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ABSTRACT 
 

Objective: Accurate prognostic prediction in patients with high-grade aneruysmal subarachnoid hemorrhage 
(aSAH) is essential for personalized treatment. In this study, we developed an interpretable prognostic machine 
learning model for high-grade aSAH patients using SHapley Additive exPlanations (SHAP). 
Methods: A prospective registry cohort of high-grade aSAH patients was collected in one single-center hospital. 
The endpoint in our study is a 12-month follow-up outcome. The dataset was divided into training and 
validation sets in a 7:3 ratio. Machine learning algorithms, including Logistic regression model (LR), support 
vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost), were employed to 
develop a prognostic prediction model for high-grade aSAH. The optimal model was selected for SHAP analysis. 
Results: Among the 421 patients, 204 (48.5%) exhibited poor prognosis. The RF model demonstrated 
superior performance compared to LR (AUC = 0.850, 95% CI: 0.783-0.918), SVM (AUC = 0.862, 95% CI: 0.799-
0.926), and XGBoost (AUC = 0.850, 95% CI: 0.783-0.917) with an AUC of 0.867 (95% CI: 0.806-0 .929). Primary 
prognostic features identified through SHAP analysis included higher World Federation of Neurosurgical 
Societies (WFNS) grade, higher modified Fisher score (mFS) and advanced age, were found to be associated 
with 12-month unfavorable outcome, while the treatment of coiling embolization for aSAH drove the 
prediction towards favorable prognosis. Additionally, the SHAP force plot visualized individual prognosis 
predictions. 
Conclusions: This study demonstrated the potential of machine learning techniques in prognostic prediction for 
high-grade aSAH patients. The features identified through SHAP analysis enhance model interpretability and 
provide guidance for clinical decision-making. 
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INTRODUCTION 
 

Subarachnoid hemorrhage caused by ruptured 

intracranial aneurysms (aSAH) is a global health 

concern due to its significant impact on mortality  

and long-term disability rates [1]. Approximately  

35% of patients succumb to severe cerebrovascular 

injury in the initial weeks [2]. Among the survivors,  

a considerable number experience disability. High- 

grade aSAH is associated with profound neurological 

consequences resulting from a combination of direct 

blood-induced damage, secondary vasospasm, and 

delayed cerebral ischemia [3]. Currently, the assess-

ment of aSAH severity and prediction of clinical 

outcomes rely on neurological examinations and 

neuroimaging studies; however, estimating high-grade 

SAH patients can be challenging due to the frequent 

administration of sedatives and analgesics during their 

management [3]. A timely and accurate diagnosis of 

high-grade SAH is pivotal for instituting appropriate 

therapeutic interventions. Hence, there is an urgent 

demand for a functional prediction model to aid in  

the treatment and evaluation of patients with high-

grade SAH. 

 

In recent years, numerous prediction models have  

been extensively developed to forecast the clinical 

outcomes in high-grade aSAH patients [4]. However, 

the majority of these models rely on conventional 

algorithms with limited clinical features. Recent 

advancements in artificial intelligence have led to 

significant breakthroughs in medical machine learning 

(ML) [5–7], and these models have demonstrated 

promising discrimination capabilities. In a recent 

study, a support vector machine (SVM) model was 

constructed utilizing high-throughput metabolomics 

data to identify potential biomarkers and targets for the 

diagnosis and treatment of colorectal cancer, and the 

model achieved an AUC of 0.985 [8]. Nevertheless, 

due to the inherent “black box” nature of ML 

algorithms that lack transparency and explanatory 

research, elucidating the prediction process within  

the model becomes a challenge [9]. Shapley Additive 

Explanations (SHAP) is a novel game theory-based 

approach in explainable ML introduced by Lundberg 

and Lee [10], it can well solve the issue of 

inexplicability by providing a solution for better 

understanding and interpreting complex models, and 

this method allows for representing the contribution  

of each feature to the outcome. Yagin et al. proposed 

an explainable artificial intelligence model to predict 

COVID-19 using meta-genomic next-generation 

sequencing (mNGS) data, and the model allowed 

physicians to enhance their comprehension of the 

decision-making process in COVID-19 genomic 

prediction [11]. Another study developed a XGBoost 

model combined with SHAP to effectively predict the 

3-year all-cause mortality in coronary heart disease and 

heart failure patients. The model offers clear explanations 

for individualized risk predictions, aiding doctors in 

understanding the impact of key features [12]. These 

researches showed explainable machine learning holds 

great promise in assisting physicians in intuitively 

grasping the influence of key features in models. This 

aids clinicians in gaining a deeper understanding of 

decisions made for disease severity assessment. 

 

Therefore, this study aims to develop and validate an 

explainable ML model to predict 12-month outcomes in 

patients with high-grade aSAH. Besides, the SHAP 

values of each feature were analyzed to elucidate the 

overall prediction process. This effort will contribute  

to the development of explainable and personalized 

predictive models for prognosis in high-grade aSAH, 

marking a substantial advancement for the application 

of machine learning in the field of medicine. 

 

RESULTS 
 

Baseline characteristics 

 

Among a total of 421 patients with high-grade aSAH, 

204 patients suffered poor outcomes in our final cohort. 

The detailed baseline characteristic of the patients was 

represented in Table 1. The mean age was 62 (range: 

54, 69), and there were 259 (61.5%) female patients in 

the cohort. The poor outcome group had an older age  

(P < 0.001), higher rate of coil treatment (P < 0.001), 

higher rates of hypertension (P < 0.05), higher World 

Federation of Neurosurgical Societies (WFNS) grade (P 

< 0.001), and higher modified Fisher score (mFS) (P < 

0.001), as well as larger aneurysm length size (P < 0.05) 

than favorable outcome. Table 2 presents the baseline 

characteristics of the training set and validation set. And 

The flowchart of our study is shown in Figure 1.  

 

Model development and validation 

 

We constructed LR, XGBoost, RF, and SVM  

models using the training dataset. The prediction 

performances of these four models are presented in 

Table 3. When evaluated on the validation dataset, 

these models achieved AUCs of 0.850 (95% CI: 0.783-

0.918), 0.850 (95% CI: 0.783-0.917), 0.867 (95% CI: 

0.806-0.929), 0.862 (95% CI: 0.799-0.926), respectively 

(Figure 2). The confusion matrix and balanced accuracy 

of four models can be found in Supplementary Table 

1. Among them, RF exhibited superior predictive 

performance with an AUC of 0.867 (95% CI: 0.806-

0.929). Conversely, LR and XGBoost demonstrated 

relatively poorer generalization abilities with AUCs of 

only AUC of 0.850 (95% CI: 0.783-0.918) and AUC 
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Table 1. Baseline characteristics in patients with high-grade aSAH.  

 Overall Favorable outcome Poor outcome P 

n 421 217 204  

Age (median [IQR]) 62.00 [54.00, 69.00] 59.00 [51.00, 65.00] 65.00 [56.00, 71.00] <0.001 

Female (%) 259 (61.5) 140 (64.5) 119 (58.3) 0.229 

Treatment coiling (%) 283 (67.2) 168 (77.4) 115 (56.4) <0.001 

Hypertension (%) 231 (54.9) 108 (49.8) 123 (60.3) 0.038 

Diabetes (%) 24 (5.7) 8 (3.7) 16 (7.8) 0.104 

CHD (%) 9 (2.1) 6 (2.8) 3 (1.5) 0.562 

Smoking (%) 39 (9.3) 25 (11.5) 14 (6.9) 0.139 

Drinking (%) 20 (4.8) 11 (5.1) 9 (4.4) 0.930 

Anticoagulant (%) 15 (3.6) 9 (4.1) 6 (2.9) 0.686 

location (%)    0.050 

  ACA 18 (4.3) 11 (5.1) 7 (3.4)  

  MCA 108 (25.7) 48 (22.1) 60 (29.4)  

  ICA 16 (3.8) 6 (2.8) 10 (4.9)  

  PCA 10 (2.4) 5 (2.3) 5 (2.5)  

  ACoA 120 (28.5) 57 (26.3) 63 (30.9)  

  PCoA 115 (27.3) 65 (30.0) 50 (24.5)  

  Other 34 (8.1) 25 (11.5) 9 (4.4)  

Aneurysm multiple (%) 71 (16.9) 29 (13.4) 42 (20.6) 0.065 

Mean aneurysm size     

  Length (median [IQR]) 5.00 [3.50, 6.60] 4.80 [3.30, 6.20] 5.25 [3.70, 7.00] 0.027 

  Width (median [IQR]) 4.00 [3.00, 5.40] 4.00 [3.10, 5.20] 4.00 [3.00, 5.60] 0.982 

  Neck (median [IQR]) 3.50 [2.70, 4.40] 3.50 [2.60, 4.50] 3.50 [2.70, 4.40] 0.850 

WFNS (%)    <0.001 

  1 1 (0.2) 1 (0.5) 0 (0.0)  

  2 95 (22.6) 77 (35.5) 18 (8.8)  

  3 16 (3.8) 10 (4.6) 6 (2.9)  

  4 171 (40.6) 104 (47.9) 67 (32.8)  

  5 138 (32.8) 25 (11.5) 113 (55.4)  

mFS (%)    <0.001 

  1 10 (2.4) 7 (3.2) 3 (1.5)  

  2 66 (15.7) 54 (24.9) 12 (5.9)  

  3 147 (34.9) 87 (40.1) 60 (29.4)  

  4 198 (47.0) 69 (31.8) 129 (63.2)  

Abbreviations: CHD, coronary heart disease; WFNS, World Federation of Neurological Societies; mFS, 
modified Fisher Scale; ACA, anterior cerebral artery; MCA, middle cerebral artery; ICA, internal cerebral 
artery; PCA, posterior cerebral artery; ACoA, anterior communicating artery; PCoA, posterior 
communicating artery. 

 

value of 0.850 (95% CI: 0.783-0.917), respectively. 

Therefore, we selected the RF model for subsequent 

analysis. Table 4 provides the detailed information 

regarding multivariable LR analysis. Moreover, we 

applied decision curve analysis to the RF model.  

As shown in Figure 3, the decision curve analysis 

demonstrated that when the threshold probability ranges 

from 4% to 93%, the net benefit level of applying the 

random forest model is significantly higher than the 

“Treat all” and “Treat none” strategies. This suggests 

that our model exhibits favorable clinical applicability.  

 

SHAP model explanation  

 

The SHAP values were calculated to represent the 

feature importance for the RF model, which exhibited 

superior discriminatory capability in the validation 

cohort. In Figure 4A, the clinical features are ranked 
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Table 2. Baseline characteristics of the training set and validation set. 

 Overall Training  Validation P 

n 421 294 127  

Age (median [IQR]) 62.00 [54.00, 69.00] 63.00 [55.00, 69.00] 59.00 [51.00, 67.00] 0.014 

Female (%) 259 (61.5) 175 (59.5) 84 (66.1) 0.241 

Treatment coiling (%) 283 (67.2) 206 (70.1) 77 (60.6) 0.075 

Hypertension (%) 231 (54.9) 167 (56.8) 64 (50.4) 0.038 

Diabetes (%) 24 (5.7) 17 (5.8) 7 (5.5) 1.000 

CHD (%) 9 (2.1) 7 (2.4) 2 (1.6) 0.875 

Smoking (%) 39 (9.3) 34 (11.6) 5 (3.9) 0.022 

Drinking (%) 20 (4.8) 17 (5.8) 3 (2.4) 0.206 

Anticoagulant (%) 15 (3.6) 9 (3.1) 6 (4.7) 0.576 

location (%)    0.104 

  ACA 18 (4.3) 14 (4.8) 4 (3.1)  

  MCA 108 (25.7) 68 (23.1) 40 (31.5)  

  ICA 16 (3.8) 10 (3.4) 6 (4.7)  

  PCA 10 (2.4) 9 (3.1) 1 (0.8)  

  ACoA 120 (28.5) 90 (30.6) 30 (23.6)  

  PCoA 115 (27.3) 84 (28.6) 31 (24.4)  

  Other 34 (8.1) 19 (6.5) 15 (11.8)  

Aneurysm multiple (%) 71 (16.9) 47 (16.0) 24 (18.9) 0.555 

Mean aneurysm size     

  Length (median [IQR]) 5.00 [3.50, 6.60] 5.00 [3.50, 6.60] 5.10 [3.50, 6.70] 0.924 

  Width (median [IQR]) 4.00 [3.00, 5.40] 3.90 [3.00, 5.30] 4.10 [3.10, 5.55] 0.397 

  Neck (median [IQR]) 3.50 [2.70, 4.40] 3.30 [2.50, 4.40] 3.70 [3.00, 4.65] 0.039 

WFNS (%)    0.676 

  1 1 (0.2) 1 (0.3) 0 (0.0)  

  2 95 (22.6) 63 (21.4) 32 (25.2)  

  3 16 (3.8) 10 (3.4) 6 (4.7)  

  4 171 (40.6) 125 (42.5) 46 (36.2)  

  5 138 (32.8) 95 (32.3) 43 (33.9)  

mFS (%)    0.864 

  1 10 (2.4) 6 (2.0) 4 (3.1)  

  2 66 (15.7) 45 (15.3) 21 (16.5)  

  3 147 (34.9) 102 (34.7) 45 (35.4)  

  4 198 (47.0) 141 (48.0) 57 (44.9)  

Poor outcome (%) 204 (48.5) 141 (48.0) 63 (49.6) 0.838 

Abbreviations: CHD, coronary heart disease; WFNS, World Federation of Neurological Societies; mFS, 
modified Fisher Scale; ACA, anterior cerebral artery; MCA, middle cerebral artery; ICA, internal cerebral 
artery; PCA, posterior cerebral artery; ACoA, anterior communicating artery; PCoA, posterior 
communicating artery. 

 

based on their average absolute SHAP values to 

showcase their relative significance. Figure 4B provides 

a comprehensive visualization of how factors influence 

the RF model, with blue indicating high level and  

red representing low levels for continues features in 

each specific observation. For categorical features, blue 

denotes “yes” while red corresponds to “no”.  

The features specifically associated with poor 

prognosis included WFNS grade 5, age, mFS grade  

4, hypertension, and aneurysm multiplicity. Each of  

these features exhibited a positive impact and drive  

the prediction towards poor prognosis. Additionally, 

treatment of coiling embolization, WFNS grade 2, 

female gender exhibited a negative impact and drove 
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the prediction towards favorable prognosis. Furthermore, 

we employed SHAP dependency plots to further 

investigate the influence of the top five factors on the 

RF model’s predictions of mortality risk. Figure 5 

demonstrates a significant association between WFNS 

grade 5, mFS grade 4 and advanced age with an 

increased risk of poor prognosis, while treatment of 

coiling embolization and WFNS grade 2 are associated 

with a decreased risk of poor prognosis. 

 

Individual SHAP force plot 

 

The SHAP force plot analysis was employed to explain 

the individualized prediction outcomes of two specific 

samples. Figure 6 illustrates a visual representation of 

the predictions made by the RF model, with red and 

blue bars denoting risk factors and protective factors, 

respectively. The length of each bar corresponds to its 

feature importance. According to our constructed model 

(Figure 6A), this patient was predicted to have a 75% 

probability of poor prognosis. Notably, WFNS grade 5, 

mFS grade 4, aneurysm width of 3.8 mm, and hyper-

tension were identified as the primary factors influencing 

this prediction outcome. In contrast, another patient was 

projected by our model to have a 25% likelihood of 

experiencing a poor prognosis (Figure 6B). 
 

DISCUSSION 
 

In this study, we developed and validated four  

distinct machine learning models (LR, RF, SVM,  

and XGBoost). We observed that the RF model 

outperformed LR, SVM, and XGBoost in terms  

of performance (AUC=0.867, 95% CI: 0.806-0.929).  

To ensure both model performance and clinical 

interpretability, we employed the SHAP method to 

elucidate the decision-making process of the RF model. 

This effort will greatly aid physicians in gaining a 

 

 
 

Figure 1. The flowchart of this study. 
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Table 3. Model performance using training and validation cohorts. 

Cohort Model AUC (95%CI) Accuracy Sensitivity Specificity 

Training 

 

LR 

XGB 

0.840 (0.795-0.884) 

0.971 (0.954-0.987) 

0.779 

0.925 

0.695 

0.922 

0.856 

0.928 

 RF 0.984 (0.974-0.995) 0.946 0.936 0.954 

 SVM 0.940 (0.914-0.966) 0.881 0.936 0.830 

Validation 

 

LR 

XGB 

0.850 (0.783-0.918) 

0.850 (0.783-0.917) 

0.795 

0.780 

0.667 

0.762 

0.922 

0.797 

 RF 0.867 (0.806-0.929) 0.780 0.714 0.844 

 SVM 0.862 (0.799-0.926) 0.764 0.857 0.672 

LR indicates logistic regression; SVM, support vector machine; RF, random forest; 
XGBoost, extreme gradient boosting. 

 

comprehensive understanding of the underlying model’s 

decision-making process and facilitate the utilization  

of prediction results. The feature importance analysis 

revealed WFNS grade, age, mFS, and treatment of 

coiling embolization as predominant predictors for poor 

prognosis in the RF model. Our findings indicate that 

higher WFNS grade, higher mFS grade, and advanced 

age are distinct predictors for poor prognosis in high-

grade SAH patients; while the treatment modality of 

coiling embolization serves as a protective factor. 

 

High-grade aSAH is associated with elevated  

mortality and unfavorable neurologic outcomes [13]. A  

recent investigation revealed significant proportion of 

survivors of high-grade aSAH showed a good quality 

of life after appropriate clinical decision making [14]. 

Therefore, there is a critical need for early prediction 

of long-term functional outcomes and the identification 

of risk factors. Shen et al. introduced a novel scoring 

model for accurate prognosticate the outcomes of high-

grade aSAH patients, and the model demonstrated a 

noteworthy AUC of 0.831 in the validation cohort [15]. 

Hou et al. revealed that the utilization of the neutrophil 

percentage to albumin ratio in constructing a predictive 

model for high-grade aSAH patient prognosis yielded 

an area under the ROC curve of 0.78 [16]. In a recent 

investigation on ML modeling for high-grade aSAH 

patient prognosis, Liu et al. reported an AUC of 0.88 

achieved by their decision tree model [17]. As we  

can see, the predictive capability of machine learning 

models surpasses that of conventional predictive 

models. However, their model was constructed using 

limited algorithmic tools and lacked interpretability, 

functioning as a “black box” [18]. Meanwhile, 

explainable ML has been demonstrated successful  

in various medical domains such as early prognosis 

prediction in sepsis [19] and enabling precision 

medicine in acute myeloid leukemia [20]. The SHAP 

method introduced by Lundberg and Lee offers a game- 

theoretic approach that effectively addresses the black 

 

 
 

Figure 2. ROC curves for four machine learning models. (A) AUCs of four machine learning models in the training cohort; (B) AUCs of 

four machine learning models in the test cohort. ROC, receiver operating characteristic curve; AUC, area under the curve; LR, logistic 
regression; RF, random forest; SVM, support vector machine; XGB, extreme gradient boosting. 
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Table 4. Multivariable logistic analysis for 
variables selected by LASSO analysis. 

Variables OR (95 CI%) P 

Age 1.07 (1.04-1.10) <0.001 

Treatment coiling 0.38 (0.23-0.63) <0.001 

WFNS 2.40 (1.85-3.13) <0.001 

mFS 1.55 (1.10-2.18) 0.012 

Aneurysm multiple 2.56 (1.35-4.87) 0.004 

WFNS, World Federation of Neurosurgical 
Societies; mFS, modified Fisher scale. 

 

 
 

Figure 3. Decision curve analysis of random forest model. The black line is the net benefit for a strategy of treating all men; the yellow 

line is the net benefit of treating none. The y-axis indicates the overall net benefit, which is calculated by summing the benefits (true positive 
results and subtracting the harms (false positive results). 
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box nature of ML models [10]. Nevertheless, its 

application in predicting long-term prognosis for  

high-grade aSAH remains unexplored to the best of 

our knowledge. Therefore, this study represents the 

first attempt to employ the SHAP method within RF 

models for long-term prognostic prediction in patients 

with high-grade aSAH. 

 

In this study, our research indicated that RF  

model outperforms other models in predicting the 

long-term prognosis of high-grade aSAH patients. 

Random Forest, an ensemble algorithm based on 

decision trees derived from random feature subsets,  

is widely recognized for its robust utility in feature 

classification and prediction tasks [21]. Moreover,  

RF exhibits significant advantages over other models 

in addressing highly non-linearly correlated data, 

demonstrating robustness to noise, simplicity in tuning, 

and facilitating efficient parallel processing [22]. 

Another notable strength of our study lies in the 

application of SHAP values, allowing us to uncover 

the black box of machine learning models. And the 

interpretable machine learning model have revealed 

that significant clinical variables contribute to predict 

the long-term prognosis of high-grade aSAH. 

 

WFNS grade, a widely recognized classification 

schema for assessing the severity of aSAH, categorizes 

patients into five grades based on clinical neurological 

manifestations [23, 24]. Higher WFNS grades  

often associate with more profound neurological 

deficits and poorer clinical outcomes [25]. Bogossian 

et al. found that patients with high-grade aSAH 

contribute to have significant rates of poor prognosis, 

particularly those classified as WFNS grade 5 upon 

admission [26]. Another study revealed that even  

with prompt intervention, patients with WFNS grade 5 

exhibited a prevalence of severe disability at discharge 

reaching 27% [27]. Our finding in the context of  

high-grade aSAH consistent with the well-established 

understanding that higher WFNS grade correlate  

with worse prognosis, which can be attributed to 

aggravated neurological impairment and increased risk 

of subsequent complications [28, 29].  

 

Advanced age was positively correlated with higher 

WFNS grade, and the older the patient, the higher the 

probability of presenting in a deteriorated condition 

after aSAH [30]. Previous studies have revealed 

advanced age as independent predictors of poor 

prognosis in patients with high-grade aSAH [25, 31, 

32]. Advancing age causes patients more susceptible  

to cerebral insults, diminishes physiological reserves,  

and impairs recovery mechanisms [33, 34]. Elderly 

patients often suffer increased burdens of comorbidities 

and declined physiological recovery capacity, resulting 

them being susceptible to unfavorable outcomes 

following high-grade aSAH [25, 35]. 

 

 

 

Figure 4. Summary plots of SHapley Additive exPlanations (SHAP) values. (A) SHAP feature importance quantified through the 
average absolute Shapley values. This plot illustrates the significance of each feature in development of the predictive model.  
(B) Representation of the influence exerted by each feature on the final model output, assessed via SHAP values distribution. Every individual 
patient is denoted by a data point within each row. The color indicates whether the continuous feature is at a high level (displayed in blue) or 
a low level (displayed in red) for that specific observation. When it comes to categorical features, the color blue signifies “yes”, while the 
color red corresponds to “no”. Location 1, 2, 3, 4, 5, 6, 7 denotes anterior cerebral artery, middle cerebral artery, internal cerebral artery, 
posterior cerebral artery, anterior communicating artery, posterior communicating artery and others, respectively. 
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mFS system, a radiological tool assessing hemorrhage 

extent on computed tomography scans, plays a key role 

in evaluating the severity of bleeding and vasospasm 

risk [36]. Similar to the WFNS grade, a higher mFS 

score indicates more extensive hemorrhage and are 

linked to unfavorable outcomes [15]. The severity  

of bleeding and its subsequent complications such as 

vasospasm and delayed cerebral ischemia contribute to 

the observed correlation between elevated mFS score 

and poor prognosis in high-grade aSAH [15, 17, 37]. 

 

 
 

Figure 5. SAHP dependency plot illustrating the top 5 clinical features in the random forest model. (A) WFNS 5; (B) Age; (C) mFS 
4; (D) WFNS 2; (E) Treatment coiling. WFNS, World Federation of Neurosurgical Societies; mFS, modified Fisher scale. 
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Endovascular coiling, a minimally invasive strategy 

for the treatment of intracranial aneurysm, represents  

a promising technique for high-grade aSAH patients 

[38, 39]. Recent years have witnessed a significant 

advancement in the prognosis of patients with high-

grade aSAH, with rates of functional independence 

ranging from 30%-57% [40, 41]. These improved 

outcomes have been attributed to the early and 

aggressive implementation of endovascular coiling 

[42, 43]. However, another recent study indicated that, 

in comparison to surgery being a short-term morbidity 

risk factor, endovascular treatment is associated with 

higher mortality rates at 1 year [44]. The observed 

findings are probably a consequence of selection bias 

inherent in the retrospective nature of the data. In 

general, through the effective occlusion of aneurysms 

with metal coils, the risk of rebleeding and subsequent 

complications can be attenuated.  

 

In summary, our study established four ML models 

(LR, SVM, RF, XGBoost) and selected the RF model 

to conduct a comprehensive SHAP analysis based on 

its superior predictive performance. The SHAP analysis 

revealed the significant contributions of clinical 

features in predicting long-term prognosis in high-

grade aSAH. Elevated WFNS grades and mFS, along 

with advanced age, were associated with unfavorable 

outcomes, indicating aggravated neurological impair-

ment and bleeding severity. Conversely, the strategic 

implementation of endovascular coiling emerges as  

a promising method to improve patient prognosis  

by preventing rebleeding and mitigating associated 

complication. Incorporating these insights into clinical 

decision-making holds great potential to guide 

therapeutic strategies and optimize patient neurocritical 

care. Moreover, the predictive model we developed 

paves the way for personalized treatment strategies. 

Patients identified as having an elevated risk of 

unfavorable outcomes according to our model could gain 

benefits from intensive monitoring, early intervention, 

and personalized rehabilitation approaches. In summary, 

the explainable ML models serve as a valuable tool to 

improve clinical decision-making regarding the prognosis 

of high-grade aSAH. 

 

However, this study also had several limitations. Firstly, 

the single-center design may limit the generalizability  

of findings to broader patient populations, and an 

independent validation cohort from other centers for 

model evaluation is necessary. Secondly, there might be 

several unobserved confounders that could potentially 

influence the prognosis outcomes of high-grade aSAH 

patients. Thirdly, the lack of external validation data from 

other medical center will further restrict the model’s 

generalizability, thus additional prospective randomized 

clinical trials are essential to validate our model. It should 

be noted that our modeling study exclusively enrolled 

adult patients, leaving the predictive validity of the RF 

model for pediatric high-grad aSAH remains unclear. 
 

CONCLUSIONS 
 

In this study, we employed four machine learning 

algorithms and identified the Random Forest (RF) 

model as the most effective predictor of long-term 

prognosis for high-grade aSAH patients. By utilizing 

SHAP analysis, we highlighted the crucial role  

of key variables such as WFNS grade, modified Fisher 

score, age, and endovascular coiling, in prognosis 

determination. Our approach not only ensures precise 

prognostic predictions, but also enhances transparency 

and interpretability of clinical decisions, thereby 

leading to improved patient outcomes. Ultimately,  

our study highlights the significance of RF and  

SHAP in enhancing prognostic accuracy and guiding 

personalized care for high-grade aSAH patients. 

 

 
 

Figure 6. SHAP force plot for interpreting individual’s prediction outcomes. This plot offers a visual illustration of the RF model’s 
predictions, wherein the red and blue bars signify risk factors and protective factors, respectively. The length of the bars corresponds to the 
extent of feature importance. (A) Poor outcome; (B) favorable outcome. 
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MATERIALS AND METHODS 
 

Study design and participant enrollment 

 

This single-center, prospective registered (NCRIA- 

1: NCT05738083), observational cohort study was 

conducted at Department of Neurosurgery, The Second 

Affiliated Hospital of Nanchang University between 

October 2018 to December 2021. In accordance with 

the guidelines, aSAH diagnosis was established through 

computed tomography (CT), CT angiography, or digital 

subtraction angiography. The inclusion criteria were 

defined as follows: (1) spontaneous aneurysmal sub-

arachnoid hemorrhage; (2) hospital admission within  

72 hours of symptom onset; (3) Hunt and Hess grade of 

III and V; (4) non-contrast CT scan performed upon 

admission; (5) receipt of aneurysm treatment within 72 

hours after onset; (6) documentation of postoperative 

complications and mortality; and (7) corresponding 

follow-up records. 

 

Exclusion criteria included the presence of vascular 

malformation or other cerebrovascular disease, post-

operative status at admission, permanent brain injury at 

presentation, death within 3 days after operation, and 

missing data. 

 

Prediction variables collection 

 

The following variables were collected from the hospital 

electronic health record system: (1) patient demographic 

information, including sex, age, and past medical  

history such as hypertension, diabetes mellitus, coronary 

heart disease, smoking habits, alcohol consumption 

patterns, and anticoagulant usage; (2) admission clinical 

status indicators encompassing World Federation of 

Neurosurgical Societies (WFNS), Hunt and Hess grade 

(HH), and modified Fisher scale (mFS); and (3) 

aneurysm details comprising location, number, length, 

width, neck size as well as treatment modality. 

 

Definition of outcome 

 

The neurological outcome of these patients was evaluated 

at 12 months after initial aSAH using modified Rankin 

scale (mRS) system [45, 46]. A favorable neurological 

outcome was defined as mRs 0 to 2, while a poor outcome 

was considered when mRs ranged from 3 to 6. The patient 

follow-ups were conducted by a neurosurgeon through 

telephone consultations. And the neurosurgeon was 

blinded to the patients’ clinical information. 

 

Machine learning model development 

 

Each patient with high-grade aSAH was considered  

as an individual data point in our dataset. The clinical 

information assessed at admission, including 

demographic data, past medical history, WFNS grade, 

mFS, aneurysm details and treatment modality, was 

utilized as features to predict the 12-month prognosis. 

Prior to model training, categorical variables were 

subjected to one-hot encoding to guarantee consistent 

and effective utilization of dataset. Through this 

method, categorical variables were converted into 

binary matrix, effectively eliminating ordinality and 

preventing inadvertent hierarchical structures. 

 

The dataset was divided into training and validation sets 

in a 7:3 ratio, and the training set was used to develop 

four ML models, including the logistic regression  

model (LR), support vector machine (SVM), random 

forest (RF), and extreme gradient boosting (XGBoost). 

Moreover, to avoid overfitting in LR, the features  

were selected and filtered by the Least Absolute 

Shrinkage and Selection Operator (LASSO) model  

with the “λ-1se” criterion. Each algorithm was fine-

tuned through hyperparameter optimization to optimize 

model performance. The ten-fold cross-validation was 

employed to mitigate any potential bias in the data  

and ensure the generalization of model performance. 

 

Feature importance with Shapley Additive 

Explanation values 

 

The Shapley Additive Explanation was employed to 

enhance the interpretability of the final model. In  

cases where the SHAP value is positive, it suggests  

that the associated feature contributes to an increased 

risk of the complications. Meanwhile, a negative SHAP 

value indicates that the corresponding feature is linked 

to a decreased risk of the complications. The magnitude 

of SHAP values signifies the extent of a feature’s 

contribution to the prediction performance.  

 
The SHAP summary plot was utilized to demonstrate 

the contributions of each feature attributed to the model. 

Besides, the SHAP force plot was used to visualize  

the effects of pivotal features on the final model for 

individual patients. The “fastshap” package in R software 

was used to analyze the SHAP values, the “ggbeeswarm” 

and “shapviz” packages were used to visualize the 

SHAP values for each feature. 

 
Statistical analysis 

 

Before conducting the formal analysis on the  

dataset, the Kolmogorov-Smirnov test was employed to 

ascertain the distribution type of the data. Continuous 

variables were analyzed using the independent t-test or 

Mann-Whitney U-test and were reported as a median 

with interquartile ranges or mean ± SD. For categorical 

variables, the Chi-square test or Fisher’s exact test was 
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used for analysis, and were represented as frequencies. 

The performance of the models was evaluated using  

the following statistical parameters: true positives (TP), 

false positives (FP), false negatives (FN), true negatives 

(TN), sensitivity, specificity and the accuracy of the 

models. Besides, the area under the receiver operating 

characteristic curve (AUC-ROC) with 95% CI and the 

balanced accuracy were also used to evaluate model 

performance. We calculated these statistical parameters 

on both training and validation set to show the 

generalization capability of these models. A two-tailed 

P <0.05 was considered to have a statistical significance. 

All statistical analyses were conducted using SPSS 

(Version 26.0, IBM Corp., Armonk, NY, USA) and R 

software (Version 4.3.0). 
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SUPPLEMENTARY MATERIALS 

 

 

Supplementary Table 
 

Supplementary Table 1. Confusion matrix of ML and LR 
models using training and validation cohorts. 

Cohort Model TP FN TN FP Ba-Acc 

Training 

 

LR 

XGB 

98 

130 

43 

11 

131 

142 

22 

11 

0.776 

0.925 

 RF 132 9 146 7 0.945 

 SVM 132 9 127 26 0.883 

Validation 

 

LR 

XGB 

42 

48 

21 

15 

59 

51 

5 

13 

0.794 

0.779 

 RF 45 18 54 10 0.779 

 SVM 54 9 43 21 0.765 

LR indicates logistic regression; SVM, support vector machine; RF, 
random forest; XGBoost, extreme gradient boosting; TP, true positive; 
FN, false negative; TN, true negative; FP, false positive; Ba-Acc, 
balance accuracy. 
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