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INTRODUCTION 
 

Alzheimer’s disease (AD) is a neurodegenerative 

disorder characterized by a progressive and insidious 

onset. It presents clinically with various manifestations 

including memory impairment, aphasia, apraxia, agnosia, 

visuospatial skills impairment, executive dysfunction, 

and changes in personality and behavior [1]. Currently, 

approximately 6.5 million Americans aged 65 and older 

are affected by AD, and this number is projected to 

increase to 13.8 million by 2060 [2]. In China alone, 

there are approximately 10 million AD patients, and the 

annual cost of AD treatment is expected to reach $1.8 

trillion by 2050 [3]. Aging is the greatest risk factor for 

AD, with the incidence of the disease sharply increasing 

with age: 5.0% in individuals aged 65 to 74, 13.1% in 

those aged 75 to 84, and 33.2% in individuals aged  

85 and older [2]. One of the major challenges in treating 
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ABSTRACT 
 

Recent studies have highlighted the significant involvement of tryptophan metabolism in the pathogenesis  
of Alzheimer’s disease (AD). However, a comprehensive investigation of the precise role of tryptophan 
metabolism in the context of AD is still lacking. This study employed a bioinformatics approach to identify and 
validate potential tryptophan metabolism-related genes (TrpMgs) associated with AD. The discovery of TrpMgs 
was facilitated through the intersection of the Weighted Gene Co-expression Network Analysis (WGCNA) test 
and 17 known tryptophan metabolism pathways. Subsequently, the putative biological functions and pathways 
of the TrpMgs were elucidated using Gene Set Variation Analysis (GSVA). Furthermore, the Least Absolute 
Shrinkage and Selection Operator (LASSO) method was applied to identify hub genes and evaluate the 
diagnostic efficiency of the 5 TrpMgs in distinguishing AD. The relationship between hub TrpMgs and clinical 
characteristics was also investigated. Finally, in vivo verification of the five TrpMgs was performed using 
APP/PS1 mice. We identified 5 TrpMgs associated with AD, including propionyl-CoA carboxylase subunit beta 
(PCCB), TEA Domain Transcription Factor 1 (TEAD1), Phenylalanyl-TRNA Synthetase Subunit Beta (FARSB), 
Neurofascin (NFASC), and Ezrin (EZR). Among these genes, PCCB, FARSB, NFASC, and TEAD1 showed 
correlations with age. In the hippocampus of APP/PS1 mice, we observed down-regulation of FARSB, PCCB, and 
NFASC mRNA expressions. Furthermore, PCCB and NFASC protein expressions were also down-regulated in the 
cerebral cortex and hippocampus of APP/PS1 mice. Our study paves the way for future research aimed at 
unraveling the intricate mechanisms underlying tryptophan metabolism dysregulation in AD and its therapeutic 
implications. 
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AD lies in the incomplete understanding of its patho-

genesis. The characteristic histopathological features of 

AD include the presence of abnormal fibrillary deposits 

known as amyloid β (Aβ) plaques and neurofibrillary 

tangles composed of Tau protein. It is widely accepted 

that the imbalanced generation and clearance of Aβ  

play a crucial role in neuronal degeneration and the 

development of dementia. The accumulation of Aβ 

plaques between neurons in the brain exerts neurotoxic 

effects, ultimately leading to neuronal degeneration [4]. 

 

In the last two decades, the progress of drug development 

for AD has faced significant challenges. While a few 

drugs such as Memantine and Donepezil have been 

successfully marketed, the majority of AD clinical trials 

have failed to demonstrate efficacy [5]. Nevertheless, 

despite these setbacks, the scientific community remains 

optimistic about the development of AD therapeutics and 

continues to explore novel research strategies. In recent 

studies, AD has been increasingly recognized as an auto-

immune disorder, wherein Aβ acts as an immune peptide 

and initiates a series of events in the innate immune 

system. This process triggers a chronic, self-perpetuating, 

progressive autoimmune cycle characterized by micro-

glial activation, release of pro-inflammatory cytokines, 

tau protein aggregation, and synaptic toxicity [6]. 

Besides, emerging evidence suggests that amino  

acid metabolic pathways may play a crucial role. Of 

particular interest is the role of tryptophan metabolism, 

as it has been implicated in the molecular pathogenesis  

of several neurological diseases [7]. Researchers  

are actively investigating the potential involvement of 

tryptophan metabolism in AD, recognizing its 

significance as a potential therapeutic target. 

 
Tryptophan, an indispensable amino acid in mammals, 

cannot be synthesized endogenously and must be 

obtained through dietary sources. Its primary role lies in 

protein synthesis, but it is also metabolized into various 

bioactive compounds through two distinct pathways: the 

serotonin pathway, leading to melatonin production, and 

the kynurenine pathway, resulting in the formation of 

niacin derivatives. These pathways generate biologically 

significant intermediary molecules that contribute to the 

regulation of neural function, immune response, and 

metabolism [8]. Moreover, Tryptophan metabolites play 

a role as endogenous compounds that modulate the 

immune response in AD. Specifically, indole-based and 

anthranilate-based metabolites have been identified as 

interacting directly with Aβ, exhibiting the ability to 

inhibit the oligomerization and aggregation of Aβ [9]. 

 
The modulation of tryptophan metabolism holds great 

potential in combination with immunotherapy for the 

treatment of AD, as it plays a crucial role in the immune 

and inflammatory response within the central nervous 

system. Targeting tryptophan metabolism, alongside 

immunotherapy, shows promise in the management of 

AD. In biomedical research, gene expression analysis 

has proven valuable in establishing associations between 

genes, diseases, and drugs. Researchers in the field of 

drug development have utilized this approach to identify 

changes in transcription and related molecular pathways 

associated with AD. For instance, some studies have 

explored the molecular pathways involved in AD 

pathogenesis using gene expression data obtained from 

resources like the Gene Expression Omnibus (GEO), 

focusing on age-related genes and ferroptosis-related 

genes [10, 11]. This approach offers valuable insights 

into the pathophysiological processes underlying AD 

and aids in the identification of potential drug targets 

from multiple perspectives. However, to date, no studies 

have investigated the role of TrpMgs in the development 

of AD. Therefore, our work aims to provide a compre-

hensive evaluation of the immunotherapeutic potential of 

TrpMgs in the context of AD (Figure 1). 

 

MATERIALS AND METHODS 
 

Raw data processing 

 

GEO database was utilized using the following search 

criteria: Series: GSE5281, GSE37263, GSE106241, 

GSE132903, and GSE63060; Platform: GPL570, 

GPL5175, GPL6947, GPL24170, and GPL10558. The 

datasets GSE5281, GSE37263, GSE106241, and 

GSE132903 were utilized as training and test groups, 

while GSE63060 served as the independent test  

group. The search strategy employed was as follows: 

(‘Alzheimer’s disease’ [MeSH] mRNA [All Fields]  

and normal) AND (‘Homo sapiens’ [Organism] AND 

‘Non-coding RNA profiling by array’ [Filter]). To 

identify relevant tryptophan metabolism-related genes, 

the Molecular Signatures Database (MSigDB) was 

employed, resulting in the retrieval of 40 genes 

(Appendix 1). 

 

Analysis of DEGs 

 

Transcription data obtained from Perl (https://github. 

com/Perl) were processed to obtain precise mRNA data. 

The obtained IDs were converted into correspon- 

ding gene names. Following this, data standardization  

was performed on GSE5281, GSE37263, GSE106241, 

and GSE132903 using the “normalize Between  

Arrays” function from the “limma” package. Principal 

Component Analysis (PCA) was conducted using the 

“factoextra” package to examine the variability in  

the data. To identify Differentially Expressed Genes 

(DEGs) between AD and non-demented controls (ND), 

statistical analysis was performed. The DEGs were 

selected based on the criteria of |Fold Change (FC)| > 1 
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and p-value < 0.05. To visually represent the significantly 

deregulated genes, a heatmap was generated using the 

“ggplot2” and “ComplexHeatmap” packages. 

 

Immune cell infiltration 

 

The immune cell components in adipose tissue were 

analyzed via CIBERSORT. We built barplot and corplot 

with the limma package to show the results of immune 

cells. 

 

Cluster analysis 

 

Cluster analysis was performed using the limma and 

ConsensusClusterPlus packages. By setting the clustering 

variable (k) to 2, we observed a strong correlation within 

each cluster and a weak correlation between clusters. 

The tryptophan metabolism-related genes associated 

with prognosis were classified into cluster 1 and cluster 

2 based on this analysis. Additionally, a consensus score 

was calculated to further evaluate the results [12]. 

Furthermore, the limma package was employed to 

identify specific gene changes between subtypes and 

tissue types, allowing for the detection of differential 

gene expression patterns [13]. 

 

Enrichment analysis 

 

To investigate the biological functions and  

pathways associated with the DEGs, we utilized  

Gene Ontology (GO) and the Kyoto Encyclopedia  

of Genes and Genomes (KEGG). The DEGs were  

analyzed to determine their involvement in various 

biological processes, molecular functions, and cellular 

 

 
 

Figure 1. Flow diagram. The study utilized a systematic framework to investigate the role of tryptophan metabolism-related genes in 
Alzheimer’s disease (AD). 
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components using R. Specifically, we obtained the 

“c5.go.bp.v7.5.1.symbols” gene sets from MSigDB to 

perform the analysis. 

 

To quantify the process scores, we employed the  

GSVA (Gene Set Variation Analysis) method, which is 

implemented in the “GSVA” package. This allowed us 

to compute the scores associated with different bio-

logical processes regulated by the DEGs. By utilizing 

this approach, we gained insights into the functional 

implications of the tryptophan metabolism-related genes 

in AD. 

 

Co-expression gene identification 

 

To explore the genetic processes involved in  

the development of AD, we employed the WGCNA 

algorithm. This algorithm allows for the clustering of 

genes into distinct modules and the examination of 

correlations between these modules and disease features. 

We utilized the “WGCNA” package to construct a co-

expression network. To ensure robust results, we 

focused on genes with the highest 25% variance from 

the GSE132903 dataset. The dynamic cutting tree 

approach with a threshold of 0.25 was employed to 

merge modules. Several criteria were employed during 

the construction of the co-expression network. Firstly, 

the soft threshold power (β) was determined based  

on the scale-free topology requirement, aiming for a 

high independence value (R^2 = 0.85). The selection  

of the soft threshold was carried out using the select 

Soft Threshold function. Additionally, a minimum of  

30 genes was set as the threshold for each module. 

 

To identify potential relationships between the  

modules and clinical variables of the patients, Pearson 

correlation analysis was performed. This analysis 

allowed us to assess the degree of correlation between 

module expression patterns and clinical characteristics, 

providing valuable insights into the underlying mecha-

nisms of AD. 

 

Tryptophan metabolism-related genes identification 

 

To identify the tryptophan metabolism-related genes, 

we performed an intersection analysis of the DEGs 

derived from major modules obtained through WGCNA, 

Gln, and cluster hubGenes. Visualization of the over-

lapping genes was achieved using Vnnmap. Furthermore, 

we investigated the biological processes and enrichment 

pathways associated with these genes. Separately,  

the datasets GSE5281, GSE37263, GSE106241, and 

GSE132903 were divided into training cohorts after 
identifying the hub tryptophan metabolism-related 

genes. To identify the hub DEGs, we utilized the 

“glmnet” package and selected the smallest lambda 

value as the optimal parameter. Subsequently, we 

calculated the DEGs’ predictive scores in each sample. 

To assess the diagnostic and discriminative potential  

of the tryptophan metabolism-related genes in AD  

and ND individuals, we conducted receiver operating 

characteristic curve analysis. The GSE63060 dataset 

was used for external validation. 

 

Finally, we performed prognosis calculations on the test 

group by matching samples based on age-related clinical 

information. We also explored the correlation between 

these genes and age, providing valuable insights into 

their relationship with the aging process. 

 

Drug-gene interactions 

 

With the advancement of bioinformatics, the construction 

of biological models and the identification of efficient 

biomarkers has become more significant in the diagnosis 

and prevention of clinical disorders. Even if the bio-

markers are established, the crucial issue is determining 

how to use them in the clinic. As a result, medication 

prediction based on successful indicators will be critical 

in the future prevention and treatment of AD. Validated 

biomarkers provide some reference for clinical treatment. 

Therefore effective drug prediction is very important. We 

used the DGIdb database (https://dgidb.genome.wustl. 

edu/) to make drug predictions for both the obtained 

hub genes and the intersection gene in the eXtreme 

Gradient Boosting (XGB) model. 

 

Animals 

 

Male APP/PS1 double transgenic mice (B6C3-Tg 

(APPswe, PSEN1dE9) 85Dbo/J) at the age of 12 months 

were obtained from Nanjing Junke Biotechnology 

Corporation, Ltd. (Nanjing, China). The experimental 

animal production license number was SCXK (SU) 

2017-0003. The control group consisted of male 

C57BL/6J mice, also 12 months old, obtained from 

Hunan SJA Laboratory Animal Co., Ltd. (Changsha, 

China). The experimental animal production license 

number was SCXK (Xiang) 2019-0004. The mice were 

housed in a specific pathogen-free (SPF) animal room at 

Hunan University of Chinese Medicine. The animal 

reproduction and genotypic identification followed 

previously published methods [14]. 

 

Quantitative real time PCR (qPCR) 

 

Rat hippocampal tissues were used for total RNA 

extraction using TRlzol (15596-026, Thermo Scientific, 

Shanghai, China). The extracted RNA was then subjected 
to reverse transcription using a reverse transcription 

cDNA kit (RR047A, Takara, Dalian, China) according 

to the provided instructions, resulting in cDNA synthesis. 
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Two-step amplification of the target genes was 

conducted using SYBR Green (RR820L, Takara, Dalian, 

China) on a Real-time PCR instrument (T100, Bio-Rad, 

USA). 

 

The amplification reaction procedure consisted of an 

initial denaturation step at 95° C for 5 minutes, followed 

by 40 cycles of denaturation at 95° C for 30 seconds 

and annealing/extension at 58° C for 30 seconds. Ct 

values, representing the cycle threshold, were recorded 

for each gene, and subsequent statistical analysis of the 

data was performed using the 2-ΔΔCt method. The primer 

sequences used in the PCR amplification are presented 

in Table 1. 

 

Western blotting 

 

The hippocampus of mice was used for total protein 

extraction using RIPA lysate (cat. P0013B, Beyotime 

Biotechnology Co., Ltd., Shanghai, China) following 

the provided instructions. The protein concentration was 

determined using the BCA (23227, Thermo Scientific, 

Shanghai, China) method. Subsequently, the protein 

samples were loaded onto SDS-PAGE gels and 

subjected to electrophoretic separation. The separated 

proteins were then transferred to PVDF membranes 

(0.45 µm pore size, IPVH00010, Millipore Sigma Inc., 

Billerica, USA). To prevent non-specific binding, the 

membranes were blocked using 5% skim milk. The 

primary antibody (diluted at 1:1000) was incubated with 

the membranes overnight at 4° C, followed by incubation 

with the secondary antibody (diluted at 1:5000) at room 

temperature for 2 hours. Chemiluminescent signals 

were generated using an ECL chemiluminescence  

kit (32132, Thermo Scientific, Shanghai, China), and 

the blots were visualized using an imaging system 

(ChemiDoc™ XRS+, Bio-Rad, USA). The primary 

antibodies used in this study included Anti-PCCB 

Rabbit pAb (GB113237, Servicebio, Wuhan, China), 

Anti-Neurofascin Rabbit pAb (GB111351, Servicebio, 

Wuhan, China), and Anti-GAPDH mouse pAb 

(GB15002, Servicebio, Wuhan, China). 

 

Immunofluorescence 

 

Mouse brain tissue samples were fixed using  

4% paraformaldehyde, followed by paraffin embed- 

ding. The paraffin-embedded tissue blocks were then 

sectioned into 4 μm thick slices using a paraffin 

microtome (HM355S, Thermo Scientific, Shanghai, 

China). To prepare the tissue for immunostaining, the 

sections underwent steps including deparaffinization, 

antigen retrieval, blocking, and incubation with 
primary and secondary antibodies, as described in 

previous studies [15]. Specifically, cell transparency 

techniques were employed, and antigen retrieval was 

performed to enhance the antigenicity of  

the tissue. After blocking to reduce non-specific 

binding, the sections were incubated with primary 

antibodies, including PCCB antibody at a dilution  

of 1:200 and Neurofascin antibody at a dilution of 

1:200. Following the primary antibody incubation, the 

sections were incubated with appropriate secondary 

antibodies. Restaining and tablet sealing procedures 

were carried out according to established protocols. 

Full image scanning and subsequent statistical analysis 

were performed using the TissueFAXS imaging 

system (Tissue Gnostics GmbH, Austria), allowing  

for comprehensive evaluation of the stained tissue 

sections. 

 
Statistical analysis 

 
Statistical analysis was conducted using GraphPad 

Prism 8.0 Software. The data were expressed as mean ± 

standard deviation (SD). A two-group comparison was 

performed using the t-test. P-values less than 0.05 were 

considered statistically significant. For the identification 

of differentially expressed mRNAs, a threshold of FC 

greater than or equal to 2 and a p-value less than 0.05 

were used for screening. 

 
Data availability statement 

 
The datasets generated during and/or analyzed during 

the current study are available in the Appendix. 

 
RESULTS 

 
DEG identification and principal component 

analysis 

 
Among the 17 tryptophan metabolism-related genes 

examined, all showed significant differences between 

groups, except for ACMSD, GCDH, HADHA, HADH, 

MAOA, ALDH2, ALDH3A2, ALDH1B1, ALDH7A1, 

and ALDH9A1 (Figure 2A). These genes exhibited 

varying patterns of expression, with some genes 

clustering in the AD group and others in the control 

group. Specifically, the AD group showed increased 

expression of INMT, OGDH, MAOB, AADAT,  

IDO2, EHHADH, KYNU, ACAT1, TPH2, and 

CYP1A1. On the other hand, the control group 

exhibited increased expression of AOX1, CYP1A2, 

DDC, HAAO, OGDHL, TDO2, and ACAT2 (Figure 

2B and Appendix 2). 

 
Expression of tryptophan metabolism-related genes 

 
To determine the chromosomal positions of the 

tryptophan metabolism-related genes, we performed 
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Table 1. Primer sequences of PCR. 

Name Forward sequence (5’-3’) Reverse sequence (5’-3’) Length (bp) 

PCCB TGGCTTCGCAAGAATGAATGG CCTTCCTGGTGATGACTGTGA 103 

TEAD1 AACCGCTCGCCAATGTGT GTGCTCCGTGTTCGCTATTC 190 

FARSB TGCTATTGGAACTCACGACTTG GACAGGACCACACCATTGC 225 

NFASC ACACCAATAACCAGGCAGACA ATGAAGCAGACGATGAGAAGGA 100 

EZR CACAGAGGCAGAGAAGAATGAG TCAATGCGTTGCTTGGTGTT 189 

β-actin AGACCTCTATGCCAACACAGT TCCTGCTTGCTGATCCACAT 210 

 

calculations and visualized the data in a circular format 

(Figure 3A and Appendix 3). Additionally, in order  

to gain insights into the expression patterns of these 

genes, we conducted correlation analysis among them 

(Figure 3B, 3C). 
 

Immune cells 
 

The immune environment plays a critical role in the 

initiation and advancement of AD. To assess the 

composition of immune cell populations in adipose 

tissue, we utilized CIBERSORT. Subsequently, we 

visualized the results using bar plots and correlation 

plots to depict the immune cell components (Figure 4A, 

4B). Furthermore, to elucidate the relationship between 

the expression of the tryptophan metabolism-related 

genes and immune cells, we conducted correlation 

analysis (Figure 4C). 
 

Cluster analysis 

 

By setting the clustering variable (k) to 2, we observed 

that the intragroup correlations were the strongest and 

the intergroup correlations were the smallest, suggesting 

that patients with AD can be classified into two  

distinct groups based on the expression of tryptophan 

metabolism-related genes (Figure 5A). Furthermore, we 

examined the expression patterns of these genes within 

the different clusters. Notably, TDO2, HAAO, ACAT2, 

and DDC did not exhibit significant differences between 

the two groups (Figure 5B, 5C). Additionally, based  

on the results of principal component analysis (PCA), 

patients with varying risk profiles were successfully 

segregated into two distinct groups (Figure 5D). 

Moreover, we investigated the immune cell infiltration 

patterns in relation to the different clusters, shedding 

light on the immune microenvironment associated with 

each group (Figure 5E, 5F). 
 

Analysis of functional enrichments 
 

Enrichment analysis was performed using the 

tryptophan metabolism-related genes. The molecular 

function (MF) analysis revealed their involvement in 

various functions, including transcription coregulator 

binding and histone arginine and methyltransferase 

activity. The biological processes (BP) associated with 

these genes encompassed diverse functions such as the 

regulation of cell migration, Aβ clearance, regulation of 

neurotransmitter transport, tryptophan catabolic process 

to kynurenine, serotonin biosynthetic process, and 

glycolytic process. Additionally, the cellular component 

(CC) analysis indicated their localization in the cytosol 

(Supplementary Figure 1A). 
 

Pathway analysis further elucidated the functional 

implications of these genes. The enriched pathways 

included the chemokine signaling pathway, neuroactive 

ligand receptor interaction, p53 signaling pathway, 

apoptosis, tryptophan metabolism, and serotonergic 

synapse (Supplementary Figure 1B). These findings 

provide valuable insights into the molecular mechanisms 

and pathways associated with tryptophan metabolism in 

the context of Alzheimer’s disease. 
 

Building a co-expression network and module 

detection 
 

To ensure a scale-free topology in the co-expression 

network, a soft-thresholding power was employed to 

establish an appropriate approximation (Supplementary 

Figure 2A). Subsequently, the genes with the highest 

variance were organized and integrated into seven 

distinct co-expression modules (Supplementary Figure 

2B). To explore the relationship between module 

eigengenes and clinical characteristics, Pearson’s 

correlation analysis was performed (Supplementary 

Figure 2C). Notably, the turquoise module exhibited 

strong connections with the “Group” attribute, which 

represents the classification of AD and non-AD 

samples, indicating its significant association with the 

disease (Supplementary Figure 2D and Appendix 4). 

These findings shed light on the potential relevance  

of the turquoise module in Alzheimer’s disease. 
 

Clustering co-expression network construction and 

module detection 
 

To establish a scale-free topology approximation for  

the network, a soft-thresholding power was applied, as 
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Figure 2. Principal component analysis. (A) Tryptophan metabolism-related genes. (B) Expression of tryptophan metabolism-related 

genes in clusters. 
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Figure 3. Expression of tryptophan metabolism-related genes (TrpMgs). (A) Expression of TrpMgs on sequences. (B, C) The 

correlation between TrpMgs and related genes. 
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depicted in Figure 6A. By clustering the genes based  

on their variance, co-expression modules were formed, 

as shown in Figure 6B. Pearson’s correlation analysis 

was then employed to investigate the relationship 

between module eigengenes and clinical characteristics, 

as illustrated in Figure 6C. Notably, the module exhibited 

strong connections with the “Group” attribute, represen-

ting the classification of AD and ND samples, indicating 

its significant association with the disease, as depicted 

in Figure 6D and (Appendix 5). The genes with the 

highest variance were further organized into eight co-

expression modules, as presented in Figure 6E. Among 

these modules, the turquoise module demonstrated  

a high level of connectivity with the “Group” attribute, 

suggesting a strong association with AD and ND 

samples, as shown in Figure 6F. 

 

Developing a model for least absolute shrinkage and 

operator selection 

 

The intersection of DEGs, grey module genes  

(from WGCNA analysis), and tryptophan metabolism-

related genes resulted in overlapping genes, as shown  

in Figure 7A and (Appendix 6). The boxplots illustrate 

the residual expression patterns of these genes in AD 

samples, highlighting the differences between AD and 

control groups, as presented in Figure 7B. Additionally, 

the proportions of the four different modes (DEGs, grey 

module genes, tryptophan metabolism-related genes, and 

overlapping genes) exhibit distinct variations, as depicted 

in Figure 7C. The expression of predictive values from 

the four models at different stages demonstrates notice-

able differences, as shown in Figure 7D. Notably,  

the tryptophan metabolism-related genes exhibit a 

satisfactory diagnostic capacity in distinguishing AD 

from control samples, with area under the curve (AUC) 

values of RRF: 0.924, SVM: 0.937, XGB: 0.950, GLM: 

0.641, as presented in Figure 7E. Among these models, 

the XGB model demonstrates the highest accuracy and 

stability (Appendix 7). 

 

Model validation 

 

In the external validation dataset GSE63060, the 

tryptophan metabolism-related genes exhibit an AUC  

of 0.924 (95% CI 0.876-0.963), indicating their 

potential as diagnostic markers for AD (Figure 8A). 

Additionally, the correlation analysis between the five 

hub genes and age revealed that PCCB and FARSB 

were negatively correlated with age, while NFASC and 

 

 
 

Figure 4. Expression of immune cells. (A, B) Expression of immune cells in different clusters. (C) Correlation between TrpMgs and 
immune cells. 
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Figure 5. Cluster analysis. (A) Consensus clustering matrix. (B, C) Expression of the TrpMgs in different clusters. (D) PCA. (E, F) Immune cell 

infiltration of different clusters. 
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Figure 6. Co-expression module construction. (A) Soft threshold power mean connection and scale-free fitting index analysis.  

(B) Dendrogram clustering. (C) Heatmap of correlations between module eigengenes and clinical characteristics. (D) Gene scatterplot in the 
turquoise module. (E) Clustering of dendrograms according to dynamic tree cutting, the genes were sorted into distinct modules using 
hierarchical clustering with a threshold of 0.25. Each color represents a separate module. (F) Gene scatterplot in the turquoise module. 
 

 
 

Figure 7. Cluster construction of co-expression modules. (A) Identification of tryptophan metabolism-related genes with a Venn 

diagram. (B, C) Residual expression patterns. (D) Model trend chart. (E) AUC of train group. 
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TEAD1 were positively correlated with age (Appendix 

8). However, it is important to note that the P values for 

FARSB, NFASC, and TEAD1 were greater than 0.05, 

suggesting that these correlations may not be statistically 

significant (Figure 8B). 

 

Drug-gene interactions 

 

According to the XGB model, one of the hub genes 

predicted three drugs, and one of these drugs is 

Dexamethasone (Table 2). Furthermore, we conducted 

predictions for all interacting genes associated with 

drug-gene relationships, and the results can be found in 

Appendix 9. 

 

Validation of the 5-gene signature in APP/PS1 

transgenic mice 

 

The qPCR analysis revealed that the mRNA levels of 

PCCB and NFASC were down-regulated in the AD 

group compared to the control group, which is consistent 

with the previous analysis. However, the expression 

profile of FARSB did not align with the previous results. 

Furthermore, there were no significant differences in the 

expression levels of TEAD1 and EZR between the AD 

group and the wild-type group (Figure 9A–9E). The 

Western blotting results (Figure 9F and Supplementary 

Figure 3) demonstrated that the expression of PCCB and 

NFASC in the cerebral cortex of APP/PS1 transgenic 

mice was significantly decreased compared to the wild-

type group. Additionally, immunofluorescence staining 

showed decreased expression of PCCB and NFASC in 

the cerebral cortex and hippocampus of APP/PS1 

transgenic mice (Figure 9G–9H). 

 

DISCUSSION 
 

Recent scientific investigations have amassed a 

substantial body of research evidence highlighting the 

prevalent metabolic disorders observed in AD, with 

multiple disruptions in metabolic pathways considered 

as potential pathogenic factors [16]. Unraveling the 

intricate relationship between AD and metabolic 

disorders assumes paramount importance in identifying 

novel targets for disease treatment. Notably, neurons in 

AD-afflicted brains are known to exhibit profound 

deficits in glucose metabolism, thereby suggesting that 

alternative energy sources could potentially mitigate 

disease-specific neuronal death [17]. Moreover, studies 

have indicated significant alterations in the levels of 

several amino acids in the brains and plasma of AD 

patients, indicating that perturbations in amino acid 

metabolism may play a pivotal role in driving AD 

progression [18]. 

 

 
 

Figure 8. (A) AUC of test group. (B) Analysis of the relationship between hub genes and age. 
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Table 2. Drug-gene interactions in the XGB model. 

Search term Match term Gene Drug Interaction types Sources 

TEAD1 TEAD1 TEAD1 DEXAMETHASONE Unknown NCI 

 

Of particular interest as an intriguing regulatory node, 

tryptophan metabolism undergoes dynamic changes 

under various pathological conditions, attracting con-

siderable attention from researchers. A comprehensive 

metabolomic study focusing on plasma and cerebrospinal 

fluid (CSF) analysis of AD subjects revealed reduced 

levels of tryptophan in both CSF and plasma among 

individuals with mild cognitive impairment [19]. 

Tryptophan and its associated metabolites can inhibit 

various enzymes participating in the biosynthesis of Aβ, 

and one metabolite, 3-hydroxyanthranilate, can directly 

inhibit neurotoxic Aβ oligomerization; however, whilst 

certain trp metabolites are neuroprotectant, other 

metabolites, such as quinolinic acid, are directly toxic  

to neurons and may themselves contribute to AD 

progression. Tryptophan metabolites also can influence 

microglia and associated cytokines to modulate the 

neuroinflammatory and neuroimmune factors that trigger 

pro-inflammatory cytotoxicity in AD [6]. Notably, 

melatonin, a product of tryptophan metabolism in  

the serotonin pathway, has demonstrated increased 

clearance rates of amyloid beta and noteworthy 

immunomodulatory effects [20]. Furthermore, KYNA,  

a product of tryptophan metabolism through the 

kynurenine pathway and synthesized and released by 

astrocytes in the brain, acts as an antagonist for  

N-methyl-D-aspartic acid (NMDA) and α7 nicotinic 

acetylcholine (α7nACh) receptors, exhibiting potential 

neuroprotective effects [21]. The kynurenine pathway  

is responsible for more than 95% of tryptophan 

catabolism. Its initial and rate-limiting step involves the 

conversion of tryptophan to kynurenine by the enzymes 

indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-

dioxygenase (TDO) [22], which produce neuroactive 

and anti-inflammatory metabolites [23] and also play a 

role in anti-inflammatory immune signaling pathways. 

Age-related Kyn pathway activation might contribute  

to AD pathology in humans, and inhibition of TDO  

was found to reduce AD-related cellular toxicity  

and behavioral deficits in animal models. Moreover, 

TDO inhibition reversed recognition memory deficits 

without producing measurable changes in cerebral  

Kyn metabolites. TDO inhibition did not affect spatial 

learning and memory or anxiety-related behavior.  

These data indicate that age-related Kyn pathway 

activation is not specific for humans and could represent 

a cross-species phenotype of aging [23]. Consequently, 

investigating the implications of these pathways in 

neurodegenerative disorders such as AD holds significant 

scientific value [22]. The kynurenine pathway and 

thioredoxin-interacting protein (TXNIP) activity regulate 

inflammation and neurotoxicity in AD. There was  

a causal relationship among epigenomic state, TXNIP 

expression, cerebral-spleen tryptophan metabolism, 

inflammatory cytokine production, and cognitive decline; 

and they provide a potential mechanism for Txnip  

gene regulation in normal and pathologic conditions, 

suggesting TXNIP levels may be a useful predictive  

or diagnostic biomarker for Aβ40/Aβ42 targeted AD 

therapies [24]. Moreover, immune cells within the 

central nervous system actively participate in the 

tryptophan metabolic pathway. Astrocytes catalyze the 

conversion of kynurenine (KYN) to kynurenic acid 

(KYNA) through the action of kynurenine amino-

transferases (KATs), while microglia convert KYN to 

3-hydroxykynurenine (3-HK) via kynurenine mono-

oxygenase (KMO) [6]. These metabolites, in turn, 

influence the activation of microglia and astrocytes 

involved in the regulation of neuroinflammation  

and neuroimmune factors in AD [25]. These pieces  

of evidence collectively underscore the intimate 

association between tryptophan metabolism and AD 

progression. 

 

Meanwhile, several recent studies have underscored the 

significance of TrpMgs in neurodegenerative diseases. 

Fifita et al. conducted whole-genome sequencing of 614 

cases of sporadic amyotrophic lateral sclerosis (ALS) 

and identified 4 TrpMgs that may serve as risk factors 

for ALS through alterations in the kynurenine pathway 

and subsequent neuroinflammation [26]. Furthermore, 

George Anderson et al. reviewed the interplay between 

tryptophan metabolism and immune-inflammation gene 

interactions in the context of Parkinson’s neurodegene-

ration [27]. However, the precise pathophysiological 

role of tryptophan metabolism-related genes in AD 

development remains unclear. In this study, we obtained 

data from AD patients in the GEO database and 

integrated it with TrpMgs. Through differential analysis 

and a risk model, we identified TrpMgs associated with 

the prognosis of AD patients. These findings hold 

promise in facilitating drug development for AD and 

provide novel avenues for therapeutic interventions. 

 

Our analysis detected 17 DEGs associated with 

tryptophan metabolism in AD. To delve deeper into the 

role of TrpMgs in AD, we identified Trp-metabolism 

DEGs by intersecting DEGs, conducting WGCNA, and 

focusing on TrpMgs. These genes primarily concentrate 

on pathways associated with the disturbance of immune-
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Figure 9. Validation of 5 gene markers in APP/PS1 mice. (A–E) qPCR to determine the mRNA expression of PCBB (A), FARSB (B), EZR 
(C), NFASC (D), and TEAD1 (E). (F) Western blotting to determine the protein expression levels of PCCB and NFASC. (G, H) 
Immunofluorescence to assess the expression of PCCB (G) and NFASC (H) in the hippocampus and cerebral cortex. 
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inflammatory balance in the nervous system. GO and 

KEGG enrichment analyses suggest a pivotal role of 

neuroinflammation in AD, including pathways such as 

the chemokine signaling pathway, p53 signaling 

pathway, and apoptosis pathway. Furthermore, using 

lasso logistic regression and XGBoost, two machine 

learning methods for variable selection, we identified 

five hub TrpMgs (PCCB, TEAD1, FARSB, NFASC, 

and EZR). Their diagnostic capacity was validated using 

external datasets, indicating their potential involvement 

in the AD process. For instance, PCCB is a 

mitochondrial enzyme involved in the catabolism of 

branched amino acids, such as isoleucine, threonine, 

methionine, and valine. Aberrant methylation of PCCB 

has been associated with epilepsy development by 

causing mitochondrial dysfunction [28]. Recent studies 

have also implicated PCCB as a potential marker for 

immune balance regulation in AD [29]. Another hub 

gene, TEAD1, is a transcription factor that plays a 

critical role in the Hippo signaling pathway, regulating 

homeostasis by influencing cell proliferation and 

apoptosis [30]. TEAD1 affects the generation and 

migration of cortical neurons through the regulation of 

the Hippo signaling pathway. Notably, TEAD1 is known 

to interact with ApoE, a key player in AD pathology and 

ApoE antibody inhibits Aβ-associated tau seeding and 

spreading in a mouse model [31], suggesting that 

TEAD1 may contribute to AD pathology through ApoE 

[32]. FARSB is implicated in human phenylalanine 

synthesis, and mutations in the FARSB gene have been 

associated with neurodevelopmental disorders affecting 

the brain, liver, and lungs [33]. However, concrete 

evidence linking FARSB to AD development is still 

lacking. NFASC is a transmembrane protein that may be 

involved in various processes such as neurite elongation, 

axon guidance, synaptogenesis, myelination, and 

neuron-glial cell interactions. NFASC levels were 

significantly decreased in the cerebrospinal fluid of AD 

patients [34], which may be related to the loss of 

dendritic spines in hippocampal neurons [35]. EZR is a 

cytoplasmic peripheral membrane protein involved in 

the regulation of axon growth through interactions with 

the actin cytoskeleton [36]. Bara et al. reported that 

BACE1, a major drug target for AD, plays a crucial role 

in semaphorin 3A axonal guidance of hippocampal and 

thalamic neurons. The process involves BACE1 

generating active membrane-binding proteins to cleave 

CHL1 fragments and relay Sema3A signals to the 

cytoskeleton via the ezrin-radixin-moesin pathway [37]. 

 

Furthermore, we investigated and analyzed the 

correlation between hub genes and age. Pearson 

correlation coefficient analysis revealed that PCCB, 
FARSB, NFASC, and TEAD1 exhibited correlations 

with age. Notably, PCCB demonstrated a statistically 

significant association with age, with a p-value less than 

0.05. Although there is no direct evidence of PCCB’s 

involvement in tryptophan metabolism, it is a 

mitochondrial enzyme involved in the catabolism of 

numerous amino acids [28]. Exploring the impact of 

PCCB on the tryptophan metabolism pathway in AD 

poses an intriguing question that warrants further 

investigation. Moreover, we validated the mRNA levels 

of these genes in the hippocampus of APP/PS1 

transgenic mice using qPCR. The results indicated that 

FARSB, PCCB, and NFASC were downregulated 

compared to the control group, while TEAD1 and EZR 

did not show significant differences between the AD 

and control groups. The contrasting outcomes observed 

in vitro and in vivo may be attributed to species 

differences. Additionally, we assessed the protein 

expression of PCCB and NFASC in the hippocampus of 

AD mice and found significantly lower levels compared 

to the control group, consistent with previous reports 

[29]. In our previous study [14], the result of MWM 

showed learning and memory deficits in APP/PS1 mice. 

Combining the expressions mRNAs and proteins of 

PCCB and NFASC in the hippocampus of APP/PS1 

mice, the result suggested there are positive relation 

between those genes and the cognitive functions. The 

down-regulation of PCCB and NFASC results in 

learning and memory deficits. Collectively, these 

findings shed light on key pathogenic features of AD 

that warrant further investigation. 

 

Current studies have demonstrated a close association 

between peripheral immune dysfunction, brain immune 

environment imbalance, and the occurrence of AD. 

Neuroinflammation is now considered the initiating 

factor of AD and the pathological basis for disease 

progression [38]. Imbalances in the synthesis and release 

of proinflammatory and anti-inflammatory cytokines in 

response to disease-related molecular patterns contribute 

to the sustained development of neuroinflammation [39]. 

To successfully alleviate chronic neuroinflammation in 

AD and restore neuronal function, the identification of 

unique diagnostic biomarkers and therapeutic targets 

from the perspective of neuro-immune interaction is 

crucial for both basic and clinical research on AD. Our 

results indicated that memory B cells, T follicular helper 

cells, M0 macrophages, and activated dendritic cells 

exhibited reduced infiltration in AD, while prototic B 

cells, CD8T cells, and neutrophils exhibited increased 

infiltration. AD transgenic mouse models lacking specific 

adaptive immune populations show higher amyloid-beta 

deposition and more severe neuroinflammation [40]. 

Therefore, our findings contribute to the understanding  

of pathological impairment and cognitive decline  

caused by immune dysregulation in AD. Additionally,  
we discussed the expression of TrpMgs in the immune 

microenvironment. The findings revealed high 

expression of activated B cells, plasma cells, CD8T cells, 
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activated CD4T cells, macrophage M0, and neutrophils 

in cluster 1. Cluster 2 exhibited high expression of  

CD4T cells memory resting, regulatory T cells (Tregs), 

NK cells activated, monocytes, macrophage M2, and 

eosinophils. These findings further support the notion 

that the pathogenesis of TrpMgs in AD is closely 

related to inflammation and immune response. 

 
Despite the valuable insights gained from this study, 

several limitations should be acknowledged. Firstly,  

the data utilized in this study were obtained from the 

GEO database, and therefore, the quality and reliability 

of the data require further validation, though having 

compared the data before analysis. Secondly, the sample 

size needs to be expanded to enhance statistical power. 

Thirdly, the utilization of mice instead of human tissue 

for gene screening warrants further validation. Finally, 

the specific pathways through which hub genes regulate 

tryptophan metabolism in AD need to be elucidated 

through additional research endeavors, and the hypo-

thesis needs to be further proved with more direct 

evidence. Additionally, the study focuses on mRNAs 

associated with Try metabolism, so there is limited 

understanding of the underlying mechanisms involved. 

 
CONCLUSIONS 

 
In conclusion, immune disorders leading to pathological 

damage and cognitive impairment are implicated as 

potential etiological factors in AD. The regulation of 

AD immune-inflammatory response involves TrpMgs. 

Therefore, a promising therapeutic approach for AD 

could involve targeting tryptophan metabolism in 

combination with immunotherapy. Through compre-

hensive screening, PCCB, TEAD1, FARSB, NFASC, 

and EZR have been identified as potential diagnostic 

markers and therapeutic targets for AD. Experimental 

validation in the cerebral cortex and hippocampus of 

APP/PS1 transgenic mice confirmed the downregulated 

expression of PCCB and NFASC. Notably, tryptophan 

metabolism-related genes, namely PCCB and NFASC, 

exhibit considerable diagnostic value in distinguishing 

AD from other conditions. These findings emphasize 

the potential significance of exploring tryptophan 

metabolism and immune-inflammatory responses in 

the development of therapeutic interventions and 

diagnostic strategies for AD. Further investigations  

are warranted to elucidate the underlying mechanisms 

and translate these findings into clinical applications. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Enrichment analysis for DEGs. (A) GO. (B) KEGG. (A) Barplot graph for GO enrichment (the longer bar means 
the more genes enriched; q-value: the adjusted p-value). (B) Barplot graph for KEGG pathways (the longer bar means the more genes 
enriched). 
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Supplementary Figure 2. Co-expression module construction. (A) Soft threshold power mean connection and scale-free fitting index 

analysis. (B) Clustering of dendrograms according to dynamic tree cutting, the genes were sorted into distinct modules using hierarchical 
clustering with a threshold of 0.25. Each color represents a separate module. (C) Heatmap of correlations between module eigengenes and 
clinical characteristics. (D) Gene scatterplot in the turquoise module. 
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Supplementary Figure 3. The original image of Western blotting. 
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Supplementary Tables 
 

 

Please browse Full Text version to see the data of Appendices 1–9. 

 

Appendix 1. Datasets and tryptophan metabolism. 

Appendix 2. DEGs linked to tryptophan metabolism genes. 

Appendix 3. Chromosomal positions of tryptophan metabolism-related genes. 

Appendix 4. Co-expression network construction and module detection. 

Appendix 5. Co-expression network construction and module detection of clustering. 

Appendix 6. InterGenes. 

Appendix 7. Important genes were predicted based on the eXtreme gradient boosting (XGB) model. 

Appendix 8. The correlation analysis between the five hub genes and age. 

Appendix 9. Drug-gene interactions of all intergenes. 

 


