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INTRODUCTION 
 

Worldwide, head and neck squamous cell carcinoma 

(HNSCC) is the 6th commonest malignancy which  

had been paid more attention to, including oral and 

maxillofacial cancer, laryngeal cancer, salivary gland 

cancer, oropharyngeal cancer and hypopharynx cancer 

[1]. HNSCC incidence is continuously rising and is 

estimated to rise by 30% until 2030 [2]. Furthermore, 

the5-year survival rate was estimated for HNSCC 

cases has been estimated to be < 50%, despite 

improved multimodality treatments in past decades 

[3]. The lack of rapidly improving patient survival  

and personalized treatment approaches has propelled 

research into the molecular landscape of HNSCC. 

Identification of potential prognostic markers associated 

with treatment benefit can allow individualization  

of therapy for patients with HNSCC. Thus, effective 

prognostic and therapeutic indicators are urgently 

needed. 
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ABSTRACT 
 

Background: SLC20A1, a prominent biomarker in several cancers, has been understudied in its predictive role in 
head and neck squamous cell carcinoma (HNSCC). 
Methods: The Cancer Genome Atlas (TCGA) database was used to analyze HNSCC prognosis, SLC20A1 
overexpression, and clinical characteristics. Quantitative real-time PCR and Western blot analysis confirmed 
SLC20A1 expression in HNSCC tissues. Cellular behaviors such as invasion, migration and proliferation were 
assessed using Transwell, wound healing and colony formation assays. Immune system data were obtained 
from the Tumor Immune Estimation Resource (TIMER) and CIBERSORT databases. Gene Ontology (GO), Kyoto 
Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were used to explore 
biological parameters and pathways associated with SLC20A1 overexpression in HNSCC. 
Results: In 499 HNSCC samples, SLC20A1 mRNA and protein expression were significantly higher than in 44 
normal counterparts, confirmed by 24 paired samples. Patients were categorized based on SLC20A1 levels, 
survival status and overall survival. High SLC20A1 expression correlated with advanced T stage, increased risk 
scores and decreased survival. Stage, age and SLC20A1 expression emerged as independent predictive factors for 
HNSCC in univariate and multivariate analyses. SLC20A1 overexpression, which is associated with poor 
prognosis, may influence cell proliferation, migration, invasion, chemotherapy response, and the immune milieu. 
Conclusions: SLC20A1 overexpression in HNSCC, characterized by increased cellular invasion, migration and 
proliferation, is a potential prognostic biomarker and therapeutic response indicator. 
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It is well-known that SLC20A1 and SLC20A2 form  

the SLC20 family, and SLC20A1 has been considered 

as a secondary-active, Na+-dependent cotransporters  

to transport inorganic phosphate (Pi) through the cell 

membrane, which favorably comprises two sodium 

ions, and monovalent inorganic phosphate (H2PO4−) 

[4]. Pi acts as a basic nucleotides and phospholipids 

component, and participates in several cell functions, 

such as energy metabolism and cellular signaling 

pathways [5, 6]. Studies reported that tumor tissues 

contain high Pi traces, making them potential indicators 

of tumor prognosis that might independently promote 

the cell proliferation [7]. SLC20A1, which was 

commonly known as PiT-1, is involved in a wide 

variety of cellular processes, like cell development, 

ability to differentiate and proliferate, adhesion, and 

apoptosis [7–12]. Due to a lack of pro-B cells, mice 

missing SLC20A1 were found to be highly lymphopenic, 

and a slight neutropenia. This trait, which is exclusive 

to the hematopoietic pathway, is linked to a malfunction 

in cellular division [12]. Some results also give 

important insights into the pathophysiology and therapy 

of myelosuppression by showing that Pi metabolism 

and hematopoietic stem cell survival are frequently 

related through the Akt/p53-SLC20A1 axis [13]. In 

recent years, investigations showed the vital role that 

SLC20A1 plays in the progression of various tumors, 

such as pituitary tumors, breast cancer, and tongue 

SCC, indicating the high expression of SLC20A1  

in many tumors and its potential association with 

unfavorable prognosis [14–17]. More advanced stages 

of tumor luminal A breast cancer were associated with 

increased SLC20A1 expression, according to a previous 

investigation. Moreover, this SLC20A1 high subset  

of individuals showed worse responses to endocrine 

treatment, particularly in breast cancer luminal A and  

B subtypes [18]. Nonetheless, the association between 

SLC20A1 and the prognosis of patients with HNSCC 

are rarely reported. 

 

As systematic interpretations of SLC20A1 in HNSCC 

being undefined, we utilized bioinformatics analysis 

tools and laboratory experiments to explore the 

expression and multilevel clinical value of SLC20A1 

in HNSCC. This study projects to investigate the 

impact of SLC20A1 in tumor progression, prognostic 

value, molecular mechanism and treatment response  

in HNSCC. 

 

MATERIALS AND METHODS 
 

Data collection 

 
The Cancer Genome Atlas (TCGA) database was used 

as the source from which data on SLC20A1 expression, 

prognostic information and clinical features of HNSCC 

cases was extracted (https://xena.ucsc.edu/). Normalized 

gene transcript data from Fragments Per Kilobase of 

transcript per Million mapped reads (FPKM) were 

involved in this study. The clinicopathological features 

of the included specimens, like gender, age, grade,  

node (N) and tumor (T) statuses, and stage were used in 

the analyses. Another 24 paired tissues were stored in 

our laboratory. The Ethics Committee of the Affiliated 

Lihuili Hospital has granted authorization for the 

conduct of this research, under the approval number 

2022SL415-01. 

 

Expression difference of the SLC20A1 and its 

association with DNA methylation in HNSCC 

 

Perl software was used to extract the SLC20A1  

mRNA expression level in HNSCC from the HTSeq  

data. R software (version 3.6.0; limma package) is  

applied for analysis of the differential expression of the  

SLC20A1 in HNSCC samples by comparing it to normal  

tissues. In addition, the methylation of these cg sites 

(cg05422897, cg05672265, cg06121808, cg10762132, 

cg10898730, cg23886783, cg26703507) in SLC20A1 

gene’s promoter regions was obtained by down- 

loading DNA methylation data from Illumina's Human 

Methylation 450K data. Annotation data used for  

cg sites were downloaded from Illumina's help desk 

(https://support.illumina.com). Utilizing the Pearson 

correlation with the R package corrplot, our team 

analyzed the correlation between DNA methylation and 

SLC20A1 mRNA expression. 

 

Prognosis value of SLC20A1 in HNSCC 

 

Using the optimal threshold for SLC20A1 expression 

identified by the iterative algorithm of the survival 

package, we constructed the overall survival (OS) 

curves using the Kaplan-Meier method for a more 

precise analysis. A risk assessment model for prognosis 

prediction was generated to bind the expression level 

with survival outcome of each patient. TCGA datasets 

were used to perform all analyses. The independent 

prognostic value of SLC20A1 in HNSCC was assessed 

using uni- and multivariate Cox regression analyses. 

Two R packages, survminer and survival, were used 

for all these analyses and the ggplot was used for the 

results represented by forest plot. 

 

Nomogram construction for prognosis prediction 

 

A nomogram was constructed to provide a quantitative 

approach for predicting survival probability in HNSCC, 

which comprised the SLC20A1 clinical, pathological, 
and expression factors, including gender, age, grade, 

stage, T status and N status, by using R package rms. 

In the nomogram, we used the OS rates at 1, 3, and 5 
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years as endpoints. Area under the curve (AUC) and 

receiver operating characteristic (ROC) curve were 

developed to evaluate these rates’ predictive ability. 

Furthermore, calibration plots were drawn to assess 

the nomogram accuracy for internal validation [19]. 

 

Prediction of therapeutic sensitivity in HNSCC with 

different expression of SLC20A1 

 

To evaluate the chemoresistance in HNSCC, the 50% 

inhibiting concentration (IC50) value of the 3 medicine 

which was mainly used in chemotherapy for HNSCC 

was inferred using the pRRophetic algorithm. The  

TIDE score uses gene expression patterns to predict 

clinical outcome for immune checkpoint inhibitors 

(ICIs) [20]. A lower TIDE score is associated with a 

greater immunotherapy response. 

 

Expression of SLC20A1 and the association with 

tumor infiltrating immune cells (TIICs) 

 

The relationship between SLC20A1 and 22  

subsets of tumor-infiltrating lymphocytes (mostly 

neutrophils, macrophages, dendritic cells, CD8+  

and CD4+ T cells, and B cells) were evaluated using 

the CIBERSORT database (https://cibersort.stanford. 

edu/). For this purpose, we utilized the Tumor  

Immune Estimation Resource (TIMER) database 

(https://cistrome.shinyapps.io/timer/) to investigate 

TIICs and SLC20A1 expression in depth. 

 

Functional enrichment analysis 

 

Enrichment studies of the thematic expression of 

SLC20A1 were performed to identify the possible 

molecular processes and roles of SLC20A1 in HNSCC. 

Two further studies, using the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) and the Gene Ontology 

(GO), were conducted. The R programs cluster profiler 

and enrichplot were applied to run KEGG pathway  

and GO functional enrichment studies. To investigate 

potential signaling pathways in which SLC20A1 

participates, a gene set enrichment analysis (GSEA) was 

run. Remarkably variable expression levels were defined 

as having a false discovery rate (FDR) of < 0.05 and a  

| log2FC | ≥ 1. 

 

Cell culture and transfection 

 

TU686 (laryngeal squamous cell carcinoma cell line) 

and CAL-27 (tongue squamous cell carcinoma cell  

line) human HNSCC cells were employed in this 

investigation. HNSCC cells were cultured in 0.05 
mg/mL gentamycin (Schering-Plough Europe, Belgium) 

and RPMI 1640 with 10% FBS. Saturated humidity 

with 5% CO2, and 37° C was used to cultivate cells. 

GeneChem created SLC20A1-specific siRNAs (si-

SLC20A1#1/2/3) and si-NC (China). These plasmids 

were introduced into CAL-27 and TU686 cell lines using 

Lipotransfectamine 3000 (Thermo Fisher Scientific, 

USA). 

 

CCK-8 experiment and colony formation assay 

 

Cell lines CAL-27 and TU686 were grown in 96-well 

plates at a density of 5×103 cells/well for 0, 24, 48,  

72, and 96 hours. After two hours in the dark at 37° C, 

cells were counted using a cell counting kit 8 (CCK-8) 

(Dojindo, Japan). Cell absorbance was measured at a 

wavelength of 450 nm. Six-well plates were seeded 

with CAL-27 and TU686 cells (at a density of 500 cells 

per well), and the media were replaced every four  

days. Colonies were fixed in 4% paraformaldehyde for 

30 minutes and dyed with 0.1% crystal violet (Sigma-

Aldrich, USA) for 15 minutes after being incubated  

for two weeks. The colony count was performed using 

Image J program. 

 

Wound healing assay 

 

A six-well plate was used for the cellular seeding. 

After the cells had adhered together to create a 

monolayer, a scratch was made in it using the tip of  

a plastic pipette with 200 L. Cells should be washed 

with PBS three times. After discarding the whole 

DMEM, 2 mL of DMEM devoid of serum was applied 

to each well. Using an IX71 inverted microscope 

(Olympus, Japan), we photographed the drawn distance 

of each hole at the stated periods (0 h, 48 h) and 

analyzed the photos using Image J. There were three 

rounds of each test. 

 

Transwell assay 

 

By a 24-well Transwell chamber, a Transwell experiment 

was done to test how well the cells could invade. TU686 

and CAL-27 cell lines in media without serum were  

put in top chambers that had been covered with 2% 

Matrigel (BD Biosciences, USA). In the bottom chambers, 

medium with 20% FBS was added. After two days of 

incubation, 4% paraformaldehyde was used to fix the 

cells that had moved to the bottom of the membrane. The 

cells were fixed, and then crystal violet was used to stain 

them for 15 minutes. With the use of Image-Pro Insight 

software and an Olympus IX71 microscope from Japan, 

the findings were seen and recorded (Olympus, Japan). 

 

Quantitative real-time polymerase chain reaction 

(qRT-PCR) 

 

Using TRIZOL (Invitrogen, USA), total RNA was 

extracted from 24 HNSCC and normal samples,  
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and then cDNA was synthesized using a reverse 

transcription kit (Novoprotein, China). The qRT- 

PCR reactions were performed using a LightCycler 

480 (Roche, USA) instrument and NovoStart SYBR 

qPCR (Novoprotein, China), as per the manufacturers' 

instructions. During each of the 35 cycles, the reaction 

was subjected to the following conditions: heating, 

denaturation, annealing, and extension at 95° C,  

60° C, 72° C, and 95° C for 30 s, 10 s, 30 s, and  

30 s, respectively. The SLC20A1 relative expression 

was determined using the two-fold comparative Ct 

technique (2Ct). Each sample has three independent 

tests conducted on it. These were the primer sequences 

that were provided: SLC20A1, F: 5’-TGGCAACGCT 

GATTACCAGT-3’; R: 5’-CAGCCCTTGAGTCGAG 

TTGT-3’. GAPDH, F: 5’-TCAAGATCATCAGCAAT 

GCC-3’; R: 5’-CGATACCAAAGTTGTCATGGA-3’. 

 
Western blotting analysis 

 
Tissue was collected, lysed, and protein content was 

determined using a BCA protein assay kit (Beyotime, 

China) per the manufacturer's instructions. Using a 10% 

sodium dodecyl sulfatepolyacrylamide gel, we separated 

the protein that had been extracted using the improved 

RIPA buffer (Beyotime, China). The membrane was 

then transferred onto a PVDF membrane (Millipore, 

USA) at a continuous current of 240 mA for 2 hours, 

followed by blocking in 5% skim milk for 2 hours  

and incubation with anti-SLC20A1 primary antibody 

(Proteintech, China) at 4 degrees Celsius for 1 night. 

Following a 3-time TBST wash, the membrane was 

incubated with a secondary antibody from Proteintech 

(China) for an hour. Eventually, chemiluminescence 

(Advansta, USA) was used to identify and visualize the 

target protein with Image Lab software. 

 
Statistical analysis 

 
Documents for GESA preparation, DNA methylation, 

and HTSeq FPKM were parsed using Perl software 

version 5.32 to glean the relevant data. Differential 

expression, nomogram generation, prognostic value 

assessment, and Pearson correlation were all performed 

using R 4.0.3 program with specialized packages. 

Appropriate testing methods were selected for com-

parison based on the type of samples, including the T-

test, Chi-square test, and Wilcoxon test. A significance 

level of 0.05 was used. 

 
Data availability 

 
The data that supported the findings of this study  

are openly available from The Cancer Genome Atlas 

(TCGA) program (https://portal.gdc.cancer.gov/). 

RESULTS 
 

HNSCC prognosis and SLC20A1 expression 

 

We analyzed 383 cases to see whether or not there was 

a correlation between SLC20A1 expression and patient 

features. It was found that patients that expressed a lot 

of SLC20A1 had a higher-than-average T stage, as 

shown in Table 1 (P < 0.05). Our findings demonstrated 

the significantly higher expression levels of SLC20A1 

mRNA in 499 HNSCC samples compared to 44 adjacent 

normal ones, obtained from the TCGA database (Figure 

1A, P<0.05). qRT-PCR analyses of 24 pair-matched 

samples stored in our laboratory consistently showed a 

remarkable increase of SLC20A1 mRNA in HNSCC 

tissues (Figure 1B, P<0.05). Western blot of five paired 

tissues showed that SLC20A1 protein was highly 

expressed in HNSCC tissues (Figure 1C). Furthermore, 

SLC20A1 methylation status in promoter cg sites was 

also investigated, as was the correlation with gene 

expression. From Pearson correlation, we could obtain 

that the abnormal DNA methylation might lead to the 

high expression of SLC20A1 (Figure 1D). 
 

Additional investigation of SLC20A1's relevance to 

survival in HNSCC was performed using Kaplan-Meier 

analysis. We determined the threshold for separating 

patients into those with high or low SLC20A1 expression 

based on SLC20A1 expression level, survival status, and 

OS time. The findings showed that individuals having  

a high SLC20A1 expression had a higher risk score,  

and a shorter OS time (Figure 2A, 2B). In addition, 

stage, age, and SLC20A1 expression were shown to  

be independent predictive variables for HNSCC in both 

uni- and multivariate analyses using Cox regression 

(Figure 2C, 2D). 
 

Silencing SLC20A1 inhibited cell invasion, migration, 

and proliferation in HNSCC 
 

In our research, we used the CAL-27 and TU686 cell 

lines to examine SLC20A1's role in HNSCC cells. 

Transfection of siRNA for nucleotides cofactors (NC) 

and SLC20A1 were performed in CAL-27 and TU686 

cell lines, respectively. Cell proliferation was reduced  

in both cell lines treated with si-SLC20A1 compared  

to controls, as measured by cell counting tests and 

colony formation (Figure 3, P<0.05). The wound healing 

experiments were utilized to measure the migratory 

potential of HNSCC cells, and the findings indicated  

a substantially smaller wound area in the controls 

compared to cases in the si-SLC20A1 groups (Figure 

4A, P<0.05). Furthermore, Transwell assay findings 

showed that SLC20A1-down-expressed groups were 

less invasive than controls (Figure 4B, P<0.05). Finally, 

we hypothesized that knocking down SLC20A1 in 
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Table 1. SLC20A1 overexpression association with the 
clinical and pathological features of the included HNSCC 
cases. 

Variables Cases (n) 
SLC20A1 

P-value 
High Low 

Total 383 169 214  

Age (years)     

>65 129 55 74 
0.676 

≤65 254 114 140 

Gender     

Male 281 125 156 
0.814 

Female 102 44 58 

Pathological stage     

I/II 69 28 41 
0.512 

III/IV 314 141 173 

T stage     

T1/T2 134 48 86 
0.016* 

T3/T4 249 121 128 

N status      

Negative 162 72 90 
0.914 

Positive 221 97 124 

Histologic grade     

G1-2 293 124 169 
0.199 

G3-4 90 45 45 

*, P<0.05. 

 

HNSCC cells would reduce their ability to proliferate, 

migrate, and invade. 

 

Nomogram development 

 

A nomogram has been established based on SLC20A1 

expression and clinical characteristics (Figure 5A), as a 

quantitative approach for HNSCC prognosis prediction. 

Calibration curve indicates good agreements between 

the observed outcome and predicted probability (Figure 

5B). For further validation of the prognostic power of 

combined clinical features and SLC20A1 expression, 

ROC curve has been created and the AUC for survival 

rates at 1, 3, and 5 years were 0.676, 0.750 and  

0.716, with moderate prediction accuracy (Figure  

5C), indicating the significant ability of the developed 

monogram for predicting HNSCC prognosis. 

 
The association between SLC20A1 overexpression 

with chemotherapy and immunotherapy response in 

patients with HNSCC 

 

As shown in Figure 6A, SLC20A1 expression was 

remarkably associated with cisplatin, gemcitabine, and 

paclitaxel. Moreover, SLC20A1 overexpression was 

more sensitive to cisplatin and gemcitabine, while  

low expression of SLC20A1 were more sensitive to 

paclitaxel. 

 

The results demonstrated that SLC20A1 over-

expression was associated with more immune exclusion  

and dysfunction, and a lower TIDE score, indicating 

that patients with a higher SLC20A1 expression level 

are less sensitive to immunotherapy (Figure 6B). 

Specifically, we looked at how SLC20A1 expression 

relates to TIICs in HNSCC. SLC20A1 expression 

variation was strongly correlated with a wide range of 

immune cell types (Supplementary Figure 1). In our 

analysis of the TIMER and the CIBERSORT databases, 

we found that high SLC20A1 expression was negatively 

correlated with resting mast cells, dendritic cells, resting 

NK cells, T cells regulatory (Tregs), and resting CD8+ 

T cells, and positively correlated with Eosinophils, 

activated mast cells, macrophages M0, resting NK cells, 

and CD4+ memory T cells (Figure 7A, 7B). This led us 
to hypothesize that SLC20A1 expression has a role  

in modulating the immunological microenvironment in 

HNSCC, which is important for further studies. 
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SLC20A1-related underlying molecular mechanism 

in HNSCC 

 

A protein-protein interaction (PPI) network was 

constructed using the GENEMANIA database, followed 

by a Pearson correlation analysis based on gene 

expression data from TCGA. This analysis revealed a 

strong correlation between SLC20A1 and SLC20A2, 

especially in shared protein structural domains 

(Supplementary Figure 2). Analyses of GO functions 

and KEGG pathways were used to uncover a possible 

molecular mechanism involving SLC20A1 in HNSCC. 

The findings of the GO analysis revealed the correla-

tion between cellular component, biological process  

and molecular function, and SLC20A1 expression 

(Supplementary Figure 3A, 3B). Meanwhile, the results 

from KEGG enrichment analysis revealed a remarkably 

enrichment of SLC20A1 in immune process and  

several pathways, including “IL−17 signaling pathway”, 

“cytokine−cytokine receptor interaction”, “TNF signaling 

pathway”, “NOD-like receptor signaling pathway”, “NF-

κB signaling pathway”, “JAK-STAT signaling pathway”, 

“Chemokine signaling pathway” (Supplementary Figure 

3C, 3D). According to the initial screening of pathways, 

the TNF signaling pathway has garnered our attention. 

Our bioinformatics analysis revealed significant over-

expression of TNF and TNFR2 in head and neck 

squamous cell carcinoma (Supplementary Figure 4). 

Furthermore, there was a notable positive correlation 

between the expression of SLC20A1 and both TNF  

and TNFR2. In vitro experiments with the head and  

neck squamous carcinoma cell line TU686 showed that 

 

 
 

Figure 1. Exaggerated SLC20A1 expression levels in HNSCC. (A, B) SLC20A1 mRNA expression between the HNSCC specimens and 
nearby sound tissues from TCGA database and qRT-PCR analysis. (C) SLC20A1 protein expression in the HNSCC specimens and nearby sound 
ones from Western blotting analysis. (D) DNA methylation modification associated with SLC20A1 expression in HNSCC. *, P<0.05. 
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knocking out SLC20A1 significantly reduced TNF and 

TNFR2 expression levels compared to the control group 

(Supplementary Figure 5). Hence, we hypothesize that 

SLC20A1 may be involved in the regulation of the 

TNF/TNFR2 signaling pathway. 

 

In addition, GSEA interpretation indicated that SLC20A1 

overexpression had markedly positive correlations with 

numerous enrichment pathways (Supplementary Figure 

6A, 6B), including “bladder cancer”, “colorectal cancer”, 

“renal cell cancer”, “small cell lung cancer”, “cell cycle”, 

“natural killer cell mediated cytotoxicity”, “P53 signaling 

pathway” and “MAKP signaling pathway”, In contrast, 

SLC20A1 low expression was significantly related with 

several metabolism and biochemical processes, such as 

“alpha linolenic acid metabolism”, “drug metabolism 

cytochrome P450”, “arachidonic acid metabolism” and 

“oxidative phosphorylation” (Supplementary Figure 6C). 

Accordingly, SLC20A1 might act as a novel biomarker 

in tumor progression and immune environment in 

HNSCC. 

 

DISCUSSION 
 

In our study, results showed that SLC20A1 was 

remarkably upregulated in HNSCC tissues than  

adjacent normal ones at the mRNA level in the TCGA 

database. qRT-PCR analyses also confirmed the results. 

Protein level clear overexpression was also exhibited  

by Western blotting. According to Pearson correlation, 

DNA methylation was suggested as a reason for this 

upregulation. Subsequently, the clinical prognostic 

value of SLC20A1 was explored. According to Kaplan-

Meier analysis, OS was significantly short among cases

 

 
 

Figure 2. HNSCC prognosis via SLC20A1. (A) Kaplan-Meier analysis of poor survival outcomes with SLC20A1 overexpression in HNSCC 

from TCGA database. (B) Risk score with survival time in TCGA database. (C, D) Forest plots representing the uni- and multivariate analysis of 
the significantly marked prognostics. 
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with SLC20A1 overexpression. Moreover, uni- and 

multivariate analysis indicated the prognostic power of 

SLC20A1 for HNSCC. Moreover, the results showed 

that overexpression of SLC20A1 was prominently 

related to high T stage. A significant diagnostic value 

for HNSCC was also demonstrated for SLC20A1 on 

ROC curves. Accordingly, a nomogram was created for 

intuitive prognosis prediction, which can favorably 

help clinicians about making the best decisions [19, 

21]. The nomogram indicated a more accurate and 

reliable prognosis prediction of HNSCC by means of 

mixing SLC20A1 expression and clinical parameters. 

Consistent with our results, Dong et al. also had 

identified the SLC20A1 as potential biomarker for the 

 

 
 

Figure 3. Silencing SLC20A1 inhibited cell proliferation in TU686 and CAL-27 cells lines. (A) CCK8 and (B) colony formation 

experiments showed that silencing SLC20A1 inhibited cell proliferation. *, P<0.05. **, P<0.01. ***, P<0.001. 
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Figure 4. Silencing SLC20A1 inhibited migration and invasion in HNSCC. (A) Wound-healing experiments showed that silencing 
SLC20A1 inhibited cell migration. (B) Silencing SLC20A1 inhibited the ability to invade CAL-27 and TU686 cell lines. *, P<0.05. **, P<0.01.  
***, P<0.001. 
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diagnosis and treatment of esophageal adenocarcinoma 

[22]. Besides, research showed that SLC20A1 over-

expression increases pituitary cell proliferation, resulting 

in an unfavorable prognosis [14]. Jiang et al. found  

that SLC20A1, among other different genes, was over-

expressed, and the progression of tongue squamous cell 

carcinoma was associated with miR-138 down-

regulation [16]. Based on these results, we believe that 

more research is required to determine the expression 

level of SLC20A1 in patients with HNSCC, which will 

be crucial for the translational application of SLC20A1 

in HNSCC management. 

 

 
 

Figure 5. A nomogram based on SLC20A1 expression and clinical features. (A) Nomogram to predict the overall survival (OS) of the 
1st, 3rd, and 5th years for HNSCC cases. (B) Calibration curve of the nomogram prognostic model. (C) ROC curve of the nomogram for 
predicting the overall survival (OS) of the 1st, 3rd, and 5th years. 
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At present, some studies explored the role of SLC20A1 

in different tumor species. In somatotroph adenomas, a 

positive correlation was noted for tumor recurrence, size, 

and invasiveness with SLC20A1 levels [23]. Targeted 

siRNA knockdown of SLC20A1 in breast cancer cells 

was tested for its influence on tumor sphere formation  

and cell viability. SLC20A1 was shown to be important  

in cancer development and to contribute to clinical out-

comes in individuals with ER+, claudin-low, and basal-

like breast tumors [15]. In esophageal adenocarcinoma, 

SLC20A1 was considered an independent prognostic 

indicator for relapse-free survival [22]. To investigate  

the association of SLC20A1 with HNSCC prognosis, we 

found that SLC20A1 exaggerated expression promoted 

the clonal formation and cell proliferation in HNSCC 

cells. The cell migration and invasion ability after 

SLC20A1 knockdown are significantly weaker than that 

of wild cell lines. Therefore, we conclude that high 

expression of SLC20A1 can remarkably induce tumor 

cells to invade, migrate, and proliferate, additionally 

showing the unfavorable prognosis of this biomarker  

in cases with HNSCC. 

 

Moreover, multidisciplinary treatment for HNSCC is 

consistent of 3 main approaches: surgery, chemotherapy 

and radiotherapy [24]. A sensitive chemotherapeutic 

medicine is important for patients of HNSCC. 

Widespread use of the platinum-based anticancer  

drug cisplatin began in 2000, and since then, paclitaxel, 

among other taxane-based cancer treatments, was 

develop for HNSCC [25]. Gemcitabine has been shown 

to be beneficial against HNSCC in many phase II trials, 

including those combining it with radiation, cisplatin, 

and docetaxel [26]. Nonetheless, inherent or acquired 

chemoresistance promotes to adverse prognosis, regional 

recurrence, and treatment failure. Through the Wnt/-

catenin signaling pathway, it has been shown that 

cisplatin resistance was observed with CD44 high 

expression levels in HNSCC cells [27]. An increase  

in the expression of KLF4, ABCG2, and ABCB1 was 

associated with resistance to paclitaxel in head and  

neck squamous cell carcinoma (HNSCC), according to 

research by Duz et al. [28]. Xuan et al. discovered that 

TGF- levels in cells are a major contributor to resistance 

to gemcitabine, suggesting that inhibiting TGF- might 

be an effective new approach for treating HNSCC that 

has developed resistance to the drug [29]. In our study, 

we selected three chemotherapeutic medicines including 

cisplatin, gemcitabine, and paclitaxel for analysis, 

which were widely used in HNSCC. The findings

 

 
 

Figure 6. Chemotherapy and immunotherapy response were associated with SLC20A1 expression in HNSCC.  
(A) Chemotherapeutic responses with differential SLC20A1 expression in HNSCC. (B) Correlation between SLC20A1 expression and 
immunotherapy responses. *, P<0.05. **, P<0.01. ***, P<0.001. IC50, 50% inhibiting concentration. 
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demonstrated that cases with exaggerated SLC20A1 

expression have increased sensitivity to cisplatin and 

gemcitabine, and reduced sensitivity to paclitaxel, 

providing insights for further investigation. 

 

Immunotherapy is becoming a breakthrough in 

oncological therapy for HNSCC [30]. Increasing 

knowledge about immunological mechanism during 

carcinogenesis has allowed for the introduction of  

new therapeutic standards. TIME (tumor immune 

microenvironment) represents an intricate network. 

Tumor cells may interact with their inner cytokines, 

stromal cells, and immune cells to modulate the 

immunological network, which in turn affects tumor 

growth and the efficacy of immunotherapy. Immune 

cell invasion into a tumor has been linked to both 

immunotherapy response and outcome in head and  

neck squamous cell carcinoma [31–33]. In this study, 

the CIBERSORT and TIMER analyses showed that 

SLC20A1 overexpression was remarkably correlated 

with TIICs, strengthening what was found about  

the significant relationship between HNSCC immune 

microenvironment and SLC20A1. Furthermore, we 

identified that SLC20A1 overexpression is correlated 

 

 
 

Figure 7. Association between SLC20A1 expression and TIICs in HNSCC. (A) Abundance of TIICs infiltration between low and high 
SLC20A1 expression in HNSCC from CIBERSORT database. (B) Correlation between SLC20A1 expression and TIICs from TIMER database. 
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with more immune exclusion and immune dysfunction 

and lower TIDE score. Therefore, we suggested that 

SLC20A1 might take part in the immunotherapy of 

HNSCC patients. More research is needed to determine 

SLC20A1's precise role in the tumor-immune milieu, 

however, since the infiltrative immunological landscape 

of HNSCC has not been fully described to this point. 

 
To adequately comprehend the participating mechanism 

of SLC20A1 in HNSCC, we performed GSEA analysis. 

As was reported, in vascular smooth muscle cells, 

SM22αgene expression was inhibited and ERK1/2 

phosphorylation was promoted due to elevated Pi 

signaling by SLC20A1 via a Rap1/B-Raf/Mek1/2 cell 

signaling pathway [34]. Elevated Pi by SLC20A1, 

which encodes the Pit1 sodium phosphate cotransporter, 

resulted in phosphorylation of the FGF receptor 

substrate 2α phosphorylation through the MEK/ERK 

pathway [35]. The upregulation of SLC20A1 targets  

the miR-31-5p/MMP3 axis, leading to aggravated 

degeneration of the extracellular matrix in degenerative 

human nucleus pulposus cells [36]. In this study, the 

results indicated that SLC20A1 overexpression had 

markedly a positive correlation with numerous types  

of cancer. This data suggests that SLC20A1 has a  

role in cancer development affects patient outcomes. 

Furthermore, we observed a robust correlation between 

high SLC20A1 expression and the P53 signaling  

route and the MAKP signaling pathway. Important 

insights into the pathophysiology and therapy of 

myelosuppression were provided by the discovery  

of a causal relationship between Pi metabolism and  

the P53 signaling pathway during myelosuppression. 

This link was shown to be essential for the survival  

of hematopoietic stem cells [13]. Research showed  

the increased sensitivity of SLC20A1-depleted cells to 

the proapoptotic activity of tumor necrosis factor (the 

antiapoptotic NFκB pathway is inactivated, while the 

MAPK pathway is activated) [11]. 

 
In addition, we have initiated a preliminary exploration 

into the mechanisms by which signaling pathways 

regulate the tumor immune microenvironment. We 

discovered that SLC20A1 may play a role in modulating 

the TNF/TNFR2 signaling pathway. TNF, a pleiotropic 

pro-inflammatory cytokine, is pivotal in numerous 

cellular events, including cell proliferation, differentiation, 

and apoptosis [37]. It induces paradoxical effects in the 

immune system, being critical for both the initiation  

and coordination of inflammation, while concurrently 

suppressing immune cell activity. TNF interacts with  

two distinct receptors, TNFR1 and TNFR2, activating 

different signaling pathways [38, 39]. TNFR1 primarily 

promotes inflammatory responses, whereas TNFR2 

expression is mainly on activated T cells, especially 

involving Tregs in immune reactions and stabilizing the 

CD4+Foxp3+ Treg phenotype, with most CD8+ 

suppressive T cells also expressing TNFR2. Beyond  

its role in maintaining Treg proliferation and stability, 

TNFR2 also acts as an oncogene. TNFR2 expression  

has been identified in at least 25 different tumor  

types, including human renal cell carcinoma, multiple 

myeloma, colorectal cancer, ovarian cancer, and  

CTCL (cutaneous T-cell lymphoma) [40]. The tumor 

microenvironment cunningly recruits TNFR2+ Treg 

cells, which are highly immunosuppressive, thus 

facilitating tumor immune evasion [41]. Tregs, one of 

the immunosuppressive cells in the tumor immune 

microenvironment, control autoimmune responses and 

inhibit the activation and proliferation of Teffs (effector 

T cells) through various mechanisms. These include 

downregulating MHC and co-stimulatory molecules 

(CD80 and CD86) on APCs (antigen-presenting cells), 

inhibiting APC maturation, and weakening their inter-

action with T cells [42]. Tregs can also directly kill T 

cells and APCs by secreting perforin and granzymes and 

suppress T cell activation and proliferation by secreting 

inhibitory cytokines such as TGF-β (transforming growth 

factor-β), IL (interleukins)-10, IL-35, and depleting  

γc cytokines [43]. Studies have found that the balance  

of PD-1 expression between Teffs and Tregs in the  

tumor immune microenvironment can predict the  

clinical efficacy of PD-1 inhibitors [44]. Therefore, it  

is speculated that a decrease in SLC20A1 expression 

could reduce the activation of the TNF/TNFR2 

signaling pathway, thereby inhibiting Tregs, restoring 

tumor immune response, and eliminating the tumor. 

 

Moreover, we also investigated that high levels of 

SLC20A1 have a notable association with cell cycle. 

Because SLC20A1 is a Pi symporter and increases Pi 

uptake contributing to DNA synthesis and the regulation 

of the cell cycle [5, 6]. Our study showed that SLC20A1 

was significantly related to several metabolism and 

phosphorylation processes. Hence, it is speculated that 

SLC20A1 in HNSCC drives the progression of the cell 

cycle through phosphorylate other proteins. 

 
Although this investigation provides results that might 

aid to a better comprehension of SLC20A1 expression 

value in tumor progression and prognosis in HNSCC, 

different limitations should be highlighted. First, the 

number of tissue samples could be enlarged. Second, 

the mechanism and regulation of SLC20A1 expression 

have not been further explored. Moreover, our study 

lacks vivo experimental verification. 

 

CONCLUSIONS 
 

Based on our findings, SLC20A1 is upregulated in 

HNSCC tissues and may serve as a poor prognostic 

indication for this disease by encouraging cancer cells 
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to invade, migrate, and proliferate. SLC20A1 over-

expression might be closely related with chemotherapy 

response and is a novel biomarker in the progression 

of tumors and immune environment in HNSCC, which 

is worthy of further investigation. 
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Supplementary Figure 1. Heatmap of SLC20A1 overexpression related to immune cells in HNSCC. 
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Supplementary Figure 2. Protein-protein interaction network of SLC20A1. 
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Supplementary Figure 3. Gene function enrichment analysis. (A, B) Underlying molecular mechanism enriched by SLC20A1 from GO 

analysis. (C, D) Biological processes enriched by SLC20A1 from KEGG analysis. 
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Supplementary Figure 4. Comparative analysis of TNF, TNFR2, and SLC20A1 expression in HNSCC and normal tissues from 
the TCGA database. (A) The expression levels of TNF and TNFR2 in head and neck squamous cell carcinoma and normal tissues; (B) The 

relationship between SLC20A1 expression and the levels of TNF and TNFR2 in head and neck squamous cell carcinoma. 
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Supplementary Figure 5. Western blot analysis of the relationship between SLC20A1 expression and the levels of TNF and 
TNFR2 in the head and neck squamous cell carcinoma TU686 cell line. 

 

 
 

Supplementary Figure 6. SLC20A1-related signaling pathways based on GSEA. (A, B) GSEA enrichment in the high-SLC20A1 

expression phenotype. (C) GSEA enrichment in the low-SLC20A1 expression phenotype. 

4444


