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INTRODUCTION 
 

Preceding the emergence of COVID-19, tuberculosis 

(TB) held the leading spot as the primary cause of death 

from a single infectious agent, outpacing HIV/AIDS 

and malaria. However, due to the impact of the COVID-

19 pandemic on public health services, TB-related 
mortality has experienced a rise for the first time in over 

20 years, impeding progress in the slow yet steady fight 

against this disease [1, 2]. The incidence, progression, 
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ABSTRACT 
 

Background: Mycobacterium tuberculosis (Mtb) is the bacterial pathogen responsible for causing tuberculosis 
(TB), a severe public health concern that results in numerous deaths worldwide. Ubiquitination (Ub) is an 
essential physiological process that aids in maintaining homeostasis and contributes to the development of TB. 
Therefore, the main objective of our study was to investigate the potential role of Ub-related genes in TB. 
Methods: Our research entailed utilizing single sample gene set enrichment analysis (ssGSEA) in combination 
with several machine learning techniques to discern the Ub-related signature of TB and identify potential 
diagnostic markers that distinguish TB from healthy controls (HC). 
Results: In summary, we used the ssGSEA algorithm to determine the score of Ub families (E1, E2, E3, DUB, 
UBD, and ULD). Notably, the score of E1, E3, and UBD were lower in TB patients than in HC individuals, and we 
identified 96 Ub-related differentially expressed genes (UbDEGs). Employing machine learning algorithms, we 
identified 11 Ub-related hub genes and defined two distinct Ub-related subclusters. Notably, through GSVA and 
functional analysis, it was determined that these subclusters were implicated in numerous immune-related 
processes. We further investigated these Ub-related hub genes in four TB-related diseases and found that 
TRIM68 exhibited higher correlations with various immune cells in different conditions, indicating that it may 
play a crucial role in the immune process of these diseases. 
Conclusion: The observed enrichment of Ub-related gene expression in TB patients emphasizes the potential 
involvement of ubiquitination in the progression of TB. These significant findings establish a basis for future 
investigations to elucidate the molecular mechanisms associated with TB, select suitable diagnostic biomarkers, 
and design innovative therapeutic interventions for combating this fatal infectious disease. 
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and prognosis of TB are not solely linked to the toxicity 

and quantity of the Mycobacterium tuberculosis (Mtb), 

but also closely tied to the host’s immune function. 

Since Mtb is a type of intracellular parasitic bacteria, 

the body’s primary immune response to TB is cellular 

immunity. Comprehending the root causes and 

mechanisms of TB can potentially aid in directing 

clinical diagnosis and treatment, resulting in better 

clinical outcomes. 

 

Ubiquitin is a conserved protein consisting of 76 amino 

acids ubiquitously present in all eukaryotes. It binds 

covalently to target proteins through an isopeptide bond, 

with the C-terminal glycine of ubiquitin and the epsilon-

amino group of a lysine residue on the substrate both 

playing a role in the formation of this covalent bond [3]. 

Eukaryotic organisms employ a three-step thioester 

cascade process, mediated by E1s, E2s, and E3s, to 

execute modifications involving ubiquitin and other 

ubiquitin-like (Ub/UBL) molecules [4]. These 

modifications can be reversed by deubiquitinating 

enzymes (DUBs), which eliminate the Ub/UBL from 

proteins that have undergone modifications [5, 6]. 

Proteins that possess ubiquitin-binding domains (UBDs), 

known as ubiquitin-binding domain-containing proteins, 

play a regulatory role in various biological processes in 

vivo by selectively recognizing monoubiquitin and 

ubiquitin chains with different linkages and lengths [7]. 

Furthermore, ubiquitin-like domains (ULDs) are integral 

elements of numerous protein families [8]. Overall, the 

complex process of ubiquitin signal formation and 

recognition mechanisms allows for the performance of 

diverse cellular and physiological functions. 

 

Bacterial pathogens employ various strategies to 

inhibit host innate immune responses by altering key 

host signaling pathways and post-translational 

modifications, thus facilitating infection and survival 

[9, 10]. Several intracellular pathogens have developed 

a variety of sophisticated molecular weapons to  

evade natural defense mechanisms. Among these 

mechanisms, cellular ubiquitination (Ub), a naturally 

occurring process, is becoming recognized as one 

exploited by these pathogens. Ub reduces the survival 

rate of Mtb by promoting the fusion of auto-

phagosomes and lysosomes [11]. In conclusion, there 

is a close relationship between ubiquitination and the 

pathophysiology of TB, although the specific 

mechanisms are still unclear. 

 

We analyzed gene expression differences between HC 

and TB samples using the Gene Expression Omnibus 

(GEO) database to investigate potential pathogenesis. 
Differential genes and ubiquitination-related (Ub-

related) genes were extracted, and their intersection was 

used to find the differentially expressed Ub-related 

genes (UbDEGs). UbDEGs were identified using 

multiple machine learning algorithms. Based on the 11 

hub UbDEGs expression patterns, we grouped 565 TB 

patients into two subgroups associated with Ub, and 

then examined the differences in immune cells between 

the two subgroups. Here, we integrated the expression 

profiles of TB and HC using array analysis to 

comprehensively describe the Ub-related transcriptional 

features of TB and explore potential diagnostic bio-

markers that distinguish TB from HC. 

 

MATERIALS AND METHODS 
 

Data collection 

 

The GEO database (http://www.ncbi.nlm.nih.gov/geo) 

is a repository for public genome datasets. For this 

study, gene expression profiles were downloaded from 

GEO, specifically GSE157657, GSE62525, GSE83456, 

GSE93272, GSE76925, GSE166253, and GSE31210. 

The platform contains an explanation document that 

aims to link the probes with their respective genes. 

 

Identification of DEGs and gene ontology 

enrichment analysis 

 

To identify differentially expressed genes (DEGs) 

between the TB and HC, the R package “limma” was 

utilized [12]. The criteria of filtering were established as 

follows: P < 0.05 and |log2 fold change| > 0.264 or 

|log2 fold change | > 0.585. To undertake Gene 

Ontology (GO) enrichment analysis and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) analysis 

for the DEGs, we utilized the DAVID tool 

(https://david.ncifcrf.gov/). Enriched GO pathways and 

KEGG pathways were determined based on the P-value 

cut-off criterion of < 0.05. 

 

ssGSEA algorithm calculates the function score 

 

We retrieved ubiquitination terms from the iuucd 

database (http://iuucd.biocuckoo.org/) to specifically 

select the relevant functional items for assessing 

disparities in ubiquitination-related functions within the 

samples. Next, we applied the single sample gene set 

enrichment analysis (ssGSEA) algorithm using the R 

package “GSVA” to score each piece. A higher score 

indicates a greater relative gene expression level 

associated with the specific functional item. Based on 

this scoring metric, we evaluated the activation state in 

relation to the particular functional item of interest. 

 

Machine learning 
 

To improve the regularity, interpretability, and 

predictive accuracy of predictive models and to select 
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relevant variables for model incorporation, we utilized 

a Least Absolute Shrinkage and Selection Operator 

(LASSO) regression approach [13]. Support Vector 

Machine (SVM) method, a technique that establishes a 

threshold between categories for prediction based on 

one or more feature vectors, was implemented  

for analyzing the data [14]. Random forest (RF) 

approaches were also employed for predicting 

continuous variables accurately, precisely without 

significant fluctuations [15]. eXtreme Gradient 

Boosting (Xgboost) ensemble learning algorithm was 

also used, which utilizes decision trees as base learners 

[16]. These machine learning analyses (LASSO, SVM-

RFE, Xgboost and RF) were performed using the R 

packages “glmnet,” “kernlab,” “randomForest,” and 

“xgboost,” respectively. The genes identified through 

the intersection of these analyses were considered to 

be hub genes related to ubiquitination in the diagnosis 

of TB. 

 

Constructing the nomogram model 

 

The carefully selected prediction variables (clinical 

relevance and utility) were utilized to build and 

validate the nomogram model [17]. Following the final 

multivariable logistic regression analysis, the 

nomogram was created in order to provide a visual 

instrument for evaluating individual risk projections 

for constipation in TB patients. The effectiveness of 

the prediction model was evaluated by calculating the 

area under the receiver operating characteristic curve. 

Furthermore, we assessed the clinical practicality of 

the prediction model by utilizing the decision curve 

analysis (DCA) method to determine net benefits. 

 

Subclusters analysis with 11 Ub-related hub genes 

 

The TB samples were subject to an unsupervised 

hierarchical clustering analysis using the 

“ConsensusClusterPlus” R package [18] based on the 

expression of 11 Ub-related genes. Subsequently, we 

employed GSVA [19] to elucidate the function between 

the Ub-related subclusters identified through the 

clustering mentioned above analysis. 

 

Gene set variation analysis (GSVA) 

 

To perform GSVA analysis, we downloaded files 

“h.all.v7.5.1.symbols”, “c2.cp.kegg.v7.5.1.symbols” 

and “c2.cp.reactome.v7.5.1.symbols” from MSigDB. 

 

GSVA R package was used to calculate the activities 

of two sets for each sample. DEGs between the two 
Ub-related subclusters were identified using a 

significance cut-off of | log2 fold change (FC)| > 0.585 

and P < 0.05. These DEGs were illustrated using a 

volcano plot. Subsequently, GO and KEGG 

enrichment analyses were carried out using the 

DAVID tool to uncover the biological functions of the 

identified DEGs. 

 

Evaluation of immune cell infiltration 

 

The CIBERSORT algorithm was utilized by us to 

establish the linked cellular immune infiltration with the 

help of standard LM22 gene signature. Marker 

information for 22 immune cells was obtained for the 

purpose of computing the immune cell infiltration in 

each dataset [20]. Spearman correlation analysis was 

performed to investigate the correlations between 

immune cells and hub genes, enabling the exploration 

of the relationship between these hub genes and 

immune cells [21]. 

 

Quality control and processing of single cell data 
 

We obtained single cell raw sequencing data (10X 

Genomics) from previous study, which can be accessed 

under the accession numbers SRR11038989 and 

SRR11038994 [22]. The number of expressed genes 

was calculated for each single cell. Following 

preliminary quality control procedures, we utilized the 

R package “Seurat” to perform a standardized analysis 

workflow. Firstly, we standardized the data using 

“NormalizeData”, and then conducted principal 

component analysis via “RunPCA”. Finally, we utilized 

the k-nearest neighbor classification algorithm through 

“FindNeighbors” and “FindClusters” to classify single-

cell samples into distinct clusters. We then scored each 

cluster based on the normalized expressions of 

canonical markers, which were listed in Supplementary 

Table 1 [23]. 

 

Statistical analysis 

 

R software (version 4.2.2) was utilized to conduct all 

the statistical analysis. Figure panels were pieced 

together by Adobe Illustrator (CC 2019). Statistical 

significance was ascribed to any difference with a P-

value or adjusted P-value falling below 0.05. 

Spearman’s correlation coefficient was employed to 

determine the association between continuous variables. 

Additionally, a t-test or Wilcoxon rank-sum test was 

performed for statistical comparison between two 

groups. *p < 0.05, **p < 0.01, ***p < 0.001. 

 

Data availability statement 

 

The original contributions presented in the study are 
included in the article Supplementary Material. 

Further inquiries can be directed to the corresponding 

author. 
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RESULTS 
 

The workflow of this study 

 

The objective of this study was to identify 

ubiquitination-related biomarkers for TB. Data analysis 

was conducted using ssGSEA, and machine learning to 

determine the hub genes that significantly influence the 

TB response. Subsequently, validation and diagnostic 

value analyses were performed to assess the potential of 

hub genes. These findings offer novel perspectives for 

diagnosing and treating of TB, adding to the existing 

scientific knowledge in this field. In this work, all 

mRNA expression-related analyses were achieved by 

using the gene expression data from the GEO database. 

The workflow of this study was provided in Figure 1. 

 

Ub-related DEGs identified in TB 

 

In total, based on the relevant functional items acquired 

from the IUUCD database, ssGSEA was conducted to 

investigate 6 Ub families (E1, E2, E3, DUB, UBD, 

ULD) in our study and the gene sets in each family 

were presented in Supplementary Table 2. Among these 

Ub families, the ssGSEA score of E1, E3, and UBD 

showed a significant difference in TB and HC in both 

GSE157657 (Figure 2A) and GSE62525 dataset (Figure 

2B). Compared to HC, the abundance of Ub-related 

genes (E1, E3, and UBD) significantly decreased in TB. 

 

Next, we analyzed GSE157657 and GSE62525 datasets 

and identified 3448 and 9530 DEGs (|log2 FC| > 0.264 

and P < 0.05), respectively (Figure 2C, 2D). Of these, 

1874 and 5049 genes were upregulated, while 4481 and 

1574 genes were downregulated, respectively. To gain a 

better understanding of TB pathogenesis, we performed 

a cross-comparison of gene expression profiles. 

Ultimately, 96 Ub-related DEGs (UbDEGs) 

were identified as candidate genes for further analysis 

(Figure 2E). 

 

Functional and pathway enrichment analysis of 

UbDEGs 

 

GO and KEGG enrichment pathway analysis were 

performed on the 96 UbDEGs to investigate their 

 

 
 

Figure 1. The detailed work process of this study. 
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potential roles. As expected, the GO analysis indicated 

significant enrichment of ubiquitination-related bio-

logical processes (such as protein ubiquitination, 

proteasome-mediated ubiquitin-dependent protein cata-

bolic process, ubiquitin-dependent protein catabolic 

process). The UbDEGs were also enriched in immune-

related biology processes (for example, regulation of 

immune system process, innate immune response) 

(Figure 3A). The KEGG analysis identified significant 

enrichment of the Ubiquitin-mediated proteolysis and 

 

 
 

 

Figure 2. Ub-related DEGs identified in TB. ssGSEA score of E1, E2, E3, DUB, UBD, ULD in GSE157657 (A) and GSE62525 (B) dataset. 

The volcano plotting of DEGs in GSE157657 (C) and GSE62525 (D) dataset. (E) The overlapping of genes between DEGs and Ub-related 
genes. DEGs, differentially expressed genes. ssGSEA, single sample gene set enrichment analysis. ***p < 0.001. 
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Shigellosis signaling pathway among the DEGs. All 

these results further indicated that these UbDEGs were 

also closely related to immune function. Additionally, we 

observed enrichment in cellular compartments such as 

cytosol, cytoplasm, nucleoplasm, and ubiquitin ligase 

complex (Figure 3B). Furthermore, in terms of molecular 

function, identical protein binding, protein binding, 

carbohydrate binding and transmembrane signaling 

receptor activity were found to be enriched (Figure 3C). 

 

Identification of the Ub-related hub genes via 

machine learning 

 

96 UbDEGs as candidate genes were applied for machine 

learning. We applied the LASSO and selected λ.min to 

identify 26 Ub-related genes as significant genes (Figure 

4A). Then, through SVM with 10-fold cross-validation, 

91 Ub-related genes were obtained (Figure 4B). Using 

Xgboost, and RF algorithms, we ranked the genes based 

on the importance and extracted the top 51 and top 30 

(Figure 4C, 4D), respectively. Ultimately, we identified 

11 Ub-related hub genes, which included WDFY1, 

FBXL15, ZBTB1, VHL, TRIM7, UTP15, EML5, 

TRIM68, CORO6, ZNF131, and UBA7 (Figure 4E). 

Moreover, most of the Ub-related hub genes were highly 

correlated with one another (Figure 4F). 

 

To predict the risk of TB, a nomogram prediction model 

was constructed (Figure 5A). We evaluated the 

nomogram’s performance using a calibration curve for 

TB risk prediction, which showed satisfactory 

agreement in this cohort (Figure 5B). The C-index of 

the nomogram was 0.962 (95% CI: 0.94338–0.98062), 

indicating good discrimination by the model. The 

nomogram demonstrated sound predictive capability 

based on its apparent performance. The decision curve 

analysis for the nonadherence nomogram was depicted 

in Figure 5C, which shows that the threshold probability 

range of 0.14-1.00 is clinically significant. Additionally, 

we analyzed the ROC curves of seven gene signatures 

and noted that the 11 Ub-related hub genes had the 

highest AUC value of 0.974 (Figure 5D), indicating 

their excellent diagnostic value. Similar results have 

also been observed in GSE62525 and GSE83456 

(Supplementary Figure 1A, 1B). These findings 

revealed that all 11 hub genes exhibit outstanding 

diagnostic accuracy. 

 

Evaluation of immune cell infiltration 

 

Given that UbDEGs were associated with immune-

related biological processes (Figure 3A), we 

investigated immune cell infiltration to gain further 

insight into the immune regulation of TB. The boxplot 

(Figure 6A) showed that TB patients exhibited a higher 

proportion of monocytes and macrophages M0, but a 

lower proportion of naïve B cells. We then analyzed the 

correlation between the 11 Ub-related hub genes and 

immune cells (Figure 6B). It is worth noting that 

CD4+memory resting T cells and monocytes cells were 

significantly correlated with all core genes (P < 0.001). 

Our analysis revealed a significant correlation between 

these genes and immune cells, suggesting their pivotal 

role in the immune process of TB. 

 

To further verify the correlation between these hub 

genes and immune cells, we utilized scRNA-seq on 

PBMCs derived from public datasets to determine the 

locations of the 11 hub genes. Our findings indicated 

that WDFY1, ZBTB1, and ZNF131 were dominantly 

expressed in monocytes, T, NK, B, and dendritic cells, 

while the expression levels of FBXL15, TRIM7, 

UTP15, EML5, TRIM68, and CORO6 were relatively 

low in all subclusters (Figure 6C, 6D). 

 

Consensus clustering analysis of Ub-related clusters 

and GSVA of biological pathways 

 

Consensus clustering analysis was conducted using the 

“Consensus Cluster Plus” package in R software. Based 

 

 
 

Figure 3. Enrichment in GO analyses based on UbDEGs. Enrichment in GO BP (A), CC (B) and MF (C) analysis. Abbreviations: GO: 

Gene Ontology; BP: Biological process; CC: Cellular component; MF: Molecular function. 
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on the expression of 11 Ub-related hub genes to 

investigate more thoroughly the interactions and 

consistency among DEGs, we established that k = 2 

yielded the most consistent grouping (Figure 7A). After 

that, the 565 TB samples were divided into two distinct 

subclusters, cluster A (n = 163) and cluster B (n = 402). 

The expression levels of 11 hub genes in these two 

clusters were visualized via a boxplot (Figure 7B). Most 

 

 
 

Figure 4. Employment of machine learning techniques in identifying the Ub-related hub gene. (A–D) Construction of Ub-related 

genes using LASSO, SVM, Xgboost, and RF. (E) The overlapping of hub genes between the four machine learning algorithms illustrated by 
Venn diagram. (F) The relationship between the 11 Ub-related hub genes. Abbreviations: LASSO: least absolute shrinkage and selection 
operator; SVM: support vector machine; XGBoost: eXtreme Gradient Boosting; RF: random forest. 
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Ub-related hub genes showed significantly different 

expression levels between clusters B and A, except for 

WDFY1. 

 

By utilizing GSVA analysis, we identified several 

pathways with differential expression. These pathways 

were shown by a heatmap (Figures 7C–7E). Compared 

with cluster B, the expression of KEGG pathways 

linked with Basal transcription factors, small cell lung 

cancer, colorectal cancer, T cell receptor signaling 

pathway, TGF-beta signaling pathway were 

dramatically reduced in cluster A, while drug 

metabolism other enzymes, pentose phosphate 

pathway, and fructose and mannose metabolism were 

higher in cluster A (Figure 7C). In cluster A, Hallmark 

activities of DNA repair, oxidative phosphorylation, 

fatty acid metabolism, myogenesis were higher, while 

G2M checkpoint, E2F targets, hedgehog signaling were 

lower (Figure 7D). According to the Reactome-based 

pathway, GSVA analysis displayed significant 

enrichment in insertion of tail anchored proteins into the 

endoplasmic reticulum membrane, post chaperonin 

tubulin folding pathway, WNT5A dependent inter-

nalization of FZD2 FZD5 and ROR2 in cluster A. In 

contrast, transcriptional activation of mitochondrial 

biogenesis, synthesis of PIPs at the early endosome 

membrane, cohesion loading onto chromatin, and 

meiotic synapsis were enriched in cluster B (Figure 7E). 

 

Functional distinctions between the two Ub-related 

subclusters 

 

In order to obtain a more profound comprehension of 

the functional differences between the two subclusters,  

 

 
 

Figure 5. (A) Developed nonadherence nomogram. (B) The calibration curves for predicting nonadherence using the nomogram in the 
cohort are illustrated. (C) Decision curve analysis for the nomogram. (D) ROC curve of Ub-related hub genes in TB diagnosis. 
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Figure 6. Immune cell enrichment in patients with TB. (A) The proportion of all 22 types of immune cells. (B) The relationship 

between 11Ub-related hub genes and 22 immune cells. (C) The location of the 11 Ub-related genes. (D) Dot plot showing the 11 Ub-related 
genes in each cell cluster. *p < 0.05, ***p < 0.001. 

 

 
 

Figure 7. Identification of Ub-related subclusters in TB samples and GSVA. (A) Subclusters were performed with 11 Ub-related 
hub genes. (B) Boxplot showing the expression level of 11 Ub-related hub genes in cluster A and B. Enrichment of pathways based on the 
KEGG (C), HALLMARK (D), and Reatcome pathway (E). GSVA, gene set variation analysis. **p < 0.01; ***p < 0.001. 
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a differential expression analysis was conducted. A total 

of 678 DEGs were identified with |log2 fold change| > 

0.585 and P < 0.05, out of which 210 were upregulated 

and 468 were downregulated. The volcano plotting was 

employed to depict the distribution of DEGs between the 

two subclusters (Figure 8A). Additionally, GO and 

KEGG enrichment analysis was conducted on the 678 

DEGs to better understand their possible molecular 

processes and functions. The genes showed enrichment 

in innate immune response, defense response to virus, 

antibacterial humoral response, negative regulation of 

viral genome replication, and innate immune response in 

mucosa, as was indicated by BP- Gene Ontology analysis 

(Figure 8B). Moreover, the KEGG enrichment analysis 

illustrated that these genes were predominantly enriched 

in transcriptional misregulation in cancer, acute myeloid 

leukemia, staphylococcus aureus infection, pertussis, and 

complement and coagulation cascades (Figure 8C). 

Immune cell infiltration investigation revealed that the 

abundance of neutrophils, resting memory CD4 T, 

activated memory CD4 T, activated NK, and activated 

Dendritic cells were higher in cluster B. In contrast, CD8 

T, regulatory T cells, monocytes, and macrophages M0 

were lower in cluster B than cluster A (Figure 8D). All 

these findings were consistent with GSVA results. 

 

Ub-related hub genes in TB-related disease 

 

Numerous publications have already reported on the 

correlation between TB and various diseases, such as 

 

 
 

 

Figure 8. Functional and immune cell enrichment analysis between Ub-related subcluster. (A) The volcano plotting of DEGs. (B) 

Enrichment items in GO BP and (C) KEGG pathway analysis. (D) The proportion of all 22 types of immune cells. *p < 0.05; ***p < 0.001. 
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rheumatoid arthritis (RA) [24], chronic obstructive 

pulmonary disease (COPD) [25], corona virus disease 

2019 (COVID-19) [26], and lung adenocarcinomas 

(LA) [27]. To delve further into the potential 

involvement of Ub-related genes in these diseases, we 

conducted an analysis using ssGSEA. Compared to HC, 

the score of E1 family was significantly changed in all 

TB-related diseases (Figure 9). The E2, DUB and UBD 

scores showed differently in RA, COVID-19 and LA. 

The results showed in Figure 9 suggested that 

ubiquitination may play a part in the development of 

these conditions. We observed varying levels of gene 

 

 

 
Figure 9. ssGSEA score of E1, E2, E3, DUB, UBD, ULD and the expression of 11 Ub-related hub genes in RA (A), COPD (B), COVID-19 (C), and 

LA (D) dataset. Abbreviations: RA: rheumatoid arthritis; COPD: Chronic obstructive pulmonary disease; COVID-19: corona virus disease 
2019; LA: lung adenocarcinomas. 
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expression in the samples of these diseases, with 

TRIM68 standing out as having a significantly different 

expression across the range of diseases (Figure 9). That 

may suggest an essential role for TRIM68 in the 

association between TB and these diseases. 

 

Additionally, TRIM68 displayed stronger correlations 

with a range of immune cells in various diseases 

(Figure 10), indicating a possible involvement in the 

immune processes related to these conditions. 

 

DISCUSSION 
 

The significant threat that active TB poses to public 

health spurs us to seek approaches for early detection 

and treatment to treat TB on a global scale. Owing to 

the complex immune mechanisms that contribute to 

the resistance of Mtb infection and the variability in 

cells involved, obtaining a comprehensive under-

standing of transcript abundance and their functions  

in TB pathogenesis. In this context, the results  

of ssGSEA provide insight into the Ub-related 

signature of TB and further explore promising 

diagnostic markers for differentiating TB from HC. 

E1, E3, and UBD were identified among TB patients 

as compared to HC. Upon Mtb infection, E1 and E3 

facilitate the ubiquitination and degradation of TRAF2 

and TAK1, thereby impeding the activation of NF-κB 

signaling and host innate responses [28]. Host 

ubiquitin ligases ubiquitinate intracellular Mtb for 

specific delivery to E3 receptor-mediated phagosomes 

[11]. Pathogens exploit the host Ubiquitin system in 

targeting conserved signal cascades, such as the UBD-

like motif, to impede innate immunity against Mtb 

[11]. 

 

In total, we identified 96 UbGEGs and conducted GO 

and KEGG analysis, which indicated that these genes 

are closely associated with ubiquitination and immune 

processes. We utilized four machine learning classifiers 

to select the top 11 hub genes (WDFY1, FBXL15, 

ZBTB1, VHL, TRIM7, UTP15, EML5, TRIM68, 

CORO6, ZNF131, and UBA7). To further investigate 

the relationship between Ub regulators and TB, we 

analyzed the correlation between hub UbDEGs. The 

results demonstrated significant evidence of synergistic 

or antagonistic interactions among Ub-related hub genes 

in TB samples. Studies have examined the function of 

 

 

 
 

Figure 10. The relationship between TRIM68 and 22 immune cells in four TB-related diseases. *p < 0.05; ***p < 0.001. 
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WDFY1 protein as a scaffold/recruiting protein for 

TLR3/4 in the immune system, as well as its 

involvement in various oncogenic conditions [29]. 

ZBTB1 plays a role in the regulation of B cell 

development and differentiation in both peripheral 

lymphoid organs and bone marrow [30]. Liu et al. 

discovered that mice with VHL deficiency in T cells 

exhibit increased vulnerability to Mtb infection due to a 

decrease in the accumulation of mycobacteria-specific T 

cells in the lungs with decreased proliferation, altered 

differentiation, and increased expression of inhibitory 

receptors [31]. TRIM7 suppresses the replication of 

enterovirus and facilitates the emergence of a viral 

variation with escalated pathogenicity [32]. TRIM68, 

UTP15, CORO6, ZNF131, and UBA7 are associated 

with tumors [33–36]. Recent literature suggested 

TRIM7 was the blood signature [37]. The immune cell 

infiltration results and scRNA analysis revealed that 

these hub Ub-related genes correlated with the immune 

cells. Nevertheless, there is less documentation on the 

significance of these genes in TB, and additional 

investigations are necessary. 

 

Utilizing consensus clustering analysis based on 11 

Ub-related hub genes, we identified two distinct Ub-

related subclusters. In terms of subcluster function 

analyses, we conducted GSVA and found that cluster 

B showed relatively higher levels of immune-related 

pathways and lower levels of metabolic-related 

pathways. GO analysis revealed that DEGs were 

primarily enriched in immune-related biological 

processes, while KEGG analysis demonstrated  

that these genes were predominantly enriched in 

transcription misregulation in cancer, acute myeloid 

leukemia, and other pathways. It is well-established 

that TB can trigger an immune response. CD16- 

classical monocytes have displayed more significant 

anti-mycobacterial immune responses during TB 

infection when compared to CD16+ monocytes. This 

includes increased migration in vitro in response to 

mycobacterial derivatives, higher production of 

Reactive Oxygen Species, higher lung migration 

index, and strong pulmonary infiltration [38]. In 

contrast, CD16+ monocytes have been linked to 

promoting bacterial resilience [39]. CD8+ T and NK 

cells are essential components of the immune response 

to tuberculosis, with critical roles played by 

macrophages, effector CD4+ T lymphocytes, and 

IFN-γ, produced by Th1 cells and triggers macrophage 

activation [40]. The ssGSEA method was applied to 

calculate the score of Ub-related signatures, which 

suggested that Ub-related genes played a role in TB-

related diseases. TRIM68 was implicated in the 

pathogenesis of TB and other TB-related diseases, and 

was also linked to the immune response underlying 

these diseases. 

CONCLUSIONS 
 

To sum up, our research thoroughly characterized 11-

Ub related hub genes and identified crucial molecular 

disparities between TB and HC through a combination 

of array-based expression profiling and scRNA-seq. 

These findings underscore the importance of 

longitudinal studies to examine whether biomarkers  

of recent infection can predict the likelihood of 

developing TB, and to assist in tracing current 

transmission in populations. Moreover, the identified 

Ub-related genes could potentially be targeted for TB 

treatment. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. ROC curve of Ub-signatures in GSE62525 (A) and GSE83456 (B) in TB diagnosis. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 2. 

 

Supplementary Table 1. The markers in different cells type used in this study. 

Cells type Markers 

T cells  CD3D, CD3E, TRBC1 

NK cells CD3D, KLRD1, NKG7, KLRC1, FCGR3A 

B cells MS4A1, CD79A, CD79B 

Neutrophils LYZ, CSF3R, CXCR2, FCGR3B 

monocytes LYZ, CD14, FCN1, FCGR3A, S100A9 

Dendritic cells FCER1A, IL3RA, CLEC4C, LILRB4 

 

Supplementary Table 2. Ubiquitination-related genes used in this study. 

 


