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INTRODUCTION 
 

Glioma is one of the most common primary solid 

tumors in the central nervous system, which leads to a 

serious health burden in terms of morbidity and 

mortality. The high-grade glioma (HGG, WHO grade 

III and IV tumors) has a strong degree of differentiation, 

invasion, and migration [1], and it generally causes a 

poor prognosis of patients with a median survival for 

grade IV glioma of 16.0 months [2]. Especially, the 

multifocal HGG shows the most unfavorable prognosis. 

The current treatment strategies in clinical for HGG 

include radiotherapy, temozolomide chemotherapy, and 

gross total resection [3]. However, the best treatment 

approach has not been established and the clinical 

outcome of HGG patients achieved limited improve-

ment [4]. In addition, the occurrence of chemo- and 

radiotherapy resistance has become a challenge for 

developing the progress of glioma treatments. 

Identification of the regulatory mechanism and 

formulation of effective treatments for HGG is 

imperative. It is urgent to explore useful molecular 

signatures to improve the survival of HGG patients.  

 
The cluster of differentiation 86 (CD86), also called B7-

2, encodes a type I membrane protein that is a member 

of the immunoglobulin superfamily. CD86 is expressed 

alone on human monocytes, and it is the ligand for two 
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proteins at the cell surface of T cells, cytotoxic T-

lymphocyte-associated protein 4 (CTLA4) and CD28 

antigen [5]. The binding of CD86 with CD28 antigen 

can activate the T-cell, but CTLA4 can compete with 

CD28 for binding CD86 on antigen-presenting cells to 

limit T-cell activation and diminish the immune 

response [6]. However, CD86 has a different interaction 

with both receptors (CD86-CD28 ~20μM and CD86-

CTLA-4 ~2μM) [7]. It follows that CD86-CTLA4 

binding is closely related to immune suppression. 

Therefore, anti-CTLA4 immunotherapy, which impedes 

the CD86-CTLA4 binding, contributes to the release of 

the T cell activity inhibition, enhancement of the 

immune response, and improvement of the patient’s 

prognosis. A better understanding of the regulation of 

CD86 supports the development of biomarkers for 

response prediction to anti-CTLA4 immunotherapy [8]. 

CD86 itself has been regarded as a potential target for 

immunotherapy [9, 10]. Previous studies also suggested 

that CD86 may interfere with the immune system by 

activating and depleting immune functions, which 

might be the reason why CD86 positivity was related to 

the worse prognosis [11]. In addition, CD86 was an 

unfavorable prognostic biomarker in lower-grade 

glioma (LGG) [12] and glioblastoma (GBM) patients 

[13]. It follows that CD86 is an important biomarker 

commonly associated with prognosis and immuno-

therapy. Detection and prediction of CD86 has profound 

clinical value. 

 

At present, few researchers reported the value of CD86 

in HGG. In this study, we first evaluated the potential of 

CD86 as a molecular biomarker in HGG. The 

expression pattern and prognostic value of CD86 in 

HGG were assessed. We also explored the possible 

regulatory mechanism associated with CD86 involved 

in HGG progression. Further, this study innovatively 

developed a non-invasively prediction model on the 

CD86 expression based on the radiomics features of 

MRI images. This study aims to provide a promising 

biomarker for HGG and develops a non-invasive 

prediction method, which contributes to evaluating 

patients’ prognosis and immunotherapy response, as 

well as stratifying the risk populations with poor 

prognosis, guiding neoadjuvant immunotherapy, and 

improving their quality of life. 

 

MATERIALS AND METHODS 
 

Data source of HGG patients and expression 

analysis on CD86  

 

This study first performed the pan-cancer analysis to 

explore the expression level of CD86 in tumor and 

normal tissues. Then the expression of CD86 in patients 

with HGG was explored. The HGG patients were 

selected from the GBM and LGG datasets in the  

Cancer Genome Atlas (TCGA) database (https://portal. 

gdc.cancer.gov/). A total of 1114 samples of 

TCGA_GBM and TCGA_LGG were obtained from the 

TCGA database, and the inclusion criteria of HGG 

patients were as follows: 1) had the data of tumor grade; 

2) WHO grade III and grade IV; 3) had the data of 

survival time and survival status; 4) survival time≥1 

month; 5) had the data of age, gender, IDH mutation 

status, Chr_1p_19q codeletion, MGMT methylation 

status, radiotherapy history and chemotherapy history; 6) 

primary tumor and had gene expression RNA-Seq data. 

Finally, 298 patients who had the above complete 

information were enrolled in our further analysis. The 

baseline data of 298 HGG patients was presented in 

Table 1.  

 

Then the expression difference of CD86 in normal and 

HGG groups was analyzed. In addition, the expression 

pattern of CD86 in subgroup populations of patients 

with HGG was determined after stratifying patients by 

clinical characteristics, including different age (<60, 

≥60), gender (male, female), IDH mutation status 

(wildtype, mutant), Chr_1p_19q codeletion (none-

codel, codel), MGMT methylation status (unmethylated, 

methylated), radiotherapy history (yes, no) and 

chemotherapy history (yes, no). Further, all the HGG 

patients were divided into 2 groups according to CD86 

expression level (high, low), and the association 

between CD86 expression and the above clinical 

characteristics was evaluated by Logistic regression 

analysis. 

 

Prognostic value of CD86  

 

The prognostic value of CD86 in HGG was then 

explored. Firstly, all HGG patients were divided into 

CD86 high and low expression groups according to the 

best cut-off value of CD86 expression level by maxstat 

R package. Then the Kaplan-Meier analysis by R 

survival package and log-rank test were performed to 

explore the association of CD86 expression with the 

overall survival (OS) time of patients. The receiver 

operating characteristic curve (ROC) analysis by R 

package pROC was used to assess the prediction 

performance of CD86 on OS. In addition, we also 

verified the prognostic value of CD86 in HGG using the 

data from the Chinese Glioma Genome Atlas (CGGC) 

database (http://www.cgga.org.cn/).  

 

To further disclose the prognostic value, we performed 

a subgroup survival analysis on CD86 regarding 

different clinical characteristics based on TCGA data. 
Cox regression analyses by survival R package were 

then used to explore the association of variables with 

OS and the independent prognostic value of CD86. We 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://www.cgga.org.cn/


www.aging-us.com 15404 AGING 

Table 1. The baseline characteristics of HGG patients stratified with CD86 expression. 

 Subgroup Total (N=298) Low (n=150) High (n=148) P 

Age (year) 
<60 197 108 89 0.041 

≥60 101 42 59  

Gender 
female 120 61 59 0.982 

male 178 89 89  

Grade 
III 170 108 62 <0.001 

IV 128 42 86  

IDH status 
wildtype 169 61 108 <0.001 

mutant 129 89 40  

Chr_1p_19q 
non-codel 248 102 146 <0.001 

codel 50 48 2  

MGMT promoter status 
unmethylated 118 38 80 <0.001 

methylated 180 112 68  

Radiotherapy 
no 79 37 42 0.552 

yes 219 113 106  

Chemotherapy 
no 70 41 29 0.150 

yes 228 109 119  

 

also transformed the CD86 expression value into the 

ordinal variable and explored the association between 

CD86 expression groups and OS with or without 

adjusting confounders by Logistic regression analysis. 

 

Comprehensive nomogram model establishment 

 

Based on the results of multivariable Cox regression 

analysis, we also established a comprehensive 

nomogram model containing independent factors 

(including CD86) and obtained the risk score of each 

patient by the rms R package. The Kaplan-Meier 

analysis and log-rank test were used to explore the 

survival difference between high and low risk score 

groups. ROC and Decision Curve Analysis (DCA) 

analyses were performed to evaluate the performance of 

the nomogram model in HGG. 

 

Pathway enrichment analysis on CD86 

 

Due to the importance of CD86 in HGG, this study 

subsequently explored the potential regulatory 

mechanism associated with CD86. The 

c2.cp.kegg.v7.4.symbols.gmt was obtained from the 

Molecular Signature Database (http://www.gsea-

msigdb.org/gsea/msigdb/index.jsp). All patients were 

divided into high and low expression groups according 

to the best cut-off value of CD86 expression value, and 

then Gene set enrichment analysis (GSEA) was used to 

evaluate the significant pathway enriched in 2 groups. 
Further, a single sample Gene Set Enrichment Analysis 

(ssGSEA) algorithm was performed to quantify the 

significant pathway score of each sample in HGG. The 

correlation between CD86 and pathway score was 

explored. 

 

Immune infiltration analysis on CD86 

 

This study also explored the correlation of CD86 

expression with immune infiltrates in HGG. Through 

the gene expression profile, we obtained the immune 

score of 22 immune cells by the CIBERSORT 

algorithm. The Pearson method was used to assess the 

correlation of CD86 expression level with the 

abundance of immune cells. Further, the immune cells 

with significant correlation with CD86 were  

then selected for comparing the difference in 

infiltration level between CD86 high and low 

expression groups. 

 

The source of radiomics data 

 

Due to the potential of CD86 as an important biomarker 

in HGG, we innovatively explored the possibility of 

radiomics characteristics of MRI images for predicting 

CD86 expression without invasiveness. A total of  

458 patients with MRI images in TCGA_GBM  

and TCGA_LGG datasets were obtained from  

the Cancer Imaging Archive (TCIA) (https:// 

public.cancerimagingarchive.net/nbia-search/) database. 

The inclusion criteria of images were as follows: 1) 

enhanced MRI CE-T1WI images; 2) preoperative 

images; 3) had sufficient quality; 4) had corresponding 
TCGA data. Finally, 89 HGG patients with complete 

TCGA data and MRI images were selected for further 

radiomics analysis.  

http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://public.cancerimagingarchive.net/nbia-search/
https://public.cancerimagingarchive.net/nbia-search/
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Region of interest segmentation and features 

extraction of MRI images 

 

Two experienced radiologists, blinded to the clinical 

data of the patients, performed region of interest (ROI) 

segmentation using 3D Slicer software. Then the open-

source Python package PyRadiomics was used to 

extract the radiomic features. The extracted features 

included (1) shape-based features, such as three-

dimensional size and shape of the ROI; (2) first-order 

features, describing the distribution of the voxel 

intensities within the ROI using commonly used and 

basic metrics; and (3) texture features, including the 

gray-level co-occurrence matrix (GLCM), gray level 

dependence matrix (GLDM), gray-level run-length 

matrix (GLRLM), gray-level size-zone matrix 

(GLSZM), neighboring gray-tone difference matrix 

(NGTDM). In total, 107 radiomics features were 

extracted from each HGG image. The intraclass 

correlation efficient (ICC) was performed to evaluate 

the consistency of the (ROI) segmentation by two 

physicians. Finally, 84 radiomics features with ICC≥0.8 

were selected for further analysis.  

 

Radiomics model establishment and performance 

validation 

 

Before model establishment, 89 HGG patients with 

complete TCGA data and MRI images were assigned to 

the training set and validation set according to the 6:4 

ratio, and their baseline distribution between the training 

set and validation set had no difference. Subsequently, a 

radiomics model was constructed in the training set. To 

determine the more important features among 84 

radiomics features, we used the mRMR (Maximum 

relevance, minimum redundancy) algorithm by mRMRe 

R package to filter radiomics features among them. After 

mRMR analysis, 20 radiomics features were identified. 

Subsequently, we performed RFE (Recursive feature 

elimination) algorithm on 20 features by caret package to 

obtain the optimal feature sets. RFE analysis can rank all 

the radiomics features and gradually remove the less 

important factors. After RFE analysis, the optimal features 

were determined and used for the further prediction model 

establishment. 

 

Further, we used the optimal features to construct the 

radiomics model for predicting CD86 expression in the 

training set. Support Vector Machine (SVM) and 

Logistic regression (LR) were the common algorithms 

to establish the machine learning model in recent 

studies [14–16]. Therefore, this study only used these 2 

methods to develop the prediction model based on the 
radiomics features. SVM and LR algorithms were 

performed with caret and glm R packages, respectively, 

and the variables’ importance in the two models was 

assessed. Further, the radiomics score (RS) integrating 

the optimal features in 2 models was calculated. 

Calibration curve, ROC, precision-recall (PR) curve, 

and DCA were performed to evaluate the performance 

of 2 radiomics models in the training set. Further, ROC, 

PR, and DCA were also performed in the validation set 

to assess the stability of our established models. Further, 

the RS between CD86 high and low expression groups 

was also compared based on the whole population. 

 

Comprehensive model establishment containing 

radiomics score and clinical characteristics  
 

This study further explored the clinical value of the 

radiomic model in HGG. Based on the RS from the 

SVM method, the Kaplan-Meier method and log-rank 

test were performed to explore the survival difference 

between RS high and low groups. The multivariable 

Cox regression analysis was conducted to identify the 

independent factors associated with the OS among RS 

and clinical characteristics. Then the significant 

independent factors were enrolled into the establishment 

of a comprehensive nomogram model. ROC and 

Calibration curves were performed to evaluate the 

performance of the comprehensive model for predicting 

the prognosis of HGG patients.  

 

Statistical analysis 

 

The data used in this study were analyzed with SPSS 

software and R packages. The t-test and χ2 test were used 

to compare the quantitative and qualitative data between 

the 2 groups, respectively. The association of CD86 with 

clinical characteristics and death risk was analyzed with 

Logistic regression. The Pearson method was used to 

explore the correlation between CD86 expression and the 

infiltration level of immune cells. The survival difference 

of the Kaplan-Meier curve was compared with the log-

rank test. Univariable Cox regression analysis was used to 

explore the correlation of variables with OS time, and 

multivariable Cox regression analysis was used to 

determine the independent factors. P value<0.05 was 

considered as a statistically significant difference. 

 

Availability of data and materials 

 

The dataset used and/or analyzed during the current 

study is available from the corresponding author on 

reasonable request. 

 

RESULTS 
 

The expression of CD86 

 

This study first explored the expression of CD86 in 

human cancers. The pan-cancer analysis showed that 
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CD86 was aberrantly expressed in most cancers 

compared with that in normal tissues (Figure 1A). 

Regarding HGG, CD86 was significantly upregulated in 

tumor tissues (Figure 1B, P<0.001). We also compared 

the expression difference of CD86 among HGG patients 

based on different clinical characteristics, finding that 

the expression of CD86 showed no difference in 

different genders, with or without radiotherapy and 

chemotherapy groups (all P>0.05). Higher expression 

was significantly observed in patients with age≥60 

years, non-codel of Chr_1p_19q, unmethylated MGMT 

promoter, wildtype IDH, and grade IV (all P<0.05). 

Logistic regression analysis further indicated the 

correlation of CD86 with these characteristics (Table 2).  

 

 
 

Figure 1. The expression analysis of CD86 mRNA. The expression difference of CD86 in (A) pan-cancer, and (B) HGG tissues.  
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Table 2. The association of CD86 with clinical characteristics among HGG patients. 

 β OR (95%CI) P 

Age (≥60 vs <60) 0.585 1.795 (1.101, 2.926) 0.019 

Gender (female vs male) -0.105 0.900 (0.564, 1.436) 0.658 

Grade (IV vs III) 1.440 4.222 (2.582, 6.906) <0.001 

IDH (mutant vs wildtype) -1.442 0.236 (0.144, 0.389) <0.001 

Chr_1p_19q codeletion (codel vs non-codel) -3.378 0.034 (0.008, 0.144) <0.001 

MGMT (methylated vs unmethylated) -1.298 0.273 (0.167, 0.447) <0.001 

Radiotherapy (yes vs no) 0.526 1.692 (0.975, 2.936) 0.061 

Chemotherapy (yes vs no) -0.133 0.875 (0.522, 1.467) 0.613 

Abbreviation: OR, odds ratio; CI, confidence interval. 

 

The prognostic value of CD86 

 

This study further assessed the potential clinical value of 

CD86 from the aspect of prognostic impact. The survival 

analysis showed that high expression of CD86 was 

significantly related to the poor OS time of HGG patients 

(Figure 2A, HR=2.96, P<0.001). The ROC analysis 

showed the prediction ability of CD86 on the 1, 3, and 5-

year overall survival. We also used the data of CGGA to 

verify the clinical value of CD86 in HGG, and the results 

were consistent with that of TCGA (Figure 2B). These 

results confirmed the clinical value of CD86 in HGG.  

 

We also assessed the prognostic value of CD86 on the 

overall survival in different subgroups based on TCGA 

data. Survival analysis further showed that CD86 high 

expression was significantly associated with poor 

prognosis in all subgroups (Figure 3, all HR>1, all 

P<0.05). These results indicated that CD86 can 

favorably distinguish the patient’s prognosis.  

 

To further verify the prognostic value of CD86, we 

performed a Cox regression analysis. The univariate 

Cox regression analysis (Table 3) showed that 7 

variables including CD86 (HR=1.604, P<0.001) were 

significantly related to the OS of HGG patients. We 

then enrolled the variables with P<0.05 into the 

multivariable Cox regression analysis, finding that 

CD86 was independently related to the prognosis of 

HGG patients (HR=1.213, P=0.035). We then translated 

the CD86 expression value into a qualitative variable 

and explored the correlation of the CD86 group with 

patients’ death risk, finding that the death risk of HGG 

patients in the crude model increased with the increase 

of CD86 expression (Table 4, P for trend<0.001). After 

adjusting the confounders of age and gender, the 

correlation was still observed (P for trend=0.002). 

Especially when the expression of CD86 was larger 
than 3.745, HGG patients had twice as death risk as 

these patients with CD86 expression less than 2.678 

(OR=2.657, P=0.002).  

Comprehensive nomogram model establishment 

containing CD86 and clinical characteristics  

 

Based on the multivariable Cox regression analysis,  

we established a comprehensive nomogram model 

containing the independent factors associated with the 

OS of patients. The nomogram analysis showed that the 

comprehensive model had 0.1-0.95, 0.05-0.95, and 

0.05-0.9 probabilities for predicting the 1, 3, and 5-year 

survival, respectively (Figure 4A). Overall C-index 

value of nomogram model was 0.819 (95%CI: 0.782-

0.855, P<0.001). The risk score of the nomogram model 

was significantly related to the OS, and patients with 

higher risk scores had poorer prognoses (Figure 4B, 

HR=10.82, P<0.001). The ROC and DCA analyses 

showed that risk score had favorable prediction 

performance (Figure 4C, 4D).  

 

Potential mechanism exploration of CD86 

 

The above analyses have disclosed the potential of CD86 

as an important biomarker in HGG, and we then predicted 

the possible regulatory mechanism associated with CD86. 

The GSEA enrichment analysis indicated that CD86 was 

significantly related to the pathway of natural killer (NK) 

cell-mediated cytotoxicity (Figure 5A, P<0.001), and this 

way was enriched in the high expression class. We then 

performed the single sample GSEA and obtained the 

score of the natural killer cell-mediated cytotoxicity 

pathway in each sample, finding that the pathway score 

was positively associated with CD86 expression in HGG 

patients (Figure 5B, P<0.05). The enrichment analysis 

showed that CD86 might be related to immunity.  

 

To explore the indicative roles of CD86 on the tumor 

microenvironment (TME), CIBERSORT was adopted 

to evaluate the relative proportion of 22 kinds of 

immune cells. The analysis indicated that CD86 
expression showed a negative correlation with the 

infiltration level of Plasma_cells, T_cells_CD8, 

T_cells_CD4_naïve, T_cells_follicular_helper, NK_ 
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cells_activated, and Dendritic_cells_resting, but 

positive correlation with Monocytes infiltration (Figure 

6A, all P<0.05). Further comparison analysis (Figure 

6B) found that the CD86 high expression group had 

higher infiltration of Monocytes (P<0.001), but lower 

infiltration of the antitumor immune cell of 

NK_cells_activated (P=0.02). It followed that CD86 

might be significantly involved in the tumor immune 

microenvironment in HGG. 

 

Radiomics features extraction and prediction model 

establishment 

 

The above results have disclosed the potential of CD86 

as an immune and prognostic biomarker in HGG. 

Detection and prediction of CD86 can help us to 

monitor disease progression and evaluate the immune 

response. However, the detection of CD86 was an 

invasive. Therefore, the innovative point of this study is 

the construction of a noninvasive radiomics model for 

predicting CD86 expression. We used 2 common 

modeling approaches to evaluate the application of the 

model with radiomics features.  

 

A total of 89 HGG patients with MRI images and 107 

radiomics features were enrolled in the analyses. The 

patients were first divided into a training set and a 

validation set according to the 6:4 ratio. Then we 

developed a model based on the radiomics features for 

predicting the CD86 expression in the training set. To 

filter effective features among all the radiomics 

features, the mRMR algorithm was initially performed 

and 20 radiomics features were identified. Following by 

RFE algorithm, 5 most important features were finally 

 

 
 

Figure 2. The prognostic value of CD86 in HGG regarding the overall survival time. Kaplan-Meier analysis and ROC analysis based 
on the data from (A) TCGA and (B) CGGA databases. Abbreviation: HR, Hazard ratio; CI, confidence interval; AUC, area under curve.  
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determined, including original ngtdm Contrast,  

original glcm Maximum Probability, original  

glszm GrayLevelNonUniformity, original gldm 

DependenceNonUniformity, original shape Maximum-

2DDiameterColumn (Figure 7A). Further, we 

established 2 radiomics models with 5 features for 

predicting CD86 expression by common SVM and LR 

methods, respectively. The Calibration curves showed 

that the predicted probabilities of 2 models have 

favorable consistency with actual probabilities (Figure 

7B, 7D). The importance of 5 variables in 2 models was 

assessed and presented in Figure 7C, 7E.  

 

Further, this study evaluated the prediction performance 

of 2 models in the training set. ROC analysis (Figure 

8A, 8B) indicated that the SVM model has the same 

prediction ability as the LR model both in training 

(AUC: 0.769 vs 0.767) and validation sets (AUC: 0.707 

vs 0.703). PR curve showed that AUC among the 2 

models was similar (0.788 vs 0.797). DCA curve 

showed that both 2 models achieved more clinical net 

benefit. We also performed the ROC, PR, and DCA to 

evaluate the model’s stability for predicting the CD86 

expression in the validation set (Figure 8A, 8B), finding 

that the performance of established models by SVM and 

LR in the validation set was similar with that in the 

training set. These results indicated the superiority and 

stable performance of the radiomics model established 

with 5 features to predict the CD86 expression. Further, 

we calculated the radiomics score (RS) according to 5 

features in each patient, finding that RS in the CD86 

high expression group was significantly higher than that 

in the low expression group in the 2 models (Figure 8C, 

all P<0.001).  
 

To further explore the clinical value of the radiomics 

model in HGG, we analyzed the association of RS with 

prognosis in HGG. Due to the performance similarity of 

SVM and LR, we just only evaluate the clinical value of 

SVM model. Kapan-Meier analysis indicated that a 

higher RS was related to the shorter OS time (Figure 

9A, P<0.001). We then integrated the RS and 

significant independent prognostic factors, and 

constructed a comprehensive nomogram model (Figure 

9B), finding that the comprehensive model has good 

predicted probability (Figure 9C). ROC analysis 

indicated that the nomogram model can favorably 

predict the 1, 3, and 5-year survival of HGG patients 

(Figure 9D).  
 

DISCUSSION 
 

The importance of CD86 as a biomarker in human 

cancers has been disclosed in previous studies. 

However, its role in HGG was rarely reported. The 

present study suggested that CD86 was highly 

 

 
 

Figure 3. The Kaplan-Meier survival analysis of CD86 in different subgroups among HGG patients. Abbreviation: HR, Hazard 
ratio; CI, confidence interval. 
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Table 3. Cox regression analysis about overall survival on CD86 and clinical characteristics. 

 Univariate Multivariate 

 HR (95%) P HR (95%) P 

CD86 1.604 (1.368, 1.880) <0.001 1.213 (1.014, 1.451) 0.035 

Age (≥60 vs <60) 2.633 (1.887, 3.674) <0.001 1.162 (0.799, 1.689) 0.433 

Gender (female vs male) 0.807 (0.569, 1.144) 0.228   

Grade (IV vs III) 9.012 (6.085, 13.348) <0.001 6.360 (4.033, 10.030) <0.001 

IDH (mutant vs wildtype) 0.174 (0.115, 0.265) <0.001 0.496 (0.285, 0.862) 0.013 

Chr_1p_19q (non-codel vs codel) 0.185 (0.093, 0.369) <0.001 0.681 (0.286, 1.622) 0.386 

MGMT (methylated vs unmethylated) 0.355 (0.253, 0.497) <0.001 1.109 (0.756, 1.628) 0.595 

Radiotherapy (yes vs no) 1.232 (0.826, 1.838) 0.306   

Chemotherapy (yes vs no) 0.549 (0.389, 0.775) 0.001 0.421 (0.292, 0.608) <0.001 

Abbreviation: HR, Hazard ratio; CI, confidence interval. 

 

Table 4. The correlation between CD86 and the death risk of patients. 

Group 
Crude model Adjusted model 

OR (95%CI) P OR (95%CI) P 

<2.678 reference  reference  

2.678-3.745 1.511 (0.855, 2.672) 0.155 1.535 (0.845, 2.790) 0.159 

>3.745 2.886 (1.619, 5.146) <0.001 2.657 (1.448, 4.876) 0.002 

P for trend 1.699 (1.272, 2.268) <0.001 1.629 (1.203, 2.207) 0.002 

Adjusted model: with the adjustment of age and gender. Abbreviation: OR, odds ratio; 
CI, confidence interval. 

 

expressed in HGG and it was negatively correlated with 

OS among HGG patients. We also revealed the 

potential molecular mechanism and immune 

microenvironment associated with CD86. Our study 

initially disclosed the significant clinical value of CD86 

in HGG. 

 

Several studies have revealed the role of CD86 among 

glioma patients. Qiu et al. [12] found that higher 

expression of CD86 was an independent prognostic 

indicator for the unfavorable OS of LGG patients by 

analyzing TCGA, CGGA, as well as their local datasets. 

Besides, Ahmed et al. [17] suggested that higher CD86 

expression was an independent prognostic factor for 

shorter progression-free survival among newly 

diagnosed GBM using the TCGA dataset, although it 

was not significantly correlated with OS. Parney et al. 

found that CD86/granulocyte-macrophage colony-

stimulating factor-transduced glioma-derived cells 

combined with wild type produced increased 

cytotoxicity of peripheral blood mononuclear cells, 

which may help determine an optimal glioma 

immunogene therapy strategy [18]. Cai et al. found that 

CD86 was significantly higher in the high glioma-

associated stromal cell (GASC) group and showed a 

positive correlation with the GASC score in all glioma 

populations and the HGG population [19]. The study 

also suggested that CD86 may stimulate glioma 

malignancy. In our research, we found that CD86 was 

upregulated in HGG compared with the normal group, 

further, its expression was higher in grade IV than in 

grade III patients. These results implied that the 

increase of CD86 expression was positively related to 

the disease aggravation, and CD86 may be regarded as a 

monitoring factor in HGG progression. In addition, 

higher CD86 expression was related to shorter OS time 

in overall HGG or subgroup patients, and it can 

independently predict the prognosis of HGG patients. 

With the increase in the CD86 expression level, the 

death risk of HGG patients increased. These researches 

indicated that CD86 might be a promising biomarker in 

HGG. Monitoring CD86 can help us to evaluate the 

disease progression and stratify the risk populations 

with poor prognosis, which contributes to providing 

individualized treatment plans for patients and 

improving their quality of life. 

 

CD86, as the ligand for CTLA4 at the cell surface of T 

cells, could inhibit the activity of T cells by engagement 

with CTLA4 [20], and similarly, CTLA4 can also 

capture CD86 [21]. Therefore, CD86 level was 

significantly associated with the activity of T cells and 
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Figure 4. Assessment of comprehensive nomogram model. (A) Establishment of nomogram model. (B) Kaplan-Meier analysis, (C) ROC 
analysis; and (D) DCA analysis on the risk score from the nomogram model. Abbreviation: HR, Hazard ratio; CI, confidence interval. 

 

 
 

Figure 5. The pathway enrichment analysis in HGG. (A) GSEA analysis on CD86. (B) Relation between the ssGSEA score of each sample 
and CD86 expression level.  
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the anti-CTLA4 immunotherapy response. Immuno-

therapy has become a promising strategy for the 

treatment of cancers, and it can penetrate the blood-

brain barrier [22]. However, these clinical trials have 

indicated limited efficacy in glioma. A recent study 

provided a novel synergic immunotherapeutic strategy 

that combined immune checkpoint blockade treatment 

with ferroptosis inhibition in glioma [23]. Therefore, 

CD86 and ferroptosis inhibition may be a potentially 

useful strategy in the treatment of HGG, which can be 

regarded as new research direction associated with 

CD86 in HGG. Our study also found that CD86 was 

significantly related to the NK cell-mediated 

cytotoxicity. Wu et al. found a strong association 

between NK cell abundances and immune checkpoint 

proteins of CD86 in hepatocellular carcinoma [24]. 

Lichtenegger et al. found that CD86 was a key player 

for T helper 1 polarization and NK cell activation by 

Toll-like receptor-induced dendritic cells [25]. Harnack 

et al. found that the human NK-like cell line YT could 

be useful in the immunotherapy of patients with CD86 

(+) multiple myeloma [26]. Peng et al. found that 

ligation of CD86 with CTLA4Ig significantly increased 

the ability of NK cells to kill tumor cells [27]. These 

researches indicated that the expression of CD86 was 

significantly related to the activity of NK and T cells, 

and might influence the response of immune therapy.  

 

Our study has shown that CD86 is a potential prognosis 

and immunotherapy biomarker in HGG. Detection and 

prediction of CD86 can stratify the high-risk 

populations with HGG, and contribute to evaluating 

immunotherapy response. However, the detection of 

CD86 was invasive. Radiomics has become a promising 

and non-invasive method for the prediction of 

genotyping and the expression of specific molecules for 

 

 
 

Figure 6. Correlation between CD86 and immune infiltrates in HGG. (A) Immune microenvironment score by CIBERSORT algorithm. 

(B) The difference in immune infiltration level between CD86 high and low expression groups. 
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gliomas. Choi et al. demonstrated that the hybrid 

radiomics model could predict the IDH status of 

gliomas, showing highly reproducible and generalizable 

[28]. Li et al. reported that multiparameter MRI-based 

radiomics signature could predict the MGMT promoter 

methylation in glioblastoma multiforme and astro-

cytoma, respectively [29]. Tian et al. suggested that a 

multiparametric MRI-based radiomics model could 

predict the TERT promoter mutations in HGG [30]. 

Chen et al. indicated multiparametric MRI-based 

radiomics model could predict the PTEN mutation 

status in patients with glioma [31]. Wang et al. 

suggested that T2-FLAIR (Fluid-attenuated inversion 

recovery) based radiomics features could effectively 

predict the expression levels of CD44 and CD133 for 

LGG patients [32]. The models based on radiomics 

 

 
 

Figure 7. Radiomics features extraction and prediction model establishment in the training set. (A) The 5 features were finally 

identified by mRMR and RFE algorithms. (B) The prediction performance of the model established by SVM method. (C) Variables importance 
assessment in SVM model. (D) The prediction performance of the model established by LR method. (E) Variables importance assessment in 
SVM model. Abbreviation: SVM, Support Vector Machine; LR, Logistic regression.  
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features for predicting molecular expression have been 

widely applied. 

 

Our study also constructed a 5-features signature for 

predicting CD86 expression, and the results showed that 

the signature had stable and favorable performance. 

Besides the clinical value in predicting the molecular 

marker, the radiomics model also presented the 

potential to predict the patient’s prognosis. Yan et al. 

found that MRI-based radiomics may be useful for 

noninvasively predicting progression-free survival and 

OS in gliomas regardless of grades with a C-index of 

0.736 and 0.735, respectively [33]. Zhang et al. found 

that the radiomics model performed better than clinical 

 

 
 

Figure 8. Performance evaluation of radiomics model for predicting the CD86 expression. The ROC, PR, and DCA analyses were 

performed to evaluate the model performance established by (A) SVM and (B) LR method in training set and validation set. (C) The difference 
in radiomics score between CD86 high and low expression groups. Abbreviation: SVM, Support Vector Machine; LR, Logistic regression; ROC, 
receiver operating characteristic curve; PR, precision-recall curve; DCA, decision curve analysis; AUC, area under curve. 
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risk factors in the survival stratification of patients with 

GBM, and it exhibited more promising discrimination 

when the radiomics model and clinical risk factors were 

combined [34]. Our study also found that the radiomics 

model could favorably distinguish the prognosis of HGG 

patients. The prediction performance was better after 

combining the radiomics model and clinical factors.  

 

The present study also has some limitations. First, this 

is a retrospective study with a limited sample size and a 

lack of external data validation. The stability and 

generalizability of the established models cannot be 

verified. In addition, although there were several studies 

reported the value of the radiomics model in predicting 

molecular biomarkers, no research reported the 

appilicaiton of radiomics model in predicting CD86. 

Therefore, we failed to compare the performance of our 

radiomics model with others. Second, only the mRNA 

expression of CD86 was investigated, while its protein 

expression was not detected because of some objective 

reasons such as a lack of samples. Besides, only the CE-

T1WI images were analyzed for radiomics analysis, 

which could limit the feasibility of the model. However, 

to our knowledge, this is the first study to explore the 

clinical value of CD86 in HGG, and we also 

innovatively predict the CD86 by a non-invasive 

radiomics model, which might provide valuable 

references in this field.  

 

CONCLUSIONS 
 

This study found that CD86 was abnormally expressed 

in HGG compared with that in the control group. Higher 

expression was observed in patients with age≥60 years, 

non-codel of Chr_1p_19q, unmethylated MGMT 

promoter, wildtype IDH, and grade IV. We also 

disclosed the significant correlation of CD86 higher 

expression with the poor prognosis of patients, and 

 

 
 

Figure 9. The clinical value of the radiomics model in HGG. (A) Kaplan-Meier analysis on radiomics score. (B) Establishment of 

comprehensive nomogram model. (C) Evaluation of nomogram model with calibration curves. (D) Performance assessment of nomogram 
model with time-dependent ROC analysis.  
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CD86 was proved to be an independent prognostic 

factor in HGG. After integrating the CD86 with clinical 

characteristics, the probability of a patient’s survival 

can be predicted favorably. Our study initially 

confirmed the potential of CD86 as a promising 

molecular biomarker in HGG. Pathway analysis 

indicated that CD86 was related to NK cell-mediated 

cytotoxicity. Further, we established a radiomics model 

based on MRI images to non-invasively predict the 

CD86 expression, finding that the radiomics model had 

stable prediction performance on CD86. Our study 

provided a potential therapeutic target for HGG and 

established a non-invasive prediction model, which may 

contribute to the prognosis improvement of HGG and 

control of disease progression.  
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