. established a connection between chromatin 

remodeling and lipid metabolism during the aging 

process in Caenorhabditis elegans. Overexpression of 

dietary MUFAs or adipose-7 in the gut is sufficient to 

extend lifespan [56]. Chromatin modifiers called sirtuin 

histone deacetylases connect aging and metabolism. 

Sirtuins control vital metabolic processes, such as  

lipid metabolism and longevity, by deacetylating 

histone and non-histone proteins [57, 58]. To manage 

cognitive decline, GRADE (Grades of Recommendation 

Assessment Development and Evaluation) has advised 

a high intake of mono- or poly-unsaturated fatty acids 
in combination with a low intake of saturated fatty 

acids (1B) [59]. Among the possible mechanisms, 

DHA has been the most studied as a representative of 

the fatty acid-aging relationship, and the related 

possibilities it exposes deserve further exploration  

and validation. Overall, fatty acids affect the aging 

process through several complex cellular and molecular 

mechanisms, which are essential for gaining insight 

into the interrelationships between diet, metabolic 

health, and longevity. Future studies should further 

unravel the molecular mechanisms of different types 

of fatty acids and their long-term effects on overall 

health and longevity. 

 

The following are the strengths of this MR study. The 

research design was grounded in three fundamental 

instrumental variable assumptions and adhered to the 

checklist for conducting MR investigations [60]. As a 

result, the study’s conclusions were reasonable and 

trustworthy. Second, because all of the data from the 

large-scale GWASs came from people with European 

ancestry, population stratification’s bias was avoided. 

Third, to evaluate the consistency of causal effects, 

five different MR analysis techniques were employed. 

We applied a multivariate adjustment methodology, 

demonstrating once again the robustness of our 

primary findings. Despite the large sample size, our 

study exhibits several limitations. We employed five 

Mendelian Randomization (MR) analysis methods in  

a comparative manner to ascertain the consistency  

and precision of each outcome’s directionality, but it’s 

important to note that we cannot entirely eliminate the 

possibility of residual bias, as this is a recognized 

limitation of Mendelian randomization (MR) studies. 

We must acknowledge the presence of pleiotropy and 

heterogeneity in certain outcomes obtained from this 

study. While the majority of these outcomes exhibit  

a negative trend, the significance of the discussion  

is somewhat limited. Despite the absence of outliers, 

the challenge in rectifying them may stem from  

the existence of unidentified confounding factors, a 

consequence of the current restricted understanding  

of both aging and fatty acids. Furthermore, MR  

studies frequently look at the long-term effects of  

risk factors on outcomes because it is difficult to 

determine the causal effects of different stages of 

disease development. The gender difference in fatty 

acid intake and accelerated aging was not possible  

in this study due to the absence of gender-stratified 

genome-wide association study (GWAS) data for fatty 

acids or aging at this time. Third, we must acknowledge 

that compared to RCT, MR analysis is less causality-

suggestive, and it still needs to be complemented and 

supported by high-quality RCT evidence. 

 

CONCLUSIONS 
 

Drawing from the results of the current study, MUFA 

and PUFA demonstrate potential in mitigating the aging 
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process, as evidenced by an increase in telomere length 

(TL). Conversely, SFA intake appears to expedite 

aging, leading to a reduction in TL. Consequently, it is 

imperative to underscore the significance of augmenting 

unsaturated fatty acid consumption while reducing 

saturated fatty acids (SFA) intake as a preventative 

measure against accelerated aging. Interventions target-

ing lipid-related factors have the potential to effectively 

decelerate the aging trajectory and ameliorate age-

associated ailments. 
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Supplementary Figure 1. Main graphical results of MR between five fatty acids (MUFA, PUFA, SFA, Omega-3 fatty acid, and Omega-6 fatty 

acid) and aging proxies (TL, FI, and FA), (A) funnel plots; (B) leave-one-out plots; (C) IVW graphical results; (D) scatter plots of the five MR 
analyses. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2, 3. 

 

Supplementary Table 1. Summary-level genome-wide association 
studies (GWAS) used in this article. 

Exposure GWAS ID Consortium Sample size 

Saturated FA met-d-SFA UK biobank 114,999 

Monounsaturated FA met-d-MUFA UK biobank 114,999 

Polyunsaturated FA met-d-PUFA UK biobank 114,999 

Omega-3 FA met-d-Omega_3 UK biobank 114,999 

Omega-6 FA met-d-Omega_6 UK biobank 114,999 

outcome    

telomere length ieu-b-4879 UK biobank 472,174 

Facial ageing ukb-b-2148 MRC-IEU 423,999 

Frailty index ebi-a-GCST90020053 UK biobank 175,226 

 

Supplementary Table 2. Inverse MR results for the TL and FI. 

 

Supplementary Table 3. Main result of Mendelian randomization study. 
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