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INTRODUCTION 
 
Esophageal cancer (ESCA) ranks eighth in global 
cancer morbidity and sixth in cancer mortality, making 
it a significant threat to human life and health [1]. In 
China, esophageal squamous cell carcinoma (ESCC) 
constitutes over 90% of esophageal cancer cases, 
making it the predominant histological type [2]. 
Surgery-based comprehensive treatment is the primary 
approach for early and mid-stage ESCA, yielding a 5-
year survival rate of 30–50%. Notably, postoperative 

local recurrence and distant metastasis are two 
significant contributing factors to this rate [3]. Recently, 
targeted therapy and emerging immunotherapy have 
created new avenues for ESCA treatment [4, 5]. 
Nonetheless, further investigation is required to explore 
new molecular-level therapeutic targets and prognostic 
biomarkers for ESCA. 
 
Epigenetic modifications are genetic modifications that 
cause heritable phenotypic changes in the expression of 
a gene without altering its DNA sequence, which 
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ABSTRACT 
 
Histone acetylation is one of the most common epigenetic modifications and plays a crucial role in 
tumorigenesis. However, the prognostic significance of histone acetylation-related lncRNAs (HARlncRNAs) in 
esophageal carcinoma (ESCA) is not well understood. A total of 653 differentially expressed lncRNAs 
(DElncRNAs) were identified between 162 ESCA tissues and 11 normal tissues in the TCGA database, and 7 of 
them were correlated with acetylation regulators. We employed univariate Cox regression analysis, combining 
it with clinical prognosis information, to select 3 prognostic-related HARlncRNAs for further analysis. 
Subsequently, we used LASSO regression analysis to construct a risk signature for ESCA and identified C21orf62-
AS1 and SSTR5.AS1 as potential biomarkers for the prognosis of ESCA patients. Based on the risk score 
calculated using the risk signature, we categorized patients into high- and low-risk groups. We identified the 
risk score as an independent risk factor and validated it in the training, test, and GSE53624 datasets. 
Additionally, patients categorized by their risk scores exhibited distinct immune statuses, tumor mutation 
burdens, responses to immunotherapy, and drug sensitivities. 
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mainly include DNA methylation, histone modifications 
and non-coding RNAs [6, 7]. Acetylation, one of the 
common histone modifications, can affect protein 
function through a variety of mechanisms, including 
regulation of protein stability, enzymatic activity, 
subcellular localization, interaction with other post-
translational modifications, and control of protein-
protein DNA interactions, which in turn are involved in 
almost all important biological processes such as 
chromatin remodeling, transcription factor 
activation and metabolic regulation [8, 9]. However, 
imbalances in histone acetylation can lead to abnormal 
gene expression and alterations in important 
physiological functions, leading to disease onset or 
progression and tumor formation [10]. Emerging studies 
have shown that histone acetylation is involved in the 
development of various cancers by regulating various 
biological processes, including proliferation [11], 
apoptosis [12], metastasis [13], stemness [14], and drug 
sensitivity [15]. 
 
Long non-coding RNAs (lncRNAs) are RNA molecules 
longer than 200 nucleotides that lack the ability to code 
for proteins [16]. Over the last twenty years, lncRNAs 
have become pivotal in governing gene expression in 
various biological processes, including transcriptional 
regulation and epigenetic modifications. They 
participate in epigenetic processes by recruiting histone-
modifying enzymes and DNA methyltransferases. This 
leads to the creation of chromatin conformation 
patterns, ultimately enabling precise gene regulation 
[17–19]. Some of these lncRNAs are related to 
tumorigenesis. In particular, histone acetylation-related 
lncRNAs (HARlncRNAs) play a crucial role in 
tumorigenesis and development, such as SNHG14 in 
hepatocellular carcinoma [20], MIR22HG in liver 
cancer [21], EIF3J-AS1 in colorectal cancer [22], and 
lncRNA JADE in breast tumorigenesis [23]. However, 
the relationship between HARlncRNAs and ESCA 
prognosis and tumor microenvironment (TME) has not 
been evaluated so far. 
 
In our current study, we, for the first time, explored the 
role of HARlncRNAs in ESCA. We presented a risk 
signature model that uses genes linked to histone 
acetylation for predicting the prognosis of ESCA 
patients. We identified two histone acetylation-related 
genes (HARGs) for building the risk signature. This 
signature was confirmed as an independent risk factor 
and validated across the training, testing, and validation 
sets. Additionally, we conducted an in-depth analysis of 
the tumor microenvironmental characteristics in distinct 
HARlncRNA subgroups and assessed their responses to 
adjuvant therapy and immunotherapy. Our conclusion is 
that the HARlncRNA signature serves as a robust 
prognostic biomarker, capable of accurately predicting 

the response to adjuvant therapy and immunotherapy in 
ESCA. 
 
RESULTS 
 
Genetic variation landscape of HARGs in ESCA 
 
In this study, we included 52 HARGs (Supplementary 
Table 1), and their positions on the chromosomes are 
displayed in Figure 1A. HARGs exhibited extensive 
CNV alterations in ESCA, with the majority of them 
involving copy number amplification (Figure 1B). As 
shown in Figure 1C, 74 out of 183 (40.44%) ESCC 
samples displayed genetic mutations, with SMARCA4 
having the highest mutation frequency. We assessed 
whether the genetic variation mentioned earlier 
influences mRNA expression in ESCA by comparing 
gene expression levels in both normal and tumor 
tissues, set a threshold of |Log2 Fold Change|>1 and 
P-value < 0.05 to screen for the differentially expressed 
genes (DEGs) (Figure 1D), and identified five 
differentially expressed HARGs by intersecting the 
DEGs and HARGs, as illustrated in Figure 1E. The 
expression of HARGs with higher amplification 
frequency was significantly elevated in tumor tissues 
compared to normal tissues, and the reverse was also 
true (Figure 1F). These findings imply that CNV may 
underlie the differences in HARGs expression. 
Additionally, the expression of HARGs exhibited 
significant heterogeneity in both normal and tumor 
tissues. This indicates that differential HARGs 
expression plays a crucial role in the onset and 
progression of ESCA. 
 
Identification of HARlncRNAs 
 
The identification of HARlncRNAs in ESCA relied 
primarily on correlation network analysis. Initially, we 
screened for DElncRNAs in both normal and tumor 
tissues using the same threshold, resulting in 373 up-
regulated lncRNAs and 280 down-regulated lncRNAs 
(Figure 2A). Figure 2B displayed the expression 
patterns of DElncRNAs in normal tissues compared to 
tumor tissues. Using the expression values of HARGs 
and lncRNAs from 173 ESCA samples, we identified 
HARlncRNAs through the Pearson correlation analysis 
algorithm. We set a filter criterion of correlation 
coefficient >0.4 and P-value < 0.001. We constructed 
a correlation network using the final set of 7 screened 
HARlncRNAs to show their co-expression 
relationships (Figure 2C). Out of the seven 
HARlncRNAs, GK-AS1, LINC01205, and SSTR5-AS1 
exhibited high expression in tumor tissues, while 
AC008581.1, AL589863.1, C21orf62-AS1, and 
LINC01479 displayed low expression in tumor tissues 
(Figure 2D). 
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Construction of a risk signature 
 
We conducted univariate Cox regression analysis on 7 
HARlncRNAs and identified 3 HARlncRNAs that are 
linked to ESCA prognosis (Figure 3A). Figure 3B 

displays a heatmap of the 3 selected prognostic 
HARlncRNAs. Figure 3C depicts a mulberry plot that 
illustrates the association between 5 HARGs, 3 
HARlncRNAs, and ESCA prognosis. Subsequently, we 
built a risk signature model for ESCA using LASSO 

 

 
 
Figure 1. Genetic mutational landscape of HARGs in ESCA. (A) Chromosome distributions of HARGs. (B) The CNV mutation 
frequency of HARGs. (C) Somatic mutation spectrums of HARGs. (D) The volcano plot displayed down-regulated and up-regulated HARGs. 
(E) Venn diagram to identify 5 overlapping differentially expressed HARGs. (F) Heatmap shows 5 HARGs expression profiles among normal 
and ESCA samples. 
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regression analysis (Figure 3D, 3E). The results 
revealed that 2 HARlncRNAs were employed in 
constructing this risk signature. Ultimately, the risk 
score was computed by combining the expression 
values of the 2 HARlncRNAs with the risk regression 
coefficient, as follows: risk score = (−0.32098 × 
C21orf62-AS1) + (0.14225 × SSTR5.AS1). 
 
Validation of signature based on two HARlncRNAs 
 
All samples from the TCGA-ESCA cohort were 
randomly allocated into a training set and a test set 

using the outcomes of LASSO regression analysis. 
Using the median risk score as a basis, the two datasets 
were further categorized into two risk subgroups: a 
high-risk group and a low-risk group. As depicted in 
Figure 4A, 4B, the heatmap illustrates the differential 
expression of the two HARlncRNAs in the two 
subgroups. Figure 4C, 4D display the risk score and 
survival status for each ESCA patient. Kaplan-Meier 
analysis revealed that patients in the high-risk group had 
shorter OS and median survival compared to those in 
the low-risk group (Figure 4E, 4F). As indicated in 
Figure 4G, the area under the curve (AUC) values for 

 

 
 
Figure 2. Identification of HARlncRNAs in ESCA. (A) Volcano plot of differentially expressed lncRNAs between tumor tissues and 
normal tissues. (B) Heatmap of differentially expressed lncRNAs between tumor tissues and normal tissues. (C) Co-expression relationship 
between HARlncRNAs and HARGs. (D) Scatter diagram indicated the different expression of HARlncRNAs in normal and tumor tissues. *P < 
0.05; **P < 0.01; ***P < 0.001. 
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ROC analysis at 1 year, 3 years, and 5 years were 0.690, 
0.788, and 0.751, respectively, in the training set. 
Additionally, in the test set, the risk signature 
demonstrated a favorable prognostic value (Figure 4H). 
All the aforementioned findings indicate that the high-
risk group had an unfavorable prognosis, implying that 
the risk score of the model we constructed may have a 
crucial role in ESCA progression. To assess the 
applicability of the constructed risk model derived from 
the TCGA-ESCA cohort, we introduced an independent 
GEO dataset (GSE53624) as an external validation set. 
The model also demonstrated high sensitivity and 
effectiveness in the validation set (Supplementary Figure 
1). In summary, these findings indicate that the risk 
model can predict overall survival relatively accurately. 

Subsequently, we conducted univariate (Figure 5A, 5B) 
and multivariate Cox regression analyses (Figure 5C, 
5D), which confirmed that the risk score and stage were 
independent prognostic factors (P < 0.05). In summary, 
our findings suggest that the prognostic risk score 
signature can be used independently and with 
confidence to predict survival outcomes in ESCA 
patients. 
 
Development of a clinical nomogram 
 
Subsequently, we created nomograms to predict OS 
using clinical parameters and the risk score in the 
TCGA-ESCA (Figure 6A) and GSE53624 (Figure 6D) 
cohorts. The calibration plot, used for internally 

 

 
 
Figure 3. Constructed a HARlncRNA risk signature in the TCGA cohort. (A) Forest plot of 3 prognostic-related HARlncRNAs through 
univariate Cox analysis. (B) Expression patterns of 3 prognostic HARlncRNAs in normal and tumor tissues. (C) The Sankey diagram displayed 
the relationship between the 5 HARGs, 3 HARlncRNAs and ESCA prognosis. (D) Tuning parameter (λ) selection in LASSO model using cross-
validation. (E) The LASSO coefficient profile of prognostic HARlncRNAs. 
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validating the nomogram, demonstrated a strong 
agreement between the predicted probabilities from the 
nomogram and the actual observations of 1-, 3-, and 5-
year OS (data for the TCGA-ESCA and GSE53624 

cohorts are depicted in Figure 6B, 6E, respectively). 
The C-index curves further confirmed the nomogram’s 
high accuracy in predicting survival probabilities 
(Figure 6C, 6F). 

 

 
 
Figure 4. Validation of risk signature based on two HARlncRNAs in the TCGA cohort. (A) The heatmaps of prognostic 2 genes 
signature in the training set. (B) The heatmaps of prognostic 2 genes signature in the test set. (C) Risk score distribution plot showed the 
distribution of high-risk and low-risk LUAD patients in the training set. Scatter plot showed the correlation between the survival status and 
risk score of LUAD patients in the training set. (D) Risk score distribution plot showed the distribution of high-risk and low-risk LUAD 
patients in the test set. Scatter plot showed the correlation between the survival status and risk score of LUAD patients in the test set. The 
survival analysis in the training set (E) and test set (F). ROC curve analysis of the accuracy of the model to predict patient prognosis at 1, 3, 
and 5 years in the training (G) and test sets (H). 
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Functional enrichment analysis of HARlncRNA 
target genes 
 
Initial target gene prediction was carried out using 
StarBase, lncLocator, and LncRNA2Target for the two 
HARlncRNAs associated with risk. This was followed 
by the construction of a lncRNA-core target gene 
regulatory network using Cytoscape (Figure 7A), and 
subsequent enrichment analysis of the genes within the 
regulatory network. KEGG enrichment analysis results 
revealed that the core target genes of the two 
HARlncRNAs were primarily associated with pathways 
such as Systemic lupus erythematosus, Neuroactive 
ligand-receptor interaction, Cytokine-cytokine receptor 
interaction, and others (Figure 7B). The GO analysis 
indicated that the 74 core target genes primarily 
pertained to biological functions related to skeletal 
system development, transporter complexes, receptor 
ligand activity, and more (Figure 7C). 
 
Immunity analysis 
 
As stromal and immune cells in the TME significantly 
influence tumor progression, treatment effectiveness, 
and clinical outcomes, we compared TME differences 

between high-risk and low-risk groups. To gain a 
deeper insight into the TME, we assessed the extent of 
infiltration by 22 types of immune cells using seven 
distinct algorithms (TIMER, CIBERSORT, 
CIBERSORT-ABS, QUANTISEQ, MCP-counter, 
XCELL, and EPIC). As expected, the presence of 
cytotoxic immune cells, including CD4+T and CD8+T 
cells, declined as the risk score increased (Figure 8A). 
According to the ssGSEA algorithm, the low-risk group 
exhibited greater immune cell infiltration and a richer 
set of immune-related functions and pathways 
compared to the high-risk group (Figure 8B, 8C). The 
ESTIMATE algorithm analyzed the aforementioned 
results and determined that the low-risk group had 
higher immune scores, stromal scores, and overall 
ESTIMATE estimated scores (Figure 8D–8F). 
 
Association with TMB 
 
In the TCGA dataset, we computed the TMB for all 
samples. It was observed that the TMB was higher in 
the high-risk group (Figure 9C). Subsequently, we used 
waterfall plots to visualize mutations in the high-risk 
and low-risk groups separately. The results revealed that 
the top 10 mutated genes were SMARCA4, EP300,  

 

 
 
Figure 5. Independent prognostic value of risk score. Univariate Cox regression analysis of risk score in the training (A) and test sets 
(B). Multivariate Cox regression analysis also confirmed risk score as an independent prognostic factor for the training (C) and test sets (D). 
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HDAC9, CREBBP, BAZ2B, HDAC4, KAT6A, NCOA1, 
BRD4, and BPTF in both groups (Figure 9A, 9B). 
Missense mutations were the most prevalent somatic 
mutational type. The mutation frequency was markedly 
higher in the high-risk group (38.46%) compared to the 
low-risk group (20.99%). Subsequently, we conducted a 
Kaplan-Meier analysis to evaluate the impact of 
combining risk score and TMB on survival. The results 
indicated that the high-TMB group had a shorter overall 
survival than the low-TMB group (Figure 9D). More 
importantly, patients with both a low risk score and low 
TMB had significantly longer OS than those with high 
risk scores and high TMB (Figure 9E). 

Estimation of the HARlncRNA signature in 
immunotherapy response 
 
ICGs play a crucial role in regulating immune 
homeostasis and autoimmunity. To explore the 
relationship between risk scores and ICGs, we 
compared the expression levels of 24 ICGs in the two 
risk subgroups. All genes, except HHLA2, were 
significantly upregulated in the low-risk group 
compared to the high-risk group (Figure 10A). The 
Tumor Immune Dysfunction and Exclusion (TIDE) 
score is a novel computational framework developed by 
Peng Jiang and colleagues. It is designed to 

 

 
 
Figure 6. Construction and verification of nomogram. (A) Nomogram construction based on the risk score and ESCA-related clinical 
parameters in the TCGA-ESCA cohort. (B) Calibration plots of the nomogram in the TCGA-ESCA cohort. (C) C-index curves of the nomogram in 
the TCGA-ESCA cohort. (D) Nomogram construction based on the risk score and ESCA-related clinical parameters in the GSE53624 cohort. (E) 
Calibration plots of the nomogram in the GSE53624 cohort. (F) C-index curves of the nomogram in the GSE53624 cohort. *P < 0.05; **P < 0.01; 
***P < 0.001. 
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comprehensively evaluate mechanisms of tumor 
immune escape and is considered an effective 
alternative to single biomarkers for predicting the 
therapeutic effectiveness of immune checkpoint 
inhibitors. We also applied the TIDE scoring 
mechanism in our study, but we found no significant 
difference in TIDE scores between the two risk 
subgroups (Figure 10B). Lastly, we conducted 
additional investigations into the relationship between 
ICGs and the risk score. The results revealed a negative 

correlation between the risk score and the expression of 
several ICGs, including CD86, CD200R1L, HAVCR2, 
ICOS, TIGIT, and TNFRSF18 (Figure 10C–10H). 
 
Drug sensitivity analysis 
 
Patients with inoperable ESCA may benefit from 
chemotherapy and targeted therapy, which can curb 
tumor advancement and enhance their prognosis. 
Additionally, it is frequently employed as postoperative 

 

 
 
Figure 7. Functional enrichment analysis of lncRNA target genes. (A) Regulatory network of two lncRNA and core target genes. (B) 
KEGG enrichment analysis of core target genes. (C) GO enrichment analysis results of 74 core target genes. 
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adjuvant therapy to prevent tumor recurrence and 
metastasis. The sensitivity of tumor cells to medications 
is a pivotal determinant of drug effectiveness. To assess 
the risk score’s utility as a biomarker for predicting 

treatment responses in ESCA patients, we analyzed IC50 
values for over 200 anticancer drugs, utilizing data from 
the CGP database in conjunction with the risk score. Our 
findings suggest that patients with high-risk scores may 

 

 
 
Figure 8. The low- and high-risk groups display different immune statuses. (A) The correlation of tumor-infiltrating cells with risk 
score using 7 algorithms. Immune cell infiltration (B) and immune-related functions or pathways (C) between the high- and low-risk groups. 
The stromal (D), immune (E) and ESTIMATE scores (F) between the high- and low-risk groups. *P < 0.05; **P < 0.01. 
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exhibit a favorable response to BMS.536924, RDEA119, 
Bicalutamide, Parthenolide, and PD.0325901, whereas 
those with low-risk scores may respond more positively 
to Etoposide, Lenalidomide, and several targeted therapy 
agents, such as Temsirolimus, Nilotinib, and Pazopanib 
(Figure 11A–11J). 
 
Validation of the expression levels of two-lncRNA 
signature in ESCA tissues 
 
We examined the clinical significance of the two 
lncRNAs in the model by validating their mRNA 
expression levels using data from the TCGA and GTEx 
databases. As depicted in Figure 12A, the expression 
levels of C21orf62-AS1 and SSTR5.AS1 were 
significantly elevated in ESCA tissues. Furthermore, 
qRT-PCR results showed a significant increase in the 
expression levels of C21orf62-AS1 and SSTR5.AS1 in 
human ESCA cells compared to normal human 

esophageal epithelium cells (Figure 12B, 12C). In 
summary, these results provide additional confirmation 
of the stability and reliability of the risk signature. 
 
DISCUSSION 
 
Recently, significant attention has focused on the 
epigenetic modifications of lncRNAs. Importantly, 
substantial evidence has highlighted the significance of 
epigenetic modifications in lncRNAs in the 
development and progression of cancer [24, 25]. Zhang 
et al. discovered that ALKBH5 promotes invasion and 
metastasis in gastric cancer by reducing methylation of 
the lncRNA NEAT1 [26]. Utilizing bioinformatics 
techniques, a prognostic model based on seven 
HARlncRNAs has demonstrated its ability to predict 
both the prognosis and immune response in lung 
adenocarcinoma [27]. The data collected thus far 
regarding lncRNA’s role in epigenetic regulation likely 

 

 
 
Figure 9. Analysis of TMB between different risk groups. (A, B) Top 10 mutated genes in different risk subgroups. (C) The differences 
of TMB in low- and high-risk groups. (D) Kaplan-Meier survival analysis of TMB. (E) Effects of the risk score combined with TMB on the 
overall survival. 
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represents only the beginning of this emerging field. 
However, to our knowledge, no prior study has 
investigated the connections between HARlncRNAs 
and the evaluation of prognosis and the TME in ESCA. 

In our current study, we analyzed DElncRNAs in 162 
ESCA tissues and 11 normal tissues from the TCGA 
database, resulting in the identification of 653 
DElncRNAs. Through Pearson correlation analysis, we 

 

 
 
Figure 10. Estimation of the HARlncRNA signature in immunotherapy response. (A) Expression of ICGs in different risk groups. 
(B) Differences of TIDE score between the high- and low-risk groups. (C–H) Correlation of risk score with immune checkpoints. *P < 0.05; 
**P < 0.01; ***P < 0.001. 
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Figure 11. Relationships between risk score and therapeutic sensitivity. (A) Bicalutamide. (B)  BMS.536924. (C) Parthenolide. (D) 
PD.0325901. (E) RDEA119. (F) Etoposide. (G) Lenalidomide. (H) Nilotinib. (I) Pazopanib. (J) Temsirolimus. 
 

 
 
Figure 12. The expression levels of two signature lncRNAs. (A) The mRNA expression profile of two lncRNA in tumor tissues from the 
TCGA database and normal esophageal tissues from the TCGA and GTEx databases. (B, C) Further verification of the expression levels of 
two signature lncRNAs in human ESCA cancer cell lines and human normal esophageal epithelial cell line by qRT-PCR analysis. ***P < 0.001; 
****P < 0.0001. 
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identified a total of 7 lncRNAs that showed correlations 
with acetylation regulators. When combined with 
clinical prognosis data, we selected 3 lncRNAs that are 
related to prognosis in the TCGA dataset. Next, we 
developed a risk signature for ESCA using LASSO 
regression analysis and identified C21orf62-AS1 and 
SSTR5.AS1 as potential biomarkers for assessing the 
prognosis of ESCA patients. Chen et al. found that 
C21orf62-AS1 is closely linked to predicting gastric 
cancer recurrence and plays a role in regulating various 
biological functions and signaling pathways related to 
gastric cancer. Suppression of C21orf62-AS1 led to 
apoptosis in gastric cancer cells. Furthermore, elevated 
expression of C21orf62-AS1 was associated with 
significantly reduced median survival time in gastric 
cancer patients [28]. Wang et al. [29] found that 
abnormal methylation-induced downregulation of 
lncRNA SSTR5-AS1 promotes the progression and 
metastasis of laryngeal squamous cell carcinoma. Hu 
et al. [30] found that lncRNA SSTR5-AS1 predicts a 
poor prognosis and contributes to ESCA progression. 
While many of its functions remain unknown, we have 
shown its connection to cancer pathology and malignant 
progression through extensive data analysis. 
 
Following the construction of the risk model, we 
assessed the risk score for each tumor sample based on 
the expression of HARlncRNAs in the risk signature. 
Based on the risk score, we categorized the samples into 
high-risk and low-risk groups. We identified the risk 
score as an independent risk factor and validated it 
across the training, test, and validation sets. This 
suggests that histone acetylation modification is a 
reliable method for comprehensively assessing ESCA. 
 
Given the strong association between histone 
acetylation patterns, immunotherapy response, and the 
TME, we investigated the potential therapeutic impact 
of the HARlncRNA risk signature. Our analysis 
uncovered that the low-risk group exhibited higher 
levels of immune cell infiltration and increased 
expression of immunomodulators, including classical 
immune checkpoint molecules. Patients in the low-risk 
group showed significantly higher StromalScore, 
ImmuneScore, and ESTIMATEScore levels than those 
in the high-risk group. This implies that patients in the 
low-risk group might have a more favorable response to 
immunotherapy. Given the potential link between 
histone acetylation modification and immune 
regulation, we delved deeper into the correlation 
between acetylation-related scores and TMB. TMB has 
gained acceptance as a predictor for immunotherapy in 
advanced NSCLC and has been endorsed by the latest 
NCCN guidelines [31]. Our results demonstrate a 
significant correlation between the acetylation-related 
score and TMB. Patients with high TMB and 

acetylation-related scores experience worse prognoses, 
revealing an underlying and indirect connection 
between acetylation modification and immunotherapy 
in ESCA. These findings imply that our model can 
effectively predict the outcomes of immunotherapy in 
ESCA patients. 
 
To our knowledge, this study presents the initial 
landscape of HARlncRNAs in ESCA and delves into 
the diagnostic and biological functions of the identified 
biomarkers. However, our study does possess certain 
inevitable limitations. Firstly, it’s important to 
recognize that the HARlncRNA risk signature was 
retrospectively developed from publicly accessible 
databases, possibly leading to inherent selection bias. 
To determine the applicability and strength of our 
results, conducting thorough prospective and 
multicenter clinical studies is essential. Additionally, 
it’s vital to recognize the absence of key clinical factors 
like chemoradiotherapy and surgery in the analyzed 
datasets, highlighting the need to include them in future 
research. This limitation could have affected the 
accuracy of treatment response and disulfidptosis state 
analyses. Moreover, conducting additional in vivo and 
in vitro experiments is essential for a comprehensive 
understanding of the roles of signature genes in the 
context of the disease. 
 
CONCLUSION 
 
In our study, we developed a HARlncRNA risk 
signature that holds significant predictive value for 
prognosis and offers insights into the tumor 
microenvironment in ESCA. 
 
MATERIALS AND METHODS 
 
Data collection 
 
We obtained RNA transcriptome sequencing data, 
somatic mutation data, copy number variation (CNV) 
data, and associated clinical information for ESCA from 
the TCGA database. In this study, we divided the 
TCGA-ESCA cohort into training and test sets. For 
result validation on the training set, we additionally 
retrieved an independent ESCA dataset (GEO: 
GSE53624) from the GEO database to serve as an 
external validation set. Read count values from each 
database were downloaded in the form of fragments per 
kilobase million (FPKM). To mitigate batch effects, we 
utilized the “Combat” function within the “SVA” R 
package. We retrieved literature on histone acetylation 
modification and curated 52 recognized HARGs, which 
are listed in Supplementary Table 1. We employed the 
“biomaRt” package in R to obtain the chromosomal 
location information of HARGs. We utilized the 
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“TBtools” package to create a chromosomal distribution 
map of HARGs. We obtained CNV profiles of ESCA 
from the TCGA database, intersected these profiles with 
the selected HARGs, and used the R package “ggplot2” 
for data visualization. 
 
Differential expression analysis of HARGs and 
acquisition of HARlncRNAs 
 
To discover HARGs and lncRNAs contributing to 
ESCA progression, we conducted differential 
expression analysis comparing 11 normal tissues with 
162 tumor tissues in the TCGA-ESCA cohort. Genes 
and lncRNAs with |log2 Fold Change (FC) | > 1 and P < 
0.05 were defined as differentially expressed. 
Furthermore, we intersected the known 52 HARGs with 
the 5 genes identified from the differentially expressed 
genes. Then, lncRNAs showing a significant correlation 
with these 5 HARGs were screened using the Pearson 
correlation analysis algorithm. In the end, we identified 
7 HARlncRNAs for subsequent bioinformatics analysis. 
 
Construction and validation of the prognostic 
signature 
 
We conducted univariate Cox regression analysis on the 
differentially expressed HARlncRNAs to assess their 
prognostic significance. To prevent overfitting, we also 
carried out LASSO Cox regression with 10,000 
iterations, employing the “glmnet” package. The 
lncRNAs identified through LASSO regression were 
utilized for risk score calculation. The risk score was 
computed using the following formula: risk score = 
(expression level of gene1 × coefficient of gene1) + 
(expression level of gene2 × coefficient of gene2) + ... + 
(expression level of gene n × coefficient of gene n). 
ESCA patients were stratified into two subgroups based 
on the median risk score, which comprised the high-risk 
and low-risk groups. Survival curves were generated 
through Kaplan-Meier analysis and the log-rank test, 
utilizing the “survival” R package to evaluate prediction 
accuracy. Receiver operating characteristic (ROC) 
curves for the risk scores were constructed with the 
“timeROC” R package. 
 
Nomogram construction and validation 
 
To address the clinical utility of the histone acetylation-
related score, a nomogram was developed using a Cox 
regression model. The nomogram incorporated age, 
gender, grade, stage, and the histone acetylation-related 
score. The model’s performance was assessed using 
calibration and the concordance index (C-index). To 
assess the alignment between observed and estimated 
survival probabilities, bias-corrected calibration for 3 
and 5-year overall survival rates was conducted using 

1,000 bootstrap resamples, employing the “rms” 
package. Calibration was determined using the 
“calibrate” function with the parameter settings 
“cmethod = KM, method = boot, m = 80”. Model 
discrimination was assessed using Harrell’s C-index, 
where a higher C-index value indicated superior model-
fitting performance. 
 
Functional enrichment analysis 
 
We used the default parameters of three databases: 
StarBase (https://rnasysu.com/encori/), LncRNA2Target 
(http://bio-annotation.cn/lncrna2target/search.jsp), and 
lncLocator 
(http://www.csbio.sjtu.edu.cn/bioinf/lncLocator/) to 
simultaneously predict target genes for HARlncRNAs. 
We then combined the resulting predictions to 
determine the target genes of HARlncRNAs. To gain a 
deeper understanding of the function of HARlncRNA 
target genes and the predominant enriched signaling 
pathways, we conducted enrichment analysis using the 
R package “clusterProfiler”. GO enrichment results 
were graphically represented with the R package 
“circlize”, while KEGG enrichment results were 
depicted using the R package “ClusterProfiler”. 
 
Immune landscape analysis 
 
For immune cell analysis, we employed multiple 
algorithms, including TIMER, CIBERSORT, 
CIBERSORT-ABS, QUANTISEQ, MCP-counter, 
XCELL, and EPIC, to assess the levels of immune cell 
infiltration in various samples. We applied the 
ESTIMATE algorithm to compute stromal score, 
ESTIMATE score, and immune score, which provide 
insights into the tumor microenvironment. We 
determined the activity of immune cells, immune 
functions, and immune pathways for each sample 
through single-sample gene set enrichment analysis 
(ssGSEA). 
 
Correlations of histone acetylation-related score 
with tumor mutational burden (TMB), immune 
checkpoint genes (ICGs), and immunotherapy 
response 
 
Patient response rates to immunotherapy have been 
associated with both TMB and ICGs. We computed the 
TMB for each ESCA sample using somatic mutation 
data processed with VarScan2 software in the TCGA-
ESCA cohort. Next, we compared TMB differences 
between the high-risk and low-risk groups. We 
visualized somatic mutations in both risk groups using 
the “maftools” R package. Additionally, we investigated 
the influence of combining the risk score with TMB on 
the survival of ESCA patients. The expression levels of 
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ICGs may have associations with the responses to 
treatment with immune checkpoint inhibitors. We 
assessed the disparities in gene expression levels 
between the high-risk and low-risk groups to investigate 
the link between the risk score and the response to 
immune checkpoint inhibitors. To assess the 
effectiveness of immunotherapy for ESCA patients, we 
utilized the tumor immune dysfunction and exclusion 
(TIDE) algorithm, available at 
http://tide.dfci.harvard.edu. 
 
Drug sensitivity analysis 
 
The “pRRophetic” package is an algorithm developed 
using data from the Cancer Genome Project (CGP) 
database, containing information about how more than 
700 cell lines respond to 138 different drugs. This 
algorithm is designed to predict how drugs will respond. 
We conducted drug sensitivity prediction by utilizing 
the internal algorithm within the “pRRophetic” package 
and applying the linearRidge method for ridge 
regression analysis. Additionally, by incorporating 
sample grouping data, we computed the half-maximal 
inhibitory concentration (IC50) values for each sample 
in response to different drugs. This facilitated the 
identification of drugs with varying sensitivities across 
different groups, offering valuable insights for future 
research. 
 
Cell culture and qRT-PCR analysis 
 
We obtained the ESCA cell lines (TE-1, KYSE-150, 
and ECA-109), along with the human normal 
esophageal epithelial cell line (HET-1A), from the Cell 
Repository of the Chinese Academy of Sciences in 
Shanghai, China. All cell lines were cultured in RPMI-
1640 medium supplemented with 10% Fetal Bovine 
Serum (FBS), streptomycin (100 U/mL), and penicillin 
(100 U/mL) at 37°C in a 5% CO2 environment. 
 
We isolated total RNA from cell lines using 1 mL of 
TRIzol®, and then we synthesized complementary DNA 
(cDNA) with reverse transcriptase derived from avian 
medulloblastoma virus and random primers, following 
TAKARA’s instructions. We conducted qRT-PCR 
using SYBR Premix Ex Taq II from Takara in Shiga, 
Japan. Data analysis was carried out based on 2−ΔΔCT 
values. 
 
Statistical analysis 
 
We performed all statistical analyses using R software 
(v.4.0.0). The preceding section provided detailed 
statistical methods for processing transcriptome data. A 
p-value below 0.05 was considered statistically 
significant. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figure 
 

 
 
Supplementary Figure 1. Validation of risk signature based on two HARlncRNAs in the GEO cohort. (A, B) The risk score 
distribution, survival status, and heatmap for the expressions of the two lncRNAs in the validation set. (C) The survival analysis in the 
validation set. (D, E) ROC curve analysis of the accuracy of the model to predict patient prognosis at 1, 3, and 5 years in the validation sets. 
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Supplementary Table 
 
Supplementary Table 1. Summary of 52 recognized histone acetylation-related genes. 

Gene Type 
HDAC4 Histone acetylation 
HDAC5 Histone acetylation 
HDAC2 Histone acetylation 
HDAC3 Histone acetylation 
HDAC10 Histone acetylation 
HDAC1 Histone acetylation 
HDAC11 Histone acetylation 
HDAC8 Histone acetylation 
HDAC9 Histone acetylation 
HDAC6 Histone acetylation 
HDAC7 Histone acetylation 
KAT8 Histone acetylation 
EP300 Histone acetylation 
KAT7 Histone acetylation 
BRD4 Histone acetylation 
BRD3 Histone acetylation 
BRD2 Histone acetylation 
CREBBP Histone acetylation 
SIRT2 Histone acetylation 
KAT2B Histone acetylation 
KAT2A Histone acetylation 
KAT6B Histone acetylation 
KAT6A Histone acetylation 
HAT1 Histone acetylation 
BRDT Histone acetylation 
TAF1 Histone acetylation 
YEATS4 Histone acetylation 
BAZ2B Histone acetylation 
ATAD2B Histone acetylation 
DPF1 Histone acetylation 
DPF2 Histone acetylation 
DPF3 Histone acetylation 
BPTF Histone acetylation 
PBRM1 Histone acetylation 
SMARCA2 Histone acetylation 
SMARCA4 Histone acetylation 
ATF2 Histone acetylation 
CIITA Histone acetylation 
KAT5 Histone acetylation 
BRD9 Histone acetylation 
BRD7 Histone acetylation 
NCOA1 Histone acetylation 
NCOA2 Histone acetylation 
NCOA3 Histone acetylation 
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SIRT4 Histone acetylation 
OGA Histone acetylation 
SIRT5 Histone acetylation 
SIRT6 Histone acetylation 
SIRT7 Histone acetylation 
SIRT1 Histone acetylation 
SIRT3 Histone acetylation 
CLOCK Histone acetylation 
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