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INTRODUCTION 
 

Esophageal carcinoma (ESCA), one of the most 

prevalent gastrointestinal malignancies, is ranked 

seventh globally among the most common types of 

cancer and sixth among the leading causes of cancer-

related mortality [1]. Furthermore, in the Chinese 

region, the incidence rate of esophageal cancer ranks 
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ABSTRACT 
 

Objective: The enzyme Aspartyl tRNA synthetase 2 (DARS2) is a crucial enzyme in the mitochondrial tRNA 
synthesis pathway, playing a critical role in maintaining normal mitochondrial function and protein synthesis. 
However, the role of DARS2 in ESCA is unclear. 
Materials and Methods: Transcriptional data of pan-cancer and ESCA were downloaded from UCSC XENA, 
TCGA, and GEO databases to analyze the differential expression of DARS2 between tumor samples and normal 
samples, and its correlation with clinicopathological features of ESCA patients. R was used for GO, KEGG, and 
GSEA functional enrichment analysis of DARS2 co-expression and to analyze the connection of DARS2 with 
glycolysis and m6A-related genes. In vitro experiments were performed to assess the effects of interfering with 
DARS2 expression on ESCA cells. TarBase v.8, mirDIP, miRTarBase, ENCORI, and miRNet databases were used to 
analyze and construct a ceRNA network containing DARS2. 
Results: DARS2 was overexpressed in various types of tumors. In vitro experiments confirmed that interfering 
with DARS2 expression significantly affected the proliferation, migration, apoptosis, cell cycle, and glycolysis of 
ESCA cells. DARS2 may be involved in multiple biological pathways related to tumor development. 
Furthermore, correlation and differential analysis revealed that DARS2 may regulate ESCA m6A modification 
through its interaction with METTL3 and YTHDF1. A ceRNA network containing DARS2, DLEU2/has-miR-30a-
5p/DARS2, was successfully predicted and constructed. 
Conclusions: Our findings reveal the upregulation of DARS2 in ESCA and its association with clinical features, 
glycolysis pathway, m6A modification, and ceRNA network. These discoveries provide valuable insights into the 
molecular mechanisms underlying ESCA. 
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fifth among new cases, exhibiting a steady upward trend 

over the years [2, 3]. Esophageal cancer is typically 

classified into two major types, namely, esophageal 

adenocarcinoma (ECA) and esophageal squamous cell 

carcinoma (ESCC), with the latter being the most 

predominant [4]. Due to the lack of effective techniques 

and strategies for early diagnosis and targeted treatment 

of ESCA, the five-year survival rate of ESCA patients is 

comparatively lower [5]. Consequently, regardless of 

histological subtypes, the absence of reliable bio-

markers that can detect disease efficacy poses a 

significant drawback, necessitating the identification of 

such biomarkers in order to alleviate human suffering. 

 

The enzyme Aspartyl tRNA synthetase 2 (DARS2) is a 

mitochondrial enzyme [6], and previous studies have 

reported its crucial role in the development of bladder 

cancer [7], lung adenocarcinoma [8, 9], ovarian cancer 

[10], and hepatocarcinogenesis [11]. While the impact 

of DARS2 has been explored in other types of cancer, 

its exact function in ESCA remains unclear. Cancer is 

characterized by uncontrolled proliferation, invasion 

and metastasis of tumor cells. The dysregulation of 

signaling pathways involved in cell proliferation, 

migration, and metabolism plays a crucial role in tumor 

development and progression [5, 12–14]. The growing 

evidence suggests that the abnormal metabolism of 

cancer cells, especially the reliance on glycolysis even 

in the presence of oxygen, the Warburg effect, plays a 

crucial role in tumor development and therapy 

resistance [15–19]. Moreover, recent studies have 

revealed the critical role of RNA modifications, such as 

N6-methyladenosine (m6A), in regulating cancer cell 

behavior, including proliferation, stemness, and drug 

resistance [20]. The ceRNA network (competitive 

endogenous RNA network) refers to a regulatory 

network formed by the interaction of multiple non-

coding RNAs (ncRNAs). In this network, multiple 

ncRNAs, including long non-coding RNAs (lncRNA), 

circular RNAs (circRNA), and pseudogenes, compete  

to bind to common microRNAs (miRNAs), thereby 

influencing the regulatory effect of these miRNAs on 

other target RNAs. Existing studies have demonstrated 

that the ceRNA network plays a crucial role in the 

occurrence and progression of tumors [21–23]. 

Therefore, further elucidating the interaction between 

DARS2 and metabolic, epigenetic, and ceRNA network 

in ESCA can help develop new diagnostic and 

therapeutic methods. 

 

In this study, we used a public database and in vitro 

experiments to explore DARS2 expression with ESCA, in 

order to investigate the impact of DARS2 expression on 
the proliferation, cell cycle, apoptosis, migration, and 

glycolysis of ESCA cells. Furthermore, an analysis on the 

potential correlation between DARS2 expression, and 

m6A as well as ceRNA network in ESCA was conducted, 

which provides novel targets and personalized treatment 

strategies for the management of this disease. 

 

MATERIALS AND METHODS 

 

Bioinformatics analysis of DARS2 expression 

 

The present study utilized the TCGA-GTEx pan-

cancer datasets obtained from UCSC XENA 

(https://xenabrowser.net/datapages/) that comprised of 

RNAseq data in transcripts per million (TPM) format 

from The Cancer Genome Atlas (TCGA) and the 

Genotype-Tissue Expression (GTEx) [24] that have 

undergone uniform processing via the Toil process [25]. 

We comprehensively analyzed the expression levels of 

DARS2 across 33 distinct tumor types. Meanwhile, we 

retrieved and curated the RNAseq data in TPM format 

of the TCGA ESCA dataset from the TCGA database 

(https://portal.gdc.cancer.gov) [26] to investigate the 

differential expression of DARS2 between tumor and 

normal groups, as well as between cancer samples and 

matched normal samples. Moreover, to further confirm 

the expression differences of DARS2 between ESCA 

and normal samples, we downloaded and analyzed the 

GSE20347, GSE38129, and GSE45670 datasets from 

the Gene Expression Omnibus (GEO, https://www. 

ncbi.nlm.nih.gov/geo/) database [27] using the 

GEOquery package [28]. In addition, we evaluated the 

diagnostic value of DARS2 expression in ESCA using 

the ROC curve analysis. Finally, we further investigated 

the relationship between the expression levels of 

DARS2 and the clinical pathological characteristics of 

ESCA patients. Finally, we conducted an analysis of the 

TCGA ESCA and GSE45670 datasets to investigate the 

potential relationship of DARS2 expression with 

glycolysis and m6A-related genes. The correlation 

analysis module of GEPIA online database (http:// 

gepia2.cancer-pku.cn/#correlation) was used to explore 

the relationship between DARS2 expression and 

glycolysis and m6A signatures in ESCA. The glycolysis 

[29] and m6A [20] related gene lists used in this study 

were referenced from previous research. 

 

Functional enrichment analysis of DARS2 in ESCA 

 

The R software package was utilized to analyze the 

TCGA ESCA dataset and investigate the co-expression 

of genes that were associated with DARS2 expression. 

The statistical correlation was verified using Pearson 

correlation coefficient, and the ggplot2 package of R 

software was employed to generate the volcano map 

and heat map for visualization. The co-expressed genes 
were analyzed using the clusterProfiler package 

(version 3.14.3) [30] for gene ontology (GO) function 

and the Kyoto Encyclopedia of Genes and Genomes 
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(KEGG) pathway, and the data were visualized using 

the ggplot2 package. 

 

We extracted the data of DARS2 from the TCGA 

ESCA dataset and divided it into high and low 

expression groups based on the expression level of 

DARS2. Then, the original counts matrix of the TCGA 

ESCA dataset was subjected to differential analysis 

using the DESeq2 package [31], aiming to obtain all 

differentially expressed genes (DEGs). ClusterProfiler 

software package (version 3.14.3) was utilized to 

conduct Gene Set Enrichment Analysis (GSEA, 

www.gsea-msigdb.org/gsea/index.jsp) [32] analysis on 

all DEGs in order to scrutinize potential enrichment of 

these genes in biologically meaningful processes. The 

reference gene set is c2.cp.all.v2022.1.Hs.symbols.gmt.  

 

Cell culture and treatment 

 

The human ESCA cell line Kyse150 cells were 

purchased from the BeNa Culture Preservation Center 

(BNCC359343, BNCC). Human esophageal epithelial 

cells (HET-1A cells) were obtained from the Cell Bank 

of Chinese Academy of Sciences (Shanghai, China). 

The culture medium used for cell culture includes 

RPMI-1640 complete medium (KGM31800S, 

KeyGEN) and RPMI-1640 incomplete medium 

(KGM31800N, KeyGEN). Transfection of cells with 

DARS2 siRNA was carried out as per the 

manufacturer’s instructions using Lipofectamine 3000 

transfection reagent (L300015, Invitrogen). The detailed 

siRNA sequence is shown in Table 1.  

 

Extraction of RNA and qRT-PCR analysis 

 

Extracting total RNA from ESCA cell lines using TRIzon 

Reagent (CW0580S, CWBIO). For cDNA synthesis, 

HiScript II Q RT SuperMix for qPCR (R223-01, Vazyme) 

was employed. Real-time quantitative PCR (qRT-PCR) 

analysis was conducted using the CFX Connect™ system 

(Bio-Rad). The relative expression levels were determined 

using the 2−ΔΔCt method. We used β-Actin as a 

standardized internal control. The detailed primer 

sequence is shown in Supplementary Table 1. 

 

EdU proliferation assay 

 

The proliferative activity of ESCA cells transfected 

with siRNA was detected using the EdU kit (C0078S, 

Beyotime). For detailed protocols, see our previous 

studies [33]. 

 

CCK-8 assay for cellular viability 

 

According to the manufacturer’s instructions, we 

incubated the cultured cells with the CCK-8 reagent 

(KGA317, KeyGen) for evaluating cell metabolic 

activity through the activity of cellular reductase. 

Lastly, we measured the absorbance values using a 

spectrophotometer. The changes in absorbance values 

reflected the proliferation activity of cells, allowing for 

a quantitative assessment of cell proliferation extent. 
 

Clone formation assay 
 

The transfected individual cells were evenly dispersed in a 

culture dish, and after a week of cultivation, the cell 

population developed into visible clones. Following the 

protocol, the cells were washed with PBS and fixed with 

polyformaldehyde for subsequent imaging. The cloning 

efficiency could be quantitatively assessed by counting 

the number of clones to evaluate cell proliferation rate. 

 

Wound healing assay 

 

Inoculate the transfected cells into a six well culture 

plate until they achieve 90% fusion. Using 200 μL tip of 

the pipette scrapes the cells. Observe the migration of 

cells under a microscope at 0, 24, and 48 hours. 

Quantify scratch areas using ImageJ software. 
 

Apoptosis assay  
 

The Annexin V-FITC/PI Apoptosis Detection Kit 

(AP101-100Kit, MULTI SCIENCES) was used to 

detect apoptosis. Apoptosis was detected by 

NovoCyte™ flow cytometry (NovoCell 2060R, ACEA 

Biosciences Inc.) at 488 nm. 
 

Cell cycle assay 
 

The cultivated cells were stained with a cell cycle 

staining kit (CCS012, MULTISCIENCES) for analysis. 

Flow cytometry was employed for cellular analysis. 
 

2-NBDG uptake assay 
 

Cells were inoculated into 96-well plates at a density of 

2 × 10^4 cells per well. Transfection with siRNA was 

performed and after 24 hours, the cells were washed 

with PBS. Subsequently, the cells were incubated with 

50 μM of 2-NBDG (HY-116215, MCE) in glucose-free 

DMEM for 30 minutes at 37° C with 5% CO2. 

Following the incubation period, the cells were washed 

three times with warm PBS. The mean fluorescence 

intensity (MFI) of the 2-NBDG was quantified by 

NovoCyte™ Flow cytometry. 
 

Lactic acid production 
 

The lactate levels in the culture medium were measured 

using the Lactate Colorimetric Assay Kit (E-BC-K044-

M, Elabscience), as per the manufacturer’s instructions.
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Table 1. The sequences of siRNAs used in this study. 

Gene Sense Antisense 

si-DARS2#1 AGGUGAGAUUGAAAUCAAATT UUUGAUUUCAAUCUCACCUTT 

si-DARS2#2 GGAAUGUGCUGACCUUCUATT UAGAAGGUCAGCACAUUCCTT 

NC UUCUCCGAACGUGUCACGUTT ACGUGACACGUUCGGAGAATT 

 

According to the manufacturer’s instructions, we 

measured the absorbance at 530 nm. 

 

CeRNA network analysis 

 

We predicted potential miRNAs targeting DARS2 by 

utilizing the TarBase v.8 (https://dianalab.e-ce.uth.gr/ 

html/diana/web/index.php?r=tarbasev8) [34], mirDIP 

(http://ophid.utoronto.ca/mirDIP/index.jsp#r) [35], and 

miRTarBase (https://mirtarbase.cuhk.edu.cn/~miRTar 

Base/miRTarBase_2022/php/index.php) [36] platforms, 

and confirmed the final target miRNAs through 

differential expression analysis. Similarly, we predicted 

lncRNAs targeting the target miRNAs using the 

ENCORI (https://rnasysu.com/encori/index.php) [37] 

and miRNet (https://www.mirnet.ca/miRNet/home. 

xhtml) [38] platforms, and identified the final target 

lncRNAs through differential expression analysis. 

Finally, based on the ceRNA hypothesis, we cons-

tructed a ceRNA network. We employed the 

RNAHybrid online tool to predict potential binding 

sites between mRNA-miRNA and lncRNA-miRNA 

interactions. 

 

Statistics analysis 
 

We performed statistical analysis and plotted graphs using 

Xiantao online database tool (https://www.xiantaozi.com/) 

and GraphPad Prism statistical software. For group 

comparisons, T test or Wilcoxon rank sum test was 

employed. One-way ANOVA or Two-way ANOVA was 

used for multiple group comparisons. A P-value <0.05 

was considered statistically significant. “ns” indicates no 

significance; *, p < 0.05; **, p < 0.01; ***, p < 0.001; 

****, p < 0.0001. 

 

Availability of data and materials 

 

The datasets generated during and/or analysed during 

the current study are available from the corresponding 

author upon reasonable request. 

 

RESULTS 
 

Bioinformatics analysis of DARS2 expression 
 

In order to determine the expression profile of DARS2 

in the majority of common cancers, we performed a 

pan-cancer analysis based on the TCGA and GTEx 

databases. The results showed a significant increase in 

the expression level of DARS2 in Bladder Urothelial 

Carcinoma (BLCA), Breast invasive carcinoma 

(BRCA), Cervical squamous cell carcinoma and 

endocervical adenocarcinoma (CESC), Cholangio-

carcinoma (CHOL), Colon adenocarcinoma (COAD), 

Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 

(DLBC), Esophageal carcinoma (ESCA), Glioblastoma 

multiforme (GBM), Head and Neck squamous cell 

carcinoma (HNSC), Kidney renal papillary cell 

carcinoma (KIRP), Brain Lower Grade Glioma (LGG), 

Liver hepatocellular carcinoma (LIHC), Lung adeno-

carcinoma (LUAD), Lung squamous cell carcinoma 

(LUSC), Ovarian serous cystadenocarcinoma (OV), 

Pancreatic adenocarcinoma (PAAD), Prostate 

adenocarcinoma (PRAD), Rectum adenocarcinoma 

(READ), Skin Cutaneous Melanoma (SKCM), Stomach 

adenocarcinoma (STAD), Testicular Germ Cell Tumors 

(TGCT), Thymoma (THYM), Uterine Corpus 

Endometrial Carcinoma (UCEC) and Uterine Carcino-

sarcoma (UCS) compared to the normal group, while its 

expression level was significantly decreased in 

Adrenocortical carcinoma (ACC), Kidney renal clear 

cell carcinoma (KIRC), Acute Myeloid Leukemia 

(LAML) and Pheochromocytoma and Paraganglioma 

(PCPG) (Figure 1A, p < 0.05). 

 

In the TCGA ESCA dataset, elevated expression of 

DARS2 was observed compared to the paired control 

normal samples (Figure 1B). The results of cell 

experiments revealed that the expression of DARS2 was 

significantly increased in human esophageal cancer cell 

lines compared to human normal esophageal epithelial 

cells (Figure 1C). Analysis of the GSE20347, 

GSE38129, and GSE45670 datasets demonstrated 

significantly higher expression levels of DARS2 in 

ESCA samples compared to the control group (Figure 

1D–1F). In order to assess the diagnostic potential of 

DARS2 in ESCA, ROC curve analysis was conducted 

to further evaluate its performance. The results of the 

ROC analysis demonstrated that DARS2 exhibited 

significant potential in predicting ESCA, with notable 

accuracy, reflected by an AUC value of 0.868 (95% 

confidence interval [CI]: 0.736-0.999) (Figure 1G). To 
further elucidate the potential clinical significance of 

DARS2, a comprehensive analysis of clinical data from 

TCGA ESCA samples was performed (Figure 2). The 
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research findings revealed that DARS2 expression was 

elevated in tumor samples of all stages (I, II, III, and 

IV) compared to the normal group (Figure 2D, p < 

0.05). In terms of T staging, DARS2 expression was 

higher in tumor samples of T1, T2, and T3 stages 

compared to the normal group (Figure 2E, p < 0.05). 

Regarding N staging, DARS2 expression was higher in 

tumor samples of N0, N1, and N3 stages compared to 

the normal group (Figure 2F, p < 0.05). In terms of M 

staging, DARS2 expression was higher in tumor 

samples of M0 and M1 stages compared to the normal 

group (Figure 2G, p < 0.05). Additionally, DARS2 

expression was higher in samples of ECA and ESCC 

compared to the normal group in the histological type of 

 

 
 

Figure 1. Bioinformatics analysis of DARS2 expression. (A) The expression level of DARS2 was assessed by analyzing the TCGA-GTEx 
pan-cancer datasets. (B) In the TCGA ESCA dataset, the differential expression of DARS2 between cancer samples and paired normal samples. 
(C) Cell experiments evaluated differences in DARS2 expression. (D–F) The variation in DARS2 expression was investigated between ESCA 
cancer tissue and normal tissue in the GSE20347, GSE38129, and GSE45670 datasets. (G) Receiver operating characteristic (ROC) curve 
analysis was conducted to evaluate the utility of DARS2 as a diagnostic marker for ESCA. *p < 0.05; **p < 0.01; ***p < 0.001; ns, no 
significance. 
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analysis (Figure 2H, p < 0.05). Furthermore, in the 

histological grade analysis, DARS2 expression was 

higher in tumor samples of G1, G2, and G3 stages 

compared to the normal group (Figure 2I, p < 0.05). 

However, there was no statistically significant 

difference in DARS2 expression with respect to age, 

gender, and BMI index in tumor patients (Figure 2A–

2C, p > 0.05). 

 

Functional enrichment analysis of DARS2 in ESCA 

 

We performed Pearson correlation coefficient analysis 

to examine the correlation between DARS2 expression 

and other molecules in the TCGA ESCA dataset, 

specifically focusing on genes categorized as “coding 

proteins”. When selecting a threshold of p < 0.05, we 

identified a total of 9158 genes that showed a positive 

correlation with DARS2 expression, and 1271 genes 

that showed a negative correlation (Figure 3A). Among 

these genes, CENPL exhibited the highest positive 

correlation coefficient with DARS2, while CBFA2T3 

exhibited the highest negative correlation coefficient. 

As illustrated in Figures 3B, 3C, the heatmaps were 

used to visually display the top 10 most significant 

genes positively and negatively correlated with DARS2 

expression. 

 

 
 

Figure 2. The correlation between DARS2 expression and clinicopathological parameters in patients with esophageal 
carcinoma (ESCA). The correlation between the expression level of DARS2 and (A) age, (B) gender, (C) BMI, (D) pathologic stage, (E) T stage, 

(F) N stage, (G) M stage, (H) histological staging and (I) histologic grade. 
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GO function and KEGG pathway enrichment analysis 

were conducted on co-expressed genes associated 

with DARS2 expression using the R software 

package. At a correlation coefficient above 0.6 and a 

significance level of p < 0.05, the co-expression of 

DARS2 resulted in involvement of a total of 332 

biological processes (GO-BP), 69 cellular components 

(GO-CC), 72 molecular functions (GO-MF), and 5 

KEGGs (p < 0.05). The bubble plot illustrates the top 

five most relevant groups of data in the order of GO-

BP, GO-CC, GO-MF, and KEGG. GO functional 

annotation showed that the DARS2 co-expressed 

genes were mainly involved in chromosome 

segregation, chromosome regions, and catalytic 

activity, acting on RNA. KEGG pathway analysis 

reveals that the co-expression of DARS2 is 

predominantly associated with the Nucleocytoplasmic 

transport (Figure 3D). 

 

To further investigate the potential functions of DARS2, 

we performed GSEA. Initially, the TCGA ESCA 

dataset was divided into high and low expression groups 

based on the expression levels of DARS2 to identify 

DEGs. The GSEA results revealed a total of 651 gene 

sets under the conditions of FDR (q-value) < 0.25  

and p < 0.05. These gene sets mainly included 

 

 
 

Figure 3. Functional enrichment analysis of DARS2 in ESCA. (A) The volcano plot exhibits the genes significantly correlated with 

DARS2 expression in the TCGA ESCA dataset. (B, C) Heatmap was used to visually display the top 10 most significant genes positively and 
negatively correlated with DARS2 expression. (D) Enrichment analysis was performed on co-expression genes of DARS2 using Gene Ontology 
(GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. (E) GSEA analysis revealed DARS2 related pathways.  
*p < 0.05; **p < 0.01; ***p < 0.001; ns, no significance. 
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WP_INTEGRATED_CANCER_PATHWAY (NES 

=1.70, p < 0.05), REACTOME_REGULATION_ 

OF_TP53_ACTIVITY (NES = 1.50, p < 0.05), 

REACTOME_MAP2K_AND_MAPK_ACTIVATION 

(NES = 1.67, p < 0.05), KEGG_CELL_CYCLE (NES = 

1.90, p < 0.05), WP_G1_TO_S_CELL_CYCLE_ 

CONTROL (NES = 2.06, p < 0.05), and 

REACTOME_GLYCOLYSIS (NES = 1.44, p < 0.05) 

(Figure 3E). 

Decreased DARS2 affects cell proliferation and 

migration 

 

To verify the potential inhibitory effect of DARS2 

knockdown on ESCA cells, we conducted a series of 

experiments in vitro. Firstly, we conducted qRT-PCR 

experiments, which showed that the mRNA expression 

level of DARS2 was significantly reduced after 

knockdown (Figure 4A, p < 0.05). Subsequently, we 

 

 
 

Figure 4. DARS2 knockdown inhibits ESCA cell proliferation. (A) The interference efficiency of two siRNAs was confirmed by qRT-PCR 
experiments. The results of CCK-8 assay (B), EdU proliferation experiments (C, D), and colony formation assay (E, F) demonstrated a 
significant decrease in cell proliferation activity in the experimental group compared to the control group. *p < 0.05; **p < 0.01; ***p < 
0.001; ns, no significance. 
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conducted CCK-8 experiments and EDU proliferation 

experiments to determine cell activity and cell 

survival rate. In the CCK-8 assay, the cellular 

viability of the DARS2 knockdown groups was 

significantly reduced compared to that of the control 

group (Figure 4B, p < 0.05). In the EDU proliferation 

experiment, the cell survival rates of the two si-

DARS2 groups significantly decreased compared to 

the control group (Figure 4C, 4D, p < 0.05). Finally, 

we conducted colony formation experiments to further 

validate our hypothesis, and the results showed that 

knocking down DARS2 resulted in a decrease in cell 

proliferation ability (Figure 4E, 4F, p < 0.05). It has 

been further confirmed that inhibition of DARS2 

expression can significantly suppress the proliferation 

of ESCA tumor cells. Next, we used wound healing to 

further verify that DARS2 inhibition can reduce cell 

migration. In wound healing measurements, knocking 

down the expression of DARS2 can significantly 

inhibit wound healing rate (Figure 5A, 5B, p < 0.05). 

Meanwhile, the results from flow cytometry 

demonstrated a noteworthy elevation in the quantity 

 

 
 

Figure 5. DARS2 knockdown affects wound healing, apoptosis and cell cycle in ESCA cells. (A, B) The analysis of wound healing in 
the present study revealed a significant reduction in wound healing rate upon downregulation of DARS2 expression. (C, D) Furthermore, the 
results demonstrated that downregulation of DARS2 expression significantly increased the number of apoptotic cells in the experimental 
group. (E, F) Flow cytometry analysis revealed a significant arrest of tumor cells in the S phase and G2/M phase in the experimental group 
compared to the control group. *p < 0.05; **p < 0.01; ***p < 0.001; ns, no significance. 
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of apoptotic cells in both si-DARS2 experimental 

groups (Figure 5C, 5D, p < 0.05). Flow cytometry 

analysis revealed that compared to the control group, 

tumor cells in the experimental group were found to 

be arrested in the S phase and G2/M phase (Figure 5E, 

5F, p < 0.05), suggesting that inhibition of DARS2 

expression may disrupt the normal cell cycle 

progression in tumor cells. 

Effects of DARS2 knockdown on ESCA glycolysis 

 

Previous GSEA analysis revealed enrichment of 

glycolysis-related pathways. Subsequently, glucose 

uptake experiments were conducted, indicating a 

decrease in glucose uptake capacity in the si-DARS2 

groups compared to the control group (Figure 6A, 6B, p 

< 0.05). Furthermore, lactate production experiments 

 

 
 

Figure 6. Effects of DARS2 knockdown on ESCA glycolysis. (A, B) Knocking down DARS2 significantly reduces the uptake of 2-NBDG in 

ESCA cells. (C) DARS2 knockdown significantly reduces lactate production in ESCA cells. (D) GEPIA online database analysis revealed that 
DARS2 expression was significantly positively correlated with glycolysis signatures in ESCA. (E) The correlation between 11 glycolysis-related 
genes and DARS2 expression in the TCGA ESCA dataset. (F) Analyzing the expression differences of 11 glycolysis-related genes between the 
DARS2 high and low expression groups in the TCGA ESCA dataset. (G) The expression differences of 11 glycolysis-related genes between the 
experimental group and the control group were analyzed using qRT-PCR experiments. (H) The Venn diagram illustrates the genes that satisfy 
the aforementioned three conditions, including GPI and PFKL. *p < 0.05; **p < 0.01; ***p < 0.001; ns, no significance. 
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demonstrated significantly lower lactate production in 

ESCA tumor cells after DARS2 interference (Figure 

6C, p < 0.05). GEPIA online database analysis revealed 

that DARS2 expression was significantly positively 

correlated with glycolysis signatures in ESCA (Figure 

6D, p < 0.05). To further explore the potential 

association between DARS2 expression and glycolysis, 

we analyzed the correlation between 11 glycolysis-

related genes and DARS2 expression in the TCGA 

ESCA dataset. The results showed a positive correlation 

between DARS2 expression and five glycolysis-related 

genes, namely PGK1, GPI, PFKL, ENO1, and GAPDH 

(Figure 6E, p < 0.05). Additionally, based on DARS2 

expression, we divided the TCGA ESCA dataset into 

high and low expression groups, further analysis 

revealed significantly higher expression of three 

glycolysis-related genes (PGK1, PFKL, and GPI) in the 

high DARS2 expression group compared to the low 

DARS2 expression group (Figure 6F, p < 0.05). Finally, 

qRT-PCR experiments were performed to examine the 

expression of 11 glycolysis-related genes in ESCA cells 

transfected with si-DARS2, which showed that 

SLC2A1, HK2, GPI, PFKL, PGAM1, and ENO1 genes 

were significantly lower in both si-DARS2 groups 

compared to the control group (Figure 6G, p < 0.05). 

However, ALDOA, GAPDH, PKG1, and PKM genes 

only showed a downward trend in one si-RNA group. 

Although the LDHA gene exhibited a downward trend 

in both si-DARS2 groups, no statistical difference was 

observed. The Venn diagram illustrates the genes that 

satisfy the aforementioned three conditions, including 

GPI and PFKL (Figure 6H). 

 

Correlation between DARS2 expression and m6A 

modification in ESCA 

 

Studies have shown that m6A modification plays a 

significant role in the regulation of gene expression and 

signal transduction pathways in various types of tumors. 

GEPIA online database analysis revealed that DARS2 

expression was significantly positively correlated with 

m6A signatures in ESCA (Figure 7A, p < 0.05). By 

analyzing the TCGA ESCA and GSE45670 datasets, we 

investigated the association between DARS2 expression 

and the expression of 20 m6A-related genes. The 

correlation analysis results demonstrated a significant 

positive correlation between DARS2 expression and 

HNRNPA2B1, METTL3, VIRMA, and YTHDF1 in 

both TCGA ESCA and GSE45670 datasets (Figure 7B, 

p < 0.05). Additionally, the expression of the other 16 

genes was only significantly positively correlated with 

DARS2 in the TCGA ESCA dataset. Furthermore, 

based on the expression levels of DARS2, we divided 
the TCGA ESCA and GSE45670 datasets into high and 

low DARS2 expression groups, attempting to analyze 

the differential expression of m6A-related genes 

between the high and low DARS2 expression groups in 

ESCA samples. The results revealed that in the TCGA 

ESCA dataset, the expression of ALKBH5, FTO, 

HNRNPA2B1, HNRNPC, IGF2BP1, IGF2BP2, 

IGF2BP3, METTL14, METTL3, RBM15, RBM15B, 

RBMX, VIRMA, YTHDF1, YTHDF2, YTHDF3, and 

ZC3H13 was significantly higher in the high DARS2 

expression group compared to the low DARS2 

expression group (Figure 7C, p < 0.05). Similarly, in the 

GSE45670 dataset, the expression levels of METTL3, 

VIRMA, and YTHDF1 were significantly higher in the 

high DARS2 expression group compared to the low 

DARS2 expression group (Figure 7D, p < 0.05), 

consistent with the analysis results of the TCGA ESCA 

dataset. Finally, we further analyzed the expression 

differences of m6A-related genes between tumor 

samples and normal samples in the TCGA ESCA and 

GSE45670 datasets to demonstrate the impact of 

dysregulated expression of m6A-related genes on tumor 

progression. The results showed that in the TCGA 

ESCA dataset, compared to the normal group, there was 

a significant increase in the expression of 16 m6A-

related genes in the tumor group, including ALKBH5, 

FTO, HNRNPA2B1, HNRNPC, IGF2BP1, IGF2BP2, 

IGF2BP3, METTL3, RBM15, RBMX, VIRMA, 

WTAP, YTHDC1, YTHDF1, YTHDF2, and YTHDF3 

(Figure 7E, p < 0.05). In the GSE45670 dataset, 

compared to the normal group, there were 11 dys-

regulated m6A-related genes in the tumor group, 

including HNRNPA2B1, IGF2BP1, IGF2BP2, 

IGF2BP3, RBM15, RBM15B, RBMX, YTHDC1, 

YTHDF1, YTHDF2, and YTHDF3 (Figure 7F, p < 

0.05). 

 

Prediction and construction of the competing 

endogenous RNA network of DARS2 in ESCA 

 

Research has shown that abnormal regulation of ceRNA 

networks may be involved in the occurrence and 

development of tumors. In this study, we predicted and 

constructed a ceRNA network associated with DARS2 

in ESCA. Using TarBase v.8, mirDIP and miRTarBase 

databases, we predicted 22, 2618, and 79 miRNAs 

interacting with DARS2, respectively. The Venn 

diagram analysis revealed that two miRNAs, hsa-miR-

34b-3p and hsa-miR-30a-5p, coexisted in all three 

databases (Figure 8A). Figure 8B showed the 

expression differences of hsa-miR-34b-3p (log2FC = 

1.90, p = 0.005) and hsa-miR-30a-5p (log2FC = -1.78, p 

= 2.14E-09) in the TCGA ESCA dataset. According to 

the ceRNA hypothesis, when mRNA is overexpressed 

in tumors, corresponding miRNAs should be under-

expressed. Therefore, we selected hsa-miR-30a-5p as 
the targeting miRNA for DARS2. Figure 8C displayed a 

significant decrease in the expression of hsa-miR-30a-

5p in tumor samples compared to normal samples. By 
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utilizing RNAHybrid for bioinformatics analysis, 

potential binding sites between DARS2 and hsa-miR-

30a-5p were identified (Figure 8D). After analyzing the 

miRNet and ENCORI databases, we predicted 46 and 

34 lncRNAs interacting with hsa-miR-30a-5p, 

respectively. Among them, 9 lncRNAs were found in 

both databases, namely EPB41L4A-AS1, PWAR5, 

NEAT1, OIP5-AS1, MALAT1, NORAD, LINC01089, 

XIST, and DLEU2 (Figure 8E). Differential analysis 

revealed that only 2 lncRNAs exhibited expression 

differences in the TCGA ESCA dataset, namely 

EPB41L4A-AS1 (log2FC = -0.70, p < 0.001) and 

DLEU2 (log2FC = 0.83, p < 0.001) (Figure 8F). Based 

on the ceRNA hypothesis, lncRNAs should be highly 

expressed in tumors when mRNA is overexpressed. 

Therefore, we selected DLEU2 as the target lncRNA for 

hsa-miR-30a-5p. Figure 8G demonstrated that the 

expression level of DLEU2 in tumor samples was 

significantly higher than that in normal samples. 

Bioinformatics analysis using RNAHybrid revealed 

potential binding sites between DLEU2 and hsa-miR-

30a-5p (Figure 8H). These data suggest that DLEU2 

may act as a competitive ceRNA binding to hsa-miR-

30a-5p and promote the expression of DARS2. Our 

study provides new insights into the role of DARS2 and 

its ceRNA network in ESCA. 

 

 
 

Figure 7. Correlation between DARS2 expression and m6A modification in ESCA. (A) GEPIA online database analysis revealed that 

DARS2 expression was significantly positively correlated with m6A signatures in ESCA. (B) The association between DARS2 expression and the 
expression of m6A-related genes in the TCGA ESCA and GSE45670 datasets. (C, D) The differential expression of 20 m6A-related genes 
between the high and low DARS2 expression groups in the TCGA ESCA and GSE45670 datasets. (E, F) The differential expression of 20 m6A-
related genes between tumor and normal groups in the TCGA ESCA and GSE45670 datasets. *p < 0.05; **p < 0.01; ***p < 0.001; ns, no 
significance. 
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Figure 8. Prediction and construction of the competing endogenous RNA network of DARS2 in ESCA. (A) The Venn diagram 

illustrates the co-occurrence of two miRNAs in three databases (TarBase v.8, mirDIP, and miRTarBase). (B) The TCGA ESCA dataset showcases 
the differential expression of the aforementioned two miRNAs. (C) The expression of hsa-miR-30a-5p in tumor samples from the TCGA ESCA 
dataset is significantly lower than that in normal samples. (D) Potential binding sites between DARS2 and hsa-miR-30a-5p were predicted 
using the RNAHybrid online tool. (E) The Venn diagram demonstrates the co-occurrence of nine lncRNAs in two databases. (F) The TCGA ESCA 
cohort presents the differential expression of the aforementioned nine lncRNAs. (G) The expression of DLEU2 in tumor samples from the 
TCGA ESCA dataset is significantly higher than that in normal samples. (H) Potential binding sites between hsa-miR-30a-5p and DLEU2 were 
predicted using the RNAHybrid online tool. 
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DISCUSSION 
 

Esophageal cancer is one of the most common cancers, 

with a high mortality rate worldwide due to its difficulty 

in early diagnosis and lack of effective treatment [1–3]. 

In recent years, despite the emergence of minimally 

invasive esophagectomy, neoadjuvant radiotherapy and 

chemotherapy, targeted therapy, immunotherapy and 

other treatment methods, and the progress of these 

multimodal treatments has shown promising results, 

they still fail to meet expectations [39], and a 

considerable number of patients fail to benefit. In the 

current form, with the growth and aging of the 

population, the huge burden of new ESCA cases may 

continue to increase. Therefore, we need to conduct a 

detailed analysis of the molecular mechanisms of 

esophageal cancer and identify the therapeutic targets of 

ESCA as soon as possible, which is of great help in 

improving the survival rate of esophageal cancer 

patients. 

 

Mitochondrial oxidative phosphorylation is the main 

source of energy for normal differentiation cells to rely 

on to generate cell processes. On the contrary, cancer 

cells primarily rely on aerobic glycolysis, a pheno-

menon commonly referred to as the “Warburg effect”. 

This “Warburg effect” indicates that the characteristics 

of cancer cells are changes in energy metabolism and 

increased glucose uptake [40]. Mitochondria are 

important organs responsible for cellular energy 

metabolism, and their normal function is crucial for the 

normal progression of glycolysis pathways [41]. 

DARS2, as a mitochondrial tRNA synthase, specializes 

in aminoacylation of aspartyl tRNA [6]. More 

importantly, its defects are associated with many 

neurological and mitochondrial diseases, often 

accompanied by brainstem and spinal cord involvement 

and elevated lactate levels (LBSL) in white matter 

encephalopathy [42–44]. In addition, DARS2 is 

upregulated in bladder cancer [7], lung adenocarcinoma 

[8], ovarian cancer [10], and hepatocarcinogenesis [11]. 

Although the overexpression and carcinogenic function 

of DARS2 in other cancers have been confirmed,  

the precise involvement and underlying biological 

mechanism of DARS2 in ESCA remains inadequately 

comprehended. 

 

In this study, the comprehensive application of 

bioinformatics analysis enabled the prediction of 

DARS2 expression in tumors, while the regulatory 

capacity of DARS2 in ESCA tumor cells was 

successfully validated via cellular assays. Through 

analysis of the TCGA database, we found that DARS2 

was significantly higher in esophageal cancer samples 

than in the control group. This finding implies that 

DARS2 could potentially be a therapeutic target for 

esophageal cancer, providing a basis for further 

investigational studies.  

 

By performing co-expression analysis of DARS2 in the 

TCGA ESCA dataset, we observed a positive 

correlation between the expression of DARS2 and 

CENPL, with the highest correlation coefficient. 

CENPL, a crucial member of the centromere protein 

family, plays a vital role in cell division and is 

associated with various human diseases [45, 46]. 

Previous studies have demonstrated significantly 

elevated expression of CENPL in liver, breast, and 

pancreatic cancer samples compared to normal samples, 

suggesting that high expression of CENPL may serve as 

a potential prognostic indicator for patients with liver, 

breast, and pancreatic cancers [47–50]. Additionally, 

Gui et al. found that downregulation of the CENPL 

gene could reduce the proliferation and migration 

abilities of breast cancer cells [51]. Moreover, we also 

observed a negative correlation between the expression 

of DARS2 and CBFA2T3, with the highest correlation 

coefficient. CBFA2T3, an important transcription 

factor, is involved in the regulation of multiple 

biological processes. Increased expression of CBFA2T3 

has been observed in B Cell Precursor Acute 

Lymphoblastic Leukemia (BCP-ALL), and the 

truncation protein of CBFA2T3 significantly decreases 

BCP-ALL lymphocyte proliferation [52]. Brown et al. 

[53] discovered that CBFA2T3 serves as a critical 

regulator of cell fate determination during colon 

homeostasis, colitis, and cancer by inhibiting the target 

of the E protein. However, there is currently no report 

on the relationship between CENPL, CBFA2T3, and 

ESCA. Subsequently, we performed GO and KEGG 

enrichment analysis on the co-expression gene set of 

DARS2 and identified several significant categories 

enriched in the positively correlated group, including 

chromosome segregation, chromosome regions, 

catalytic activity, and nucleocytoplasmic transport. 

Additionally, GSEA analysis revealed the involvement 

of differentially expressed genes of DARS2 in various 

signaling pathways, such as WP_INTEGRATED_ 

CANCER_PATHWAY, REACTOME_REGULATION_ 

OF_TP53_ACTIVITY, REACTOME_MAP2K_AND_ 

MAPK_ACTIVATION, KEGG_CELL_CYCLE, 

WP_G1_TO_S_CELL_CYCLE_CONTROL, and 

REACTOME_GLYCOLYSIS. These results imply that 

DARS2 may play an important biological role in the 

occurrence and progression of tumors. In this study, we 

specifically focus on the relationship between DARS2 

and tumor cell proliferation, migration, cell cycle, 

glycolysis, m6A, and ceRNA. 

 
In addition, we also conducted cell experiments in vitro 

to confirm that the mRNA levels, cell activity, EDU, 

clone count, and wound healing of the two interference 
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groups were significantly reduced after DARS2 was 

knocked down. The absence of DARS2 inhibited tumor 

growth and migration. At the same time, it can also be 

seen that the silenced DARS2 increased the apoptosis 

rate, indicating that knocking down DARS2 can 

significantly promote tumor cell apoptosis. Cell cycle 

analysis revealed that compared to the control group, 

tumor cells in the experimental group were arrested at 

the S and G2/M phases, indicating that sustained 

expression of DARS2 may disrupt the normal cell cycle 

progression in tumor cells. Although it has been 

concluded that the expression level of DARS2 may 

affect cell proliferation, migration, and apoptosis, we 

still need to further elucidate its mechanism, as more 

and more people believe that most cancer deaths are 

caused by metastasis rather than local tumor growth 

[54]. Cancer cells have many factors that promote 

metastasis, and our focus is on glycolysis. Proliferating 

cells prefer aerobic glycolysis, and DARS2 is 

preferentially expressed in proliferating cells, including 

cancer cells. We speculate that DARS2 is highly likely 

to promote aerobic glycolysis of ESCA, which has been 

confirmed in our subsequent experiments. Firstly, we 

found that DARS2 was enriched in the glycolytic 

pathway. During subsequent in vitro cell experiments, 

we observed a significant decrease in the utilization 

rates of glycolysis and lactate production. Finally, a 

qRT-PCR experiment was conducted, and the 

knockdown of DARS2 inhibited the expression  

of glycolysis-related genes. These results further 

emphasize the carcinogenic effect of DARS2 and its 

therapeutic potential in ESCA.  

 

Furthermore, the association of DARS2 with the m6A 

and ceRNA networks drives us to delve deeper into 

these two aspects. M6A modification is a common form 

of RNA methylation modification, which as part of 

methylation modifications, can affect cancer 

development by regulating cancer-related biological 

functions [55–57]. Based on bioinformatics analysis, we 

propose that the oncogenic effect of DARS2 gene is 

associated with m6A modification, which may 

modulate the methylation level of ESCA through its 

interaction with genes such as METTL3 and YTHDF1, 

ultimately affecting the progression of ESCA. 

Interestingly, in our previous research, we have 

demonstrated that the overexpression of METTL3 and 

YTHDF1 serve as diagnostic and therapeutic 

biomarkers in ESCA [58, 59]. In the future, we will 

further investigate the potential associations between 

METTL3 and YTHDF1 with DARS2. 

 

Numerous studies have demonstrated the existence of 
ceRNA networks in many tumor cells, wherein ceRNAs 

can regulate the expression of other target genes, 

suggesting a crucial role of the ceRNA mechanism in 

tumor initiation and progression. Lu et al. [60] 

identified the upregulation of lncRNA DLEU2 in ESCA 

tissues, which was significantly associated with poor 

prognosis. Silencing of lncRNA DLEU2 inhibited the 

proliferation, migration, and invasion of ESCA cells. 

Furthermore, the study revealed that lncRNA DLEU2 

may serve as a ceRNA sponge for miR-30e-5p, thus 

influencing E2F7 expression and promoting ESCA 

progression. Additionally, previous research has 

revealed that hsa-miR-30a-5p exhibits significantly 

lower expression levels in lung adenocarcinoma, renal 

carcinoma, prostate cancer, and hepatocellular 

carcinoma compared to normal tissues, highlighting its 

crucial role as a key component of the ceRNA network 

in cancer development [61–64]. However, to date, no 

studies have reported on the relationship between 

DARS2 and ceRNAs in ESCA. In the present study, we 

initially screened miRNAs interacting with DARS2 

using various databases, and performed differential 

analysis and target prediction to identify hsa-miR-30a-

5p as a potential target for DARS2. Subsequently, we 

predicted a lncRNA (DLEU2) that could potentially 

target the identified miRNA. Based on the ceRNA 

theory, we selected and confirmed DLEU2 as a lncRNA 

that targets hsa-miR-30a-5p, and ultimately constructed 

a ceRNA network, namely DLEU2/has-miR-30a-

5p/DARS2. This study provides the first prediction and 

proposal of a ceRNA network targeting DLEU2 in 

ESCA, thereby offering potential therapeutic targets for 

molecular treatment of ESCA. 

 

CONCLUSIONS 
 

In conclusion, our study establishes a novel connection 

between DARS2 and ESCA, but further experimental 

validation and larger sample sizes are required to 

comprehensively confirm our hypothesis. Specifically, 

it is crucial to investigate the impact of DARS2 on cell 

proliferation and migration in ESCA and examine its 

relationship with the glycolysis pathway. Our findings 

reveal the upregulation of DARS2 in ESCA and its 

association with clinical characteristics, the glycolysis 

pathway, m6A modifications, and ceRNA networks. 

This study enhances our understanding of the molecular 

mechanisms underlying ESCA and sets the stage for 

future investigations into targeted therapies involving 

DARS2 manipulation. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Table 

 

 

 

Supplementary Table 1. The sequences of primers used in this study. 

Gene Forward primer sequences Reverse primer sequences  
β-actin TGGCACCCAGCACAATGAA CTAAGTCATAGTCCGCCTAGAAGCA 

DARS2  CATGGAGGAATTGCCTTAGGGTTA ATGTCCCCGGAAGGACTTTG  
SLC2A1  CACTGTCGTGTCGCTGTTTG CTAGCGCGATGGTCATGAGT  
HK2  GGCAAGCAGAGGTTCGAGA AAGTGTTGCAGGATGGCTCG  
GPI  AAGGGTCTGCATCACAAGATCC AGAGTTGGTTGGGCGATTTCC  
PFKL  GAGGTTTACCGCAAGGGACG ACTGATGCGGTATTGTGCCA  
ALDOA  ACATCGCTCACCGCATCGT GGTAGTCTCGCCATTTGTCCC  
GAPDH  GAGAAGGCTGGGGCTCATTT GCAGGAGGCATTGCTGATGA  
PGK1  TGGAGCTCCTGGAAGGTAAAG GTTCCTGGCACTGCATCTCT  
PGAM1 TCAATGAGCGGCACTATGGG TGCTGTAGAAAGGATGGTCGG  
ENO1  TGTGCACTGGGCAGATCAAG GCGCTAACTAGCAGGGACC  
PKM2 GCTCCGGATCTCTTCGTCTT GATGGTCTCCGCATGGTACT  
LDHA  ACGACCGCCCGACGTG GCAAGTTCATCTGCCAAGTCCTTC 
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