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ABSTRACT 
 

Purpose: Investigating the role of lncRNAs associated with the latest cell death mode (Disulfideptosis) in renal 
clear cell carcinoma, as well as their correlation with tumor prognosis, immune escape, immune checkpoints, 
tumor mutational burden, and malignant tumor progression. Searching for potential biomarkers and targets for 
renal clear cell carcinoma. 
Methods: Downloaded the expression profile data and clinical data of 533 cases of renal clear cell carcinoma 
from the TCGA database, and randomly divided them into a test set (267 cases) and a validation set (266 cases). 
Based on previous research, 13 genes associated with Disulfideptosis were obtained. Using R software, lncRNAs 
with a differential expression that is related to the prognosis of renal clear cell carcinoma and associated with 
Disulfideptosis were screened out. After univariate Cox regression analysis, Lasso regression analysis, and 
multivariate Cox regression analysis, lncRNAs with independent predictive ability were obtained. A predictive 
risk model was established based on the risk scores. Verification was carried out between the obtained high-
risk and low-risk groups and their subgroups (including Age, Gender, tumor mutational burden (TMB), tumor 
grading, and staging). Subsequently, a nomogram was established, and a calibration curve was generated for 
verification. Performed GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) functional 
enrichment analyses. Downloaded the values of Tumor Immune Dysfunction and Exclusion (TIDE) for all 
samples and calculated the difference between the high and low-risk groups. Selected human renal tumor cell 
lines (786-O, OS-RC-2, A-498, ACHN) and human renal cortex proximal tubule epithelial cell line (HK-2). The RNA 
expression levels of the above lncRNAs in each cell line were analyzed using RT-qPCR (Real-time Quantitative 
PCR Detecting System). Used siRNA (small interfering RNA) to knock down FAM225B in 786-O and OS-RC-2 cell 
lines, and then performed in vitro cell experiments to validate the functional characteristics of FAM225B. 
Results: Our constructed predictive model includes 5 lncRNAs with an independent predictive ability (FAM225B, 
ZNF503-AS1, SPINT1-AS1, WWC2-AS2, LINC01338), which can effectively distinguish between patients in high 
and low-risk groups and their subgroups. The 1, 3, and 5-year AUC (Area Under the ROC Curve) values of the 
established nomogram are 0.756, 0.752, and 0.781, respectively. The 5-year AUC value is higher compared to 
other clinical characteristics (Age: 0.598, Gender: 0.488, Grade: 0.680, Stage: 0.717). After the knockdown of 
FAM225B, the proliferation, migration, and invasion abilities of renal cancer cell lines OS-RC-2 and 786-O all 
decreased. 
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INTRODUCTION 
 

Many cancer therapies are designed to kill cancer  

cells through apoptosis [1]. However, many cancer cells 

can find ways to evade treatment-induced apoptosis, 

ultimately leading to treatment resistance and disease 

recurrence [2]. Disulfideptosis is a newly discovered 

and identified form of cell death, which holds promise 

for exploring a new cancer treatment method based on 

this mechanism. This study indicates that when cells with 

high expression of the SLC7A11 protein experience 

glucose starvation, Disulfideptosis is triggered. In 

preclinical models, treatment with a glucose inhibitor 

can induce Disulfideptosis in cancer cells with high 

expression of SLC7A11, effectively suppressing tumor 

growth, and it has no significant toxicity to normal 

tissues [3]. The research team discovered in their 2020 

study that certain cancer cells may be sensitive to glucose 

transporter inhibitors due to their high expression of 

SLC7A11 and the resultant “addiction” to extracellular 

glucose [4]. Overall, the main cause of Disulfideptosis 

is that the supply of NADPH cannot meet the cellular 

process of reducing cystine to cysteine, resulting in 

disulfide stress. This induces actin cytoskeleton protein 

disulfide bonding and cytoskeletal contraction, peeling 

from the plasma membrane, and ultimately leading  

to cell death. Insufficient cellular glucose intake and 

excessive cystine intake can both induce Disulfideptosis. 

 

Because this is a newly discovered form of cell death, 

research related to it is currently a blank slate, especially 

when compared to previously discovered forms of  

cell death such as apoptosis, necroptosis, autophagy, 

ferroptosis, pyroptosis, and necrosis [5]. Disulfideptosis 

appears to be quite unique. As we know, apoptosis is 

usually associated with cell contraction [6], Necroptosis, 

on the other hand, involves cell swelling and leakage of 

cell contents [7], In contrast, Disulfideptosis is mainly 

associated with disulfide bonds on the cytoskeleton. The 

regulators and effectors of different cell death pathways 

remain very attractive therapeutic targets. 
 

Kidney cancer has long been one of the top three tumors 

in men, especially renal clear cell carcinoma [8]. In 

2022, there will be approximately 81,800 new cases of 

kidney cancer (52,360 in men and 29,440 in women) 

and 14,890 deaths (9,920 in men and 4,970 in women) 

in the United States [9]. Although its incidence has 

decreased [10], there is a long way to go in the 

prevention, diagnosis and treatment of kidney cancer 

[11]. Although Disulfideptosis has many potential 

specific mechanisms and available benefits, its other 

potential mechanisms and biomarker profiles for 

different types of cancers, especially renal clear cell 

carcinoma, remain unknown and it will be of great 

interest whether it can be used as a therapeutic target for 

renal clear cell carcinoma. 
 

In conclusion, Disulfideptosis is a promising area for 

renal clear cell carcinoma research, and, lncRNAs 

associated with Disulfideptosis in renal clear cell 

carcinoma are currently unavailable. Therefore, we 

hope to explore whether lncRNAs associated with 

Disulfideptosis are related to prognosis, immune escape, 

tumor mutational load, immune checkpoint, and tumor 

malignant progression in renal clear cell carcinoma 

through this study, which is expected to make some 

contributions to further studies of Disulfideptosis. 

 

MATERIALS AND METHODS 
 

We used five cell lines, four kidney cancer cell lines 

(786-O, OS-RC-2, A-498, ACHN), and one human 

renal cortical proximal tubular epithelial cell (HK-2), all 

from Procell (Wuhan, Hubei, China). Growth medium 

used: A-498, ACHN and HK-2 using MEM (with 

NEAA) + 10% FBS + 1% P/S, 786-O and OS-RC-2 

using RPMI-1640 + 10% FBS + 1% P/S. All cells were 

grown at 37°C and 5% CO2. Freezing conditions were 

in liquid nitrogen. Cells were digested using 0.25% 

trypsin (Biosharp, Hefei, China) during passaging, and 

all cells above were digested for 1 min in a 37°C 

incubator. 

 

Acquisition of raw data 

 

Clinical data of 533 renal clear cell carcinoma cases and 

expression profile data of all RNAs were downloaded 

from TCGA (The Cancer Genome Atlas). Similarly, 403 

simple nucleotide variation data were downloaded from 

TCGA. Genes associated with Disulfideptosis from 

previous studies on Disulfideptosis [3], Tumor Immune 

Dysfunction and Exclusion (TIDE) data generated from 

the RNA transcriptome expression profiles of TCGA were 

downloaded from TIDE (http://tide.dfci.harvard.edu/) to 

calculate their TIDE values. 

Conclusion: We have constructed and validated a prognostic model based on Disulfideptosis-associated 
lncRNAs. This model can effectively predict the high or low risk of patient prognosis and can distinguish the 
tumor cell mutational burden and immune escape capabilities among high-risk and low-risk patients. This 
predictive model can serve as an independent prognostic factor for renal clear cell carcinoma, providing a new 
direction for personalized treatment of patients with renal clear cell carcinoma. 
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Obtaining Disulfideptosis-related lncRNAs 

 

Based on the downloaded TCGA RNA transcriptome 

expression profile, we used Perl software (bictype.perl) 

to separate the RNA transcriptome expression profile 

into lncRNA and mRNA expression profiles. Then, 

using R software (packages “ggplot” and “ggalluvial”), 

we depicted the co-expression relationship between 

lncRNA and Disulfideptosis-associated genes via 

Pearson correlation analysis (correlation with p < 0.05) 

as a Sankey diagram. 

 

Construction of the prognostic signature 

 

Using R software (packages “survival”, “caret”, 

“glmnet”, “survminer”, and “timeROC”), we conducted 

univariate Cox regression analysis on Disulfideptosis-

associated lncRNAs (significance criterion was p < 

0.001), obtained Disulfideptosis-associated lncRNAs 

significantly associated with prognosis time, and plotted 

a forest map. Then we conducted a Lasso regression 

analysis (randomly dividing it into two groups, 

performing cross-validation, and finding the minimum 

error value). After that, we performed a multivariate 

Cox regression analysis of related factors, filtering  

out independent prognostic factors (5 disulfidptosis-

related lncRNAs), thus constructing the prognostic 

signature. Using R software (packages “tidyverse”, 

“ggplot2”, “ggExtra”), we plotted a correlation heatmap 

of these 5 independent prognostic lncRNAs and  

13 Disulfideptosis-associated genes through Pearson 

correlation analysis (correlation with p < 0.05). 

 

Evaluation and validation of the risk model 

 

Using R software (packages “survival”, “caret”, and 

“survminer”), we randomly divided all 533 samples into 

two groups (training group and testing group). We then 

conducted a chi-square test on the clinical characteristics 

(Age, Gender, Grade, and Stage) of both groups, 

comparing whether there is a significant difference in  

the clinical characteristics of the two groups. A p-value 

less than 0.05 is considered statistically significant. 

Using R software (package “pheatmap”), we plotted  

risk curves, survival status maps, and risk heatmaps for 

both the training and testing groups (divided into high 

and low-risk groups based on the median). Using R 

software (packages “survival” and “survminer”), we 

plotted Kaplan-Meier (KM) curves for high and low-risk 

groups in both the training and testing sets, including 

Overall Survival (OS) and Progression Free Survival 

(PFS). Using R software (the “survival” package), we 

conducted univariate and multivariate independent 
prognostic analyses for the risk model. Using R software 

(packages “survival”, “survminer”, and “timeROC”), we 

generated the 1, 3, and 5-year ROC curves for the risk 

model and the 5-year ROC curves for Age, Gender, 

Grade, and Stage, and made a comparison. Using  

R software (packages “limma” and “scatterplot3d”),  

we performed a Principal Component Analysis (PCA) 

on the risk model to see if it can distinguish all 

lncRNAs, Disulfideptosis-associated genes lncRNAs, 

Disulfideptosis-associated genes, and all genes and 

visualized the results. 

 

Construction of the predictive nomogram 

 

Using R software (packages “survival”, “regplot”,  

and “rms”), we incorporated the risk model into the 

construction of a predictive nomogram based on the risk 

score. Subsequently, we generated calibration curves for 

the 1, 3, and 5-year periods of the nomogram. 

 

Clinical characteristics of the risk model 

 

Using R software (“survivor”, “survminer” package), 

survival curves were plotted for patients of different 

genders, tumor grades, and tumor stages based on the 

risk model to verify the applicability of our constructed 

risk model to patients of different clinical trait groups. 

 

Functional and pathway enrichment analysis 

 

GO function enrichment analysis: Using R  

software (“colorspace”, “stringi”, “ggplot2”, “circlize”, 

“RColorBrewer”, and “ggpubr” packages), risk-

differentiated Disulfideptosis-associated lncRNAs were 

analyzed for which functions they were enriched with 

and visualized, including cellular component (CC), 

molecular function (MF), and biological process (BP), 

presented as bar and circle charts. KEGG pathway 

enrichment analysis: Using R software (“colorspace”, 

“stringi”, “ggplot2”, “circlize”, and “RColorBrewer” 

packages), KEGG pathway enrichment analysis was 

performed for risk-differentiated Disulfideptosis-

associated lncRNAs and visualized as bubble graphs 

and circle plots. 

 

Analysis of tumor-infiltrating immunocyte and 

immune checkpoints 

 

GSVA analysis was performed using R software 

(“limma”, “GSVA”, “GSEABase”, “pheatmap”, and 

“reshape2” packages) on samples from high and  

low-risk groups, looking for correlations with immune 

function, and presented as heat maps. 

 

Tumor immune dysfunction and exclusion (TIDE) 

and estimation of tumor mutational burden (TMB) 

 

Based on the expression profile of TCGA, TIDE  

data of all samples were downloaded from TIDE 
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(http://tide.dfci.harvard.edu/), and TIDE values  

were calculated using R software (“limma”, “ggpubr” 

package) to calculate the TIDE values of samples from 

high and low-risk groups and compare them to assess 

the immune escape ability of different high and low-risk 

groups and visualize them as box plots. 
 

Using the R software (“maftools” package), the TMBsin 

the high and low-risk groups were analyzed based  

on the simple nucleotide variation data downloaded 

from TCGA above, the differences were compared, and 

the different mutation types were displayed, and the  

15 genes with the highest mutation frequencies were 

selected for display and visualized in waterfall plots. 

The relationship between different high and low TMB 

and patient survival time was analyzed using R software 

(“survival”, “survminer” package), and KM curves were 

generated. Also, the relationship between different high 

and low TMB in the high and low-risk groups and 

patient survival time was analyzed and KM curves were 

generated. 
 

RNA extraction and RT-qPCR 
 

The RNA from cell lines and tissues was extracted using 

Trizol (Shanghai Kangwei Biotech, China), chloroform, 

isopropanol, 75% ethanol (Solarbio, Beijing, China), and 

RNase-free water. The extracted RNA was quantified, 

followed by reverse transcription into cDNA using  

a reverse transcription kit (Servicebio, Wuhan, China). 

Subsequently, real-time fluorescence quantitative PCR 

was performed using 2 × SYBR Green PCR Master  

Mix (Servicebio, Wuhan, China). The relative expression 

levels of the target genes were calculated using the 2−ΔΔCt 

method. The experiments were repeated three times 

using different PCR runs, and the average values were 

obtained. β-actin was used as the internal reference gene. 
 

Primer sequences 
 

β-actin F: CATGTACGTTGCTATCCAGGC R: 

CTCCTTAATGTCACGCACGAT. Human-FAM225B 

F: TCGGGATAGTGATGGCAAGC R: 

GCCACCTCTGTGGTCCTAAC. Human-LINC01338 

F: GCCCAGGCTTCCCGATTATT R: 

ATGGGTTTGACCGTCGATGT. Human-SPINT1-

AS1 F: CCGGGTACTTGAGCTCCCTA R: 

TGATCAGCCCGGGAGACTTT. Human-WWC2-

AS2 F: GGGTCGTGTTTGCCCTTAGA R: 

GCCCTAAATGCGGTCAAAGC. Human-ZNF503-

AS1 F: CATTCTCCACCCTGCCACAT R: 

AGGCATCTTGGCAGAAGGAC. 
 

Cell transfection and cell function experiments 
 

FAM225B has been studied in other tumors or  

diseases and is associated with the development of 

nasopharyngeal carcinoma, glioblastoma, etc. [12–15]. 

However, relatively few studies have been conducted in 

renal clear cell carcinoma, so FAM225B was selected 

as the target of the follow-up study, and the sequence 

design for the FAM225B siRNA was as follows: 

 

Si1: ATGCTTTCTGCAAAGAATAATAC 

Si2: TGGTGCATGCATCTTTTCTGC 

Si3: ATGTGTAATGAACATTTAAAATT 

 

Using RNAi technology, transient transfection of 

siRNA was performed in renal cancer cell lines OS- 

RC-2 and 786-O using Lipofectamine 2000 (Invitrogen, 

USA), opti-MEM medium (Life Technologies, USA), 

and other reagents. After culturing the cells under 

optimal conditions, RNA was extracted from the  

cells, and RT-qPCR was performed to determine the 

knockdown efficiency. The above constructed cells 

were inoculated in 96-well plates, and the fluorescence 

values at 450 nm (OD value) of these two cells at  

0 h, 24 h, 48 h, 72 h, and 96 h were measured using 

CCK-8 kit (Solarbio, Beijing, China), to compare the 

cell proliferation ability. 

 

The logarithmic growth phase of the constructed 

transfected siRNA kidney cancer cells OS-RC-2 and 

786-O were inoculated in six-well plates, and when  

the cells grew to 80–90% using a 1 ml pipette tip 

scratch, PBS (Phosphate Buffered Saline) was washed 

followed by the addition of serum-free culture medium, 

photographed by microscopy and recorded for 0 h  

for each subgroup, after which they were placed in a 

37°C, 5% CO2 incubator. The 6-well plates were 

subsequently removed at 24 h to aspirate and discard 

the old medium, and PBS was gently blown to wash 

away the floating cells before adding the serum-free 

medium and continuing to take photographs to record 

the photographs of each subgroup. 

 

Liquid Matrigel matrix gel (Corning, USA) was diluted 

1:9 using RIPM-1640 medium without FBS (Fetal 

Bovine Serum) and double antibodies (Anti-penicillin 

and streptomycin). Afterward, 70 ul of diluted substrate 

gel was taken and spread flat in Transwell chambers in 

24-well plates and left in the incubator for 1 hour to 

allow the substrate gel to solidify. After digestion of  

the cells, the cells were resuspended using 200 ul of 

RIPM-1640 medium without FBS according to the cell 

density, and the cell volume was adjusted to 5 × 104 

cells and placed in the upper chamber. After adding  

600 ul of RIPM-1640 complete medium in the lower 

chamber, they were placed in the cell culture chamber. 

The culture was terminated at 48 h, the chambers were 
removed, and the medium was aspirated and washed 

twice with PBS. The Matrigel matrix gel and cells in the 

chambers were wiped with cotton swabs, and 600 ul of 
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methanol was added to the lower chamber for 30 min. 

600 ul of Giemsa stain was added to the lower chamber 

after aspiration of the methanol, and the cells were 

stained for 30 min. 

 

Statistical analysis 

 

All data were statistically analyzed using R4.1.0 

software (https://www.r-project.org/) and Kaplan-Meier 

survival analysis was used to analyze the differences 

between the two risk groups. Independent samples t-test 

was used to compare the differences between the groups 

and statistical difference was considered at p < 0.05. 

 

Data availability statement 

 

The data supporting this study’s findings are available 

from the corresponding author upon reasonable request. 
 

RESULTS 
 

Acquisition of differentially expressed disulfidptosis-

related lncRNAs 

 

From previous studies, we obtained 13 genes associated 

with Disulfideptosis. Through co-expression analysis, 

we identified 892 lncRNAs that showed co-expression 

relationships with these 13 Disulfideptosis-associated 

genes. The co-expression relationships are depicted in a 

Sankey diagram shown in Figure 1. Subsequently, we 

performed univariate Cox regression analysis on the 

aforementioned lncRNAs and identified 48 lncRNAs 

that were associated with the prognosis of renal clear 

cell carcinoma. The corresponding forest plot is shown 

in Figure 2A. After Lasso regression analysis and 

multifactorial Cox regression analysis (Figure 2B, 2C), 

5 lncRNAs (FAM225B, ZNF503-AS1, SPINT1-AS1, 

WWC2-AS2, LINC01338) emerged as independent risk 

factors for the prognosis of renal clear cell carcinoma. 

The expression relationships of these five LncRNAs 

obtained with 13 genes related to Disulfidptosis were 

shown in Figure 2D. 

 

Development of a prognostic risk model 

 

According to the formula Risk Score = (FAM225B × 

(1.21052350282848)) + (ZNF503-AS1 × 

(−0.413072607271419)) + (SPINT1-AS1 × 

(−0.348131526553965)) + (WWC2-AS2 × 

(−0.289726017312162)) + (LINC01338 × 

(1.00289905657691)). This indicates that FAM225B 

and LINC01338 are highly expressed in the high-risk 

group, while ZNF503-AS1, SPINT1-AS1, and WWC2-

AS2 are lowly expressed in the high-risk group. We 

randomly divided the 533 samples in TCGA into two 

groups (train group with 267 cases and test group  

with 266 cases). The t-test results for the clinical data of 

both groups (Age, Gender, Grade, Stage, T, M, N) are 

presented in Supplementary Table 1. From the table, it 

is evident that there were no significant differences in 

 

 
 

Figure 1. Co-expression of disulfidptosis-associated genes and lncRNAs. 
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all clinical data between the two randomly assigned 

groups (all p > 0.05), indicating satisfactory randomness 

of the two groups. 

 

Prognostic features of risk models 

 

Based on the risk scores obtained from the previous 

risk model, patients were divided into high and low-

risk groups using the median method. The risk  

curves, survival status curves, and risk heatmaps of  

all patients are shown in Supplementary Figure 1A–

1C. It is evident that our risk model effectively 

stratifies patients into high and low-risk groups. As the 

risk score increases, the number of patient deaths also 

increases, which aligns with our expectations. From 

the risk heatmap, it is also evident that FAM225B and 

 

 
 

Figure 2. Screening of lncRNA for independent prognosis. One-way Cox regression analysis (A); Lasso regression analysis (B); 

λ values (C); correlation heat map (D). 
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LINC01338 are positively correlated with the risk  

score, while ZNF503-AS1, SPINT1-AS1, and WWC2-

AS2 are negatively correlated with the risk score.  

This pattern is consistent in both the randomly assigned 

train and test groups, demonstrating the consistent and 

significant performance of the risk model. This internal 

validation of the risk model is shown in Figure 3A–3F. 

 

Clinical features and risk scores 

 

After dividing all samples into high and low-risk groups 

based on the risk scores, Kaplan-Meier survival curves 

were used to compare the overall survival rates and 

progression-free survival rates in the high and low-risk 

groups of all samples. It is evident that both the overall 

survival time (Figure 4A) and progression-free survival 

time (Figure 4B) of the high-risk group are significantly 

lower than those of the low-risk group (all p < 0.001). 

To further validate the findings, in both the train and 

test sets, the high-risk group exhibited significantly 

lower overall survival time (Figure 4C, 4D) compared 

to the low-risk group (all p < 0.001). This indicates that 

the risk model can effectively distinguish patients with 

different survival outcomes, demonstrating its favorable 

predictive performance. 

Nomogram and clinical indicators 

 

To validate whether our constructed prognostic  

model is independent of other clinical characteristics 

(Age, Gender, Grade, Stage) as prognostic factors, we 

performed independent prognostic analysis. The results 

of univariate Cox regression analysis and multivariate 

Cox regression analysis showed that the risk score  

had a significant impact on prognosis, with p < 0.001 

and hazard ratio of 1.079 (1.059–1.098) in univariate 

analysis, and p < 0.001 and hazard ratio of 1.043 

(1.021-1.066) in multivariate analysis. These results  

are presented in Figure 5A, 5B, indicating that our 

constructed prognostic model is independent of other 

clinical characteristics and serves as an independent 

prognostic factor. 

 

Subsequently, we calculated the AUC (Area Under  

the Curve) values of the prognostic model and plotted 

the ROC (Receiver Operating Characteristic) curve.  

The AUC values for 1, 3, and 5-year survival were 

0.756, 0.752, and 0.781, respectively, indicating a high 

predictive value (Figure 5C). The AUC value (Figure 

5D) for the 5-year survival (0.781) is higher compared 

to other clinical characteristics such as Age (0.598), 

 

 
 

Figure 3. Risk curve. Train set (A–C); Test set (D–F). 
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Gender (0.488), Grade (0.680), and Stage (0.717).  

This indicates that our constructed prognostic model 

has a significant advantage over individual clinical 

characteristics in terms of predictive accuracy. 

 

Through Principal Component Analysis (PCA),  

we can observe whether the lncRNAs involved in 

model construction can differentiate patients in the 

high and low-risk groups. From the three-dimensional 

visualization of the PCA results (Figure 6A–6D), it is 

evident that in Figure 6D, patients in the high-risk 

group are positioned in the upper left region of the 

three-dimensional plot, while patients in the low-risk 

group are positioned in the lower right region, with  

a clear boundary. Therefore, the lncRNAs involved in 

model construction can effectively distinguish patients 

in the high and low-risk groups. 

Based on the risk model and related clinical data,  

we constructed a nomogram (Figure 7A). We also 

generated calibration curves for the nomogram at  

1, 3, and 5-year intervals (Figure 7B). It can be 

observed that the three curves are relatively close  

to the reference line, indicating that the nomogram  

can accurately predict the survival period of patients. 

 

To investigate whether the risk model can be applied  

to patients in different clinical subgroups, we selected 

gender, Grade stage, and Stage classification as the 

clinical subgroups. From Figure 8A–8F, it is evident 

that our constructed risk model exhibits significant 

differences in survival probabilities between the high 

and low-risk groups in the FEMALE and MALE 

subgroups (Figure 8A, 8B), G1&2 and G3&4 subgroups 

(Figure 8C, 8D), and Stage I–II and Stage III–IV 

 

 

 
Figure 4. Survival curve. OS (A) and PFS (B) of the total sample. OS of the train set (C) and the test set (D). 

3287



www.aging-us.com 9 AGING 

subgroups (Figure 8E, 8F) (all p < 0.001). This indicates 

that the risk model demonstrates excellent predictive 

performance in patients from different clinical 

subgroups as well. 

 

Functional and pathway enrichment analysis in the 

risk model 

 

The bar plot of the GO analysis (Figure 9A) reveals 

that in terms of Molecular Function (MF), the  

main focuses are on antigen binding and secondary 

active transmembrane transponder activity. In Cellular 

Component (CC), the main focuses are on the apical 

part of the cell and the collagen-containing extracellular 

matrix. In Biological Process (BP), the main focuses 

are on the defense response to bacterium and organic 

anion transport. GO enrichment analysis bubble plot 

(Figure 9B): The outermost circle represents the GO 

enrichment IDs, the second circle represents the number 

of genes associated with each GO term, the third circle 

represents the number of differentially expressed  

genes enriched in each GO term, and the fourth  

circle represents the proportion of enriched genes. The  

redder the color, the more significant the enrichment 

of differentially expressed genes. From the figure, we 

can observe that the gene count enriched in the  

GO term “0071735” is the highest in proportion. For 

KEGG pathway analysis, the bar plot (Figure 9C)  

indicates that the highest enrichment and differential 

expression are primarily observed in pathways such as 

Cytokine-cytokine receptor interaction, Neuroactive  

ligand-receptor interaction, and PI3K-Akt signaling 

pathway. From the circular plot of the KEGG pathway 

analysis (Figure 9D), it is also evident that the results 

are primarily focused on hsa00430 and hsa04610. 

From the GSEA analysis (Figure 9E), it can be 

observed that there are significant differences between 

the high and low-risk groups in terms of Type_II_ 

IFN_Reponse, Type_I_IFN_Reponse, MHC_class_I, 

T_cell_co_stimulation, Inflammation-promoting, CCR, 

 

 
 

Figure 5. Independent prognostic analysis. Univariate analysis (A). Multivariate analysis (B). The ROC curve of the risk model for 1, 3, 

and 5 years (C). The 5-year ROC curve of the risk model in relation to other clinical characteristics (D). 
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and Parainflammation. The calculated TIDE values 

(Figure 9F) are significantly lower in the low-risk group 

compared to the high-risk group (p < 0.0001). This 

finding further indicates that our predictive model can 

effectively distinguish the immune escape capabilities 

of patients in the high and low-risk groups. 

 

Tumor mutational burden (TMB) analysis in the 

risk model 

 

Based on the high and low TMB values, we divided  

the patients into high and low-risk groups (Figure  

10A, 10B). The total mutation frequency in the low- 

risk group was 80.2%, while in the high-risk group,  

it was 78.92%, which is lower than that in the low- 

risk group. In the low-risk group, Nonsense Mutation 

was predominantly observed, while in the high-risk 

group, Missense Mutation was the major type. The top 

15 genes with mutations, ranked by mutation frequency 

from high to low, are VHL, PBRM1, TTN, SETD2, 

BAP1, MTOR, MUC16, DNAH9, KDM5C, DST, 

LRP2, HMCN1, CSMD3, KMT2C, and FBN2. The KM 

curve of TMB in the high and low-risk groups shows 

that patients with low TMB have a higher probability  

of long-term survival. The combined analysis of TMB 

and the risk model score also reveals clear trends in the 

KM curve (Figure 10C). Patients with low TMB and 

low-risk scores tend to have better survival outcomes, 

 

 
 

Figure 6. PCA analysis. All genes (A); Disulfidptosis genes (B); Disulfidptosis lncRNAs (C); Risk lncRNAs (D). 
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while those with high TMB and high-risk scores have 

the poorest prognosis (Figure 10D). 

 

Results of in vitro cell function experiments 

 

The validated expression levels of the five  

selected lncRNAs associated with Disulfideptosis 

(FAM225B, ZNF503-AS1, SPINT1-AS1, WWC2-AS2, 

LINC01338) in five cell lines (HK-2, 786-O, OS-RC-2, 

ACHN, A-498) are shown in Figure 11A–11E. From 

the results, it is evident that FAM225B and WWC2- 

AS2 are highly expressed in multiple tumor cell lines. 

The interference efficiency of the two renal tumor cell 

lines (OS-RC-2, 786-O) is depicted in Figure 11F, 11G.

 

 
 

Figure 7. Construction and validation of nomogram column line plots constructed from risk models. A nomogram integrates 
risk scores and clinical characteristics to predict overall survival at 1, 3, and 5 years (A). Calibration curves for overall survival at 1, 3, and 5 
years (B). *p < 0.05, **p < 0.01, ***p < 0.001. 
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Subsequently, Si1 and Si2 were selected for further 

studies. 

 

The OD values at 450 nm of OS-RC-2 and 786-O cells, 

measured by CCK-8 assay, after interference with Si1 

and Si2 are shown in Figure 11H, 11I. It is evident that 

the proliferation of both cell lines is significantly 

reduced after interference. 

 

In the in vitro cell migration assay, the wound healing 

capacity of OS-RC-2 cells after interference with Si1 

and Si2 (Si1 and Si2 groups) is significantly lower 

 

 
 

Figure 8. Clinical subgroup analysis of the risk model. Gender (A, B). Tumor grading (C, D). Tumor staging (E, F). 
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compared to the control group (NC group) (Figure  

12A, 12B). Similarly, this is also observed in 786-O 

cells (Figure 12C, 12D). These results indicate that  

the decreased expression of the LncRNA associated 

with Disulfideptosis (FAM225B) significantly affects 

the migration ability of both renal cancer cell lines. 

In the cell invasion assay, the invasive capacity of OS-

RC-2 cells after interference with Si1 and Si2 (Si1 and 

Si2 groups) is significantly lower compared to the 

control group (NC group) (Figure 12E, 12F). Similarly, 

this is also observed in 786-O cells (Figure 12G). These 

results indicate that the decreased expression of the 

 

 
 

Figure 9. Functional enrichment analysis. GO analysis (A, B). KEGG pathway analysis (C, D). GSEA analysis (E). Comparison of TIDE 

values between high and low-risk groups (F). *p < 0.05, **p < 0.01, ***p < 0.001. 
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lncRNA associated with Disulfidptosis (FAM225B) 

significantly affects the invasion ability of both renal 

cancer cell lines. 

 

DISCUSSION 
 

Many cancer therapies aim to kill cancer cells  

by inducing apoptosis. However, cancer cells often 

find ways to evade apoptosis, leading to treatment 

resistance and disease relapse. Disulfideptosis, a 

recently discovered form of cell death, may open new 

avenues for cancer diagnosis and treatment strategies. 

Renal clear cell carcinoma is one of the most common 

malignancies globally, characterized by subtle early 

symptoms, high recurrence rates, and a propensity for 

metastasis, which have drawn clinical attention [16]. 

In recent years, the important role of long non-coding 

RNA (lncRNA) in the occurrence and development of 

various cancers has been increasingly recognized [17]. 

Especially certain lncRNAs that are associated with 

Disulfideptosis, their expression and their role in renal 

clear cell carcinoma have not been extensively studied. 

Therefore, their performance and significance in renal 

clear cell carcinoma warrant further investigation. 

 
In this study, we developed a robust prediction  

model that demonstrated satisfactory performance.  

By incorporating relevant risk factors, we generated a 

 

 
 

Figure 10. Tumor mutational burden (TMB) analysis. Waterfall plot of TMB in high and low-risk groups (A, B). Overall survival 

analysis of TMB (C). Survival analysis of TMB in different high and low-risk groups (D). 
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predictive nomogram for clinical application. Our 

prediction model effectively distinguished between 

patients at high and low risk, both in the overall cohort 

and within subgroups, and we observed that patients 

classified as high risk had poorer prognoses. 

Subsequently, functional enrichment analysis was 

 

 
 

Figure 11. Validation of 5 Disulfidptosis-associated lncRNAs. Comparison of RNA expression in renal cancer cells (786-O, OS-RC-2, 
ACHN, A-498) and normal renal proximal tubular epithelial cells (HK-2) (A–E). Validation of knockdown potency of FAM225B (F, G). 
Validation of cellular value added after FAM225B knockdown (H, I). *p < 0.05, **p < 0.01, ***p < 0.001, nsp > 0.05. 
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performed. Through this analysis, we found that the 

lncRNAs associated with Disulfidptosis were enriched 

in functions related to defense response to bacterium, 

apical part of cell, collagen-containing extracellular 

matrix, cytokine-cytokine receptor interaction, and 

other immune-related processes. This suggests their 

 

 
 

Figure 12. Cellular function validation of FAM225B in two cell lines, 786-O, and OS-RC-2. Wound healing assay (A–D). Cell 

invasion assay (E–G). ***p < 0.001. 
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potential as immunotherapeutic targets in renal clear 

cell carcinoma. In the immune cell enrichment analysis, 

we found that the majority of immune cells were 

enriched in the high-risk group, including Type_I_IFN_ 

Response, T_cell_co-stimulation, Parainflammation, 

etc., and there were significant differences between  

the high-risk and low-risk groups (p < 0.01). According 

to previous studies [18], Type_I_IFN_Response and 

CD8(+) T cells play a significant role in immune 

therapy for breast cancer. Type_I_IFN_Response  

and CD8(+) T cells play a significant role in  

immune therapy for breast cancer. Similarly, T_cell_ 

co-stimulation determines the functional outcome of  

T cell receptor (TCR) signaling and plays a critical  

role in T cell biology [19]. These findings collectively 

indicate a strong correlation between lncRNAs related 

to Disulfidptosis and the immune response. 

 

The five lncRNAs (FAM225B, ZNF503-AS1, SPINT1-

AS1, WWC2-AS2, LINC01338) were identified as 

having the independent predictive ability through 

single-factor Cox regression analysis, Lasso regression 

analysis, and multi-factor Cox regression analysis. 

FAM225B is associated with DNA methylation in 

human follicles [12]. Moreover, FAM225B is highly 

expressed in most tumors, Dai et al. found that the long 

non-coding RNA FAM225B promotes the proliferation 

and metastasis of nasopharyngeal carcinoma cells [13]. 

Additionally, FAM225B can serve as a prognostic 

biomarker for glioblastoma and may be a potential 

therapeutic target for glioblastoma treatment [14]. It can 

potentially be a therapeutic target for glioblastoma.  

For ZNF503-AS1, high levels of ZNF503-AS1 in 

plasma are associated with a high prevalence of diabetic 

retinopathy [20]. Moreover, ZNF503-AS1 can also 

serve as a potential biomarker for breast cancer and 

colorectal cancer [21, 22]. In previous studies, SPINT1-

AS1 has been confirmed as a potential biomarker for 

renal clear cell carcinoma [23], Furthermore, it has also 

been identified as an independent prognostic indicator 

in pituitary adenoma, colorectal cancer, esophageal 

squamous cell carcinoma, and melanoma [24–27]. 

WWC2-AS2 has been identified as an immune-related 

lncRNA in cervical cancer [28]. LINC01338 is a 

member of N7-methylguanosine-related lncRNAs in 

bladder cancer [29], It can also be used to accurately 

predict the prognosis of bladder cancer patients, 

providing strong guidance for clinicians in developing 

better-individualized precision treatment strategies. 

 
TIDE (http://tide.dfci.harvard.edu/) stands for tumor 

immune dysfunction and rejection. It is a computational 

framework for assessing the likelihood of tumor 

immune escape in the gene expression profile of tumor 

samples [30]. In our study, the TIDE values of samples 

in the high-risk group were significantly higher than 

those in the low-risk group (p < 0.0001), indicating a 

higher likelihood of immune escape in the tumor cells 

of the high-risk group. Moreover, in subsequent cell 

experiments, the knockdown of FAM225 resulted in 

significant reductions in proliferation, migration, and 

invasion abilities in Kidney tumor cells (786-O and  

OS-RC-2). Tumor Mutational Burden (TMB) is a 

measure of the number of acquired (non-inherited) 

genetic mutations in tumor cells. TMB is considered a 

biomarker that can predict the response of tumors to 

immunotherapy, particularly in predicting response to 

immune checkpoint inhibitors such as PD-1/PD-L1 

inhibitors and CTLA-4 inhibitors [31, 32]. Our model 

predicts a smaller tumor mutational load in patients  

in the high-risk group and differs across subgroups, 

suggesting that different high- and low-risk groups may 

have different immune checkpoints. 
 

Stress-induced disulfide-driven Disulfidptosis is a 

regulated form of cell death (RCD) [33], For example, 

ferroptosis is an iron-dependent form of regulated  

cell death (RCD) induced by lipid peroxidation [34]. 

Disulfidptosis primarily occurs in cancer cells with high 

expression of SLC7A11, which results from an 

inadequate supply of NADPH to support the reduction 

of cystine to cysteine, leading to disulfide stress. Recent 

studies have found that overexpression of SLC7A11 

promotes tumor growth, in part because it inhibits  

iron apoptosis, a regulated form of cell death induced  

by excessive lipid peroxidation [35]. Some recent 

studies of SLC7A11 molecules bound to nanomaterials 

have also provided further insight into the fact that 

SLC7A11 molecules are closely related to iron  

death [36]. Identification and characterization of cell 

death mechanisms not only enhance our fundamental 

understanding of cellular homeostasis but also provide 

important insights for the treatment of various diseases, 

including cancer [37–39]. Although many questions 

remain to be investigated, the predictive power of the 

predictive model composed of its associated lncRNAs 

for renal clear cell carcinoma will be evident to all. 

 

CONCLUSION 
 

We have constructed and validated a prognostic  

model based on lncRNAs associated with Disulfidptosis.  

This model includes the lncRNAs FAM225B, ZNF503-

AS1, SPINT1-AS1, WWC2-AS2, and LINC01338. The 

predictive model serves as an independent prognostic 

factor for clear cell renal cell carcinoma (ccRCC), and it 

is a good predictor of the high and low risk of a patient’s 

prognosis and can differentiate between the size of  

the mutational load of tumor cells and immune escape 

ability in high and low risk patients. The predictive 

model provides new directions for personalized treatment 

strategies for patients with ccRCC. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Risk curves for all patients (A), survival curves (B), and risk heat map (C). 
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Supplementary Table 
 

Supplementary Table 1. Results of t-test for clinical data of train and test sets. 

Covariates Type Total Test Train P-value 

Age 
≤65 349 (65.48%) 177 (66.54%) 172 (64.42%) 

0.6715 
>65 184 (34.52%) 89 (33.46%) 95 (35.58%) 

Gender 
Female 188 (35.27%) 91 (34.21%) 97 (36.33%) 

0.6735 
Male 345 (64.73%) 175 (65.79%) 170 (63.67%) 

Grade 

G1 14 (2.63%) 7 (2.63%) 7 (2.62%) 

0.4156 

G2 229 (42.96%) 114 (42.86%) 115 (43.07%) 

G3 206 (38.65%) 110 (41.35%) 96 (35.96%) 

G4 76 (14.26%) 32 (12.03%) 44 (16.48%) 

Unknown 8 (1.5%) 3 (1.13%) 5 (1.87%) 

Stage 

Stage I 267 (50.09%) 136 (51.13%) 131 (49.06%) 

0.2856 

Stage II 57 (10.69%) 25 (9.4%) 32 (11.99%) 

Stage III 123 (23.08%) 68 (25.56%) 55 (20.6%) 

Stage IV 83 (15.57%) 36 (13.53%) 47 (17.6%) 

Unknown 3 (0.56%) 1 (0.38%) 2 (0.75%) 

T 

T1 273 (51.22%) 138 (51.88%) 135 (50.56%) 

0.9687 
T2 69 (12.95%) 33 (12.41%) 36 (13.48%) 

T3 180 (33.77%) 90 (33.83%) 90 (33.71%) 

T4 11 (2.06%) 5 (1.88%) 6 (2.25%) 

M 

M0 422 (79.17%) 214 (80.45%) 208 (77.9%) 

0.2588 M1 79 (14.82%) 34 (12.78%) 45 (16.85%) 

Unknown 32 (6%) 18 (6.77%) 14 (5.24%) 

N 

N0 240 (45.03%) 118 (44.36%) 122 (45.69%) 

0.8718 N1 16 (3%) 7 (2.63%) 9 (3.37%) 

Unknown 277 (51.97%) 141 (53.01%) 136 (50.94%) 
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