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INTRODUCTION 
 

Cutaneous melanoma (CM) is a highly metastatic and 

aggressive malignancy with an increasing incidence 

worldwide [1]. Accounting for 5% of skin 

malignancies and causing more than 70% of deaths, 

CM poses a significant challenge to human health [2]. 

The main cause of death in melanoma patients is 

widespread, and the 5-year survival rate is less than 

23% [3]. Despite the promising attention received by 

immunotherapies such as PD-1/PD-L1 and CTLA4 in 

CM treatment, the prognosis of CM remains 

unsatisfactory [4]. Therefore, there is an urgent need to 

investigate the mechanisms underlying the tumori-

genesis and progression of CM to identify novel 

markers for its diagnosis and treatment. 
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ABSTRACT 
 

Cutaneous melanoma (CM) is widely acknowledged as a highly aggressive form of malignancy that is associated 
with a considerable degree of morbidity and poor prognosis. Despite this recognition, the precise role of hypoxia-
related long noncoding RNAs (HRLs) in the pathogenesis of CM remains an area of active research. This study 
sought to elucidate the contribution of HRLs in CM by conducting a thorough screening and extraction of hypoxia-
related genes (HRGs). In particular, we conducted univariate and multivariate Cox regression analyses to assess the 
independence of the prognostic signature of HRLs. Our results demonstrated that a novel risk model could be 
established based on five prognostic HRLs. Remarkably, patients with low-risk scores exhibited significantly higher 
overall survival rates compared to their high-risk counterparts, as confirmed by Kaplan-Meier survival analysis. 
Furthermore, we utilized consensus clustering analysis to categorize CM patients into two distinct subtypes, which 
revealed marked differences in their prognosis and immune infiltration landscapes. Our nomogram results 
confirmed that the HRLs prognostic signature served as an independent prognostic indicator, offering an accurate 
evaluation of the survival probability of CM patients. Notably, our findings from ESTIMATE and ssGSEA analyses 
highlighted significant disparities in the immune infiltration landscape between low- and high-risk groups of CM 
patients. Additionally, IPS and TIDE results suggested that CM patients in different risk subtypes may exhibit 
favorable responses to immunotherapy. Enrichment analysis and GSVA results indicated that immune-related 
signaling pathways may mediate the role of HRLs in CM. Finally, our tumor mutation burden (TMB) results 
indicated that patients with low-risk scores had a higher TMB status. In summary, the establishment of a risk model 
based on HRLs in this study provided an accurate prognostic prediction and correlated with the immune infiltration 
landscape of CM, thereby providing novel insights for the future clinical management of this disease. 
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Hypoxia is the most important and prevalent 

characteristic of the microenvironment in tumors and is 

closely associated with tumor proliferation and 

metastasis, which typically indicates poor prognosis [5]. 

Several reports have indicated that the majority  

of malignant tumors are associated with hypoxia, 

including prostate cancer, glioblastoma multiforme, 

malignant melanoma, breast cancer, and metastatic liver 

cancer [6]. In tumor biology, the vasculature of tumors 

is often unable to keep pace with the rapidly 

proliferating tumor cells, resulting in highly hypoxic 

regions. This aggressive phenotype in tumors is further 

conferred by upregulating angiogenic, survival, 

proliferative, and metastatic pathways [7]. Previous 

studies have demonstrated that hypoxia is a well-

accepted aggravating factor in tumor development that 

facilitates metastasis, such as promoting lymph node 

metastasis in melanoma [8]. It has been reported that 

hypoxia can promote uveal melanoma cell angiogenesis 

and metastasis by upregulating the expression of 

glycosylate - secreted protein ANGPTL4 and VEGF 

[9]. Notably, as a characteristic feature of virtually all 

solid tumors, hypoxia can also directly modulate the 

tumor immune microenvironment [10]. Hypoxia can 

lead to tumor immunosuppression and immune escape 

[11]. However, few studies have described the under-

lying mechanisms of hypoxia in CM. 

 

Long non-coding RNAs (lncRNAs) are a novel class of 

non-protein-coding transcripts longer than 200 

nucleotides that lack apparent protein coding potential 

[12, 13]. Previous studies have reported that lncRNAs 

are expressed abnormally in multiple diseases and 

participate in various biological and physiological 

processes, including cell proliferation, apoptosis, and 

migration [14, 15]. With the in-depth study of lncRNAs, 

dysregulation of lncRNAs has been found to be 

involved in the tumorigenesis and development of 

human tumors, including melanoma [16]. Furthermore, 

lncRNAs have close relationships with the development 

of CM, including cell cycle arrest, inhibition of tumor 

microenvironment formation, activation of tumor cell 

signal pathway, and poor prognosis [17, 18]. 

Nevertheless, the role of hypoxia-related long non-

coding RNAs (HRLs) in CM remains elusive. 

 

Currently, bioinformatics approaches are widely utilized 

to characterize diseases, and lncRNA-based prognostic 

models have been developed to evaluate patient 

prognosis [15]. In this study, an HRL-based model was 

established using The Cancer Genome Atlas (TCGA) 

database, and 5 HRL signatures were used to predict the 

prognosis and evaluate the immune infiltration 
landscape of CM patients. Moreover, the response to 

drug sensitivity and immunotherapy of patients  

in different risk subtypes was comprehensively 

investigated, and the possible molecular mechanisms 

were illustrated in detail. Abnormal expressions of 

HRLs in CM were further verified in cell lines using 

qRT-PCR. Collectively, the findings of this study 

provide novel insights and perspectives for the clinical 

management of CM patients. 

 

MATERIALS AND METHODS 
 

TCGA dataset collection 

 

For this study, we obtained the transcriptome matrix  

in RNA-seq FPKM format and clinical information  

from The Cancer Genome Atlas database (TCGA) 

(https://portal.gdc.cancer.gov/). We excluded patients 

with melanoma who had no survival time or a survival 

time of less than zero from the analysis, resulting in 454 

melanoma samples for further analysis. To annotate the 

transcriptome matrix symbols (mRNA and lncRNA), we 

used the ensembles human genome browser GRCh38.p13 

(http://asia.ensembl.org/index.html) with the assistance of 

Perl scripts. We retrieved the patients’ clinical 

characteristics, such as age, gender, stage, and TN stage, 

from the TCGA database using Perl scripts. We excluded 

samples in M stage due to the significant difference in 

sample size. All clinical information and data were 

obtained from public databases, and therefore, written 

informed consent from patients and approval from the 

ethics committee were not required for this study. 

 

Identification of HRLs and risk model construction 

 

We obtained 200 hypoxia-related genes (HRGs) from 

the Molecular Signature Database (MSigDB) 

(https://www.gsea-msigdb.org/gsea/) (details provided 

in Supplementary Table 1). Subsequently, we 

performed Pearson correlation analysis to identify a set 

of 186 lncRNAs that were significantly associated with 

HRGs, termed HRLs, based on a threshold of 

|correlation coefficient| > 0.5 and P < 0.001 (|r| > 0.5, P 

< 0.001) (details provided in Supplementary Table 2). 

Using Perl scripts, we extracted the expression levels of 

the HRLs from the transcriptome matrix and merged 

them with the corresponding clinical characteristics 

information for further analysis. We performed 

univariate Cox regression analysis using the R package 

“survival” to identify HRLs significantly associated 

with the overall survival (OS) rate of CM. From this, we 

selected 51 HRLs that met the predefined criteria 

(details provided in Supplementary Table 3) for further 

analysis. The least absolute shrinkage and selection 

operator (LASSO) regression analysis was employed 

using the R package “glmnet” to identify the most 

characteristic variables among the prognostic HRLs. 

The candidate HRLs were selected using multivariate 

Cox regression analysis, which was performed using the 

https://portal.gdc.cancer.gov/
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R package “survival” to establish the risk model. The 

risk score for each CM patient was calculated using the 

following formula: risk score = (-0.357 x expression of 

LINC00324) + (0.221 x expression of EBLN3P) + 

(0.218 x expression of MIR205HG) + (-0.118 x 

expression of THCAT158) + (-0.439 x expression of 

USP30-AS1). Based on the median risk score, patients 

were divided into low- and high-risk groups. We used 

the Kaplan-Meier survival curve to evaluate the OS rate 

of patients in the two risk groups using the log-rank 

algorithm with the R package “survival”. We used the R 

package “ggplot2” to perform principal component 

analysis (PCA) to investigate the distribution pattern 

between the low- and high-risk groups. We visualized 

the expression of HRLs in the low- and high-risk groups 

using the R package “pheatmap”. 

 

Function enrichment analysis and tumor mutational 

burden landscape 

 

The tumor mutation data in maf format of CM samples 

were retrieved from the TCGA database. Perl scripts were 

used to extract the mutation data from the raw data, and 

the “Maftools” package in R software was employed to 

create a waterfall diagram. To identify differentially 

expressed genes (DEGs) between patients in the low- and 

high-risk group, the R package “limma” was utilized, with 

a threshold of |fold change| ≥ 2 and P < 0.05. The KEGG 

terms of CM patients in the low- and high-risk group were 

calculated using Gene Set Variation Analysis (GSVA) 

with P < 0.05 considered significantly different. 

Furthermore, the “clusterProfiler” R package was used to 

conduct Gene Ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) analysis to enrich the DEGs 

into pathways [19].  

 

Independent prognosis analysis  

 

Univariate and multivariate Cox regression analyses are 

commonly used statistical methods to examine the 

association between survival outcomes and various 

factors, such as the HRLs prognostic signature and 

clinicopathological characteristics. The pROC package 

is utilized to assess the accuracy of diagnostic tests and 

predict AUC values. The timeROC package is 

employed to compute the AUC values for different time 

points. Nomogram models can integrate diverse 

prognostic factors to predict the survival probability, 

and the rms package is used to construct nomograms. 

The C-index plot is a tool to evaluate the predictive 

accuracy of survival models. The regplot package can 

be used to generate calibration diagrams that compare 

the predicted survival probability with the actual 
survival probability. The ggDCA package is employed 

to perform decision curve analysis, which assesses the 

clinical utility of prediction models. 

Validation of risk model and consensus clustering 

analysis 

 

The CM samples were divided into training and test 

cohorts in a random manner using the R package 

“caret,” at a ratio of 7:3. A total of 318 CM samples 

were assigned to the training cohort, while 136 samples 

were assigned to the test cohort. Utilizing the prognostic 

HRLs, the risk score for each CM sample was 

calculated according to the risk formula in both cohorts. 

The patients in both cohorts were subsequently 

categorized into low- and high-risk groups based on the 

median risk score. To classify the CM samples into 

different molecular subtypes, the R package 

“ConsensusClusterPlus” was employed. The clustering 

was based on partitioning around medoids with 

“euclidean” distances, using 1000 iterations, and with 

the maximum K value set at 9. Based on the optimal 

classification of K between 2 and 9, the CM samples 

were assigned to different molecular subtypes for 

further analysis. 

 

Cell culture and qRT-PCR analysis 

 

The human fibroblasts cell line HFB4 and human 

melanoma cell line A375 were obtained from the 

American Type Culture Collection (ATCC). To initiate 

the culture, the cryopreserved A375 and HFB4 cells 

were thawed in a 37° C water bath and transferred to 

sterile 15 mL centrifuge tubes containing 10 mL of 

DMEM/F12 culture medium under aseptic conditions. 

The tubes were then incubated in a humidified incubator 

at 37° C with 5% CO2 to promote cell growth and 

maintenance of cell viability. Subsequently, RNA 

extraction from both cell lines was performed using 

Trizol reagent (Catalogue number: 15596018, Thermo 

Fisher Scientific), followed by cDNA synthesis using a 

reverse transcription kit with gDNA Eraser (Perfect 

Real Time, Takara Bio). Real-time quantitative qRT-

PCR (Catalogue number: RR047A, Takara Bio) was 

carried out to perform further analysis. Finally, the 

lncRNA expression levels were measured using SYBR 

Pre-mix Ex Taq II (TliRNaseH Plus) (Catalogue 

number: RR820B, Takara Bio). 

 

Immune infiltration landscape, immunotherapy 

response and drug sensitivity analysis 

 

ESTIMATE algorithm was used to estimate the 

proportion of stromal and immune cells in CM samples, 

and the stromal, immune, ESTIMATE scores, and tumor 

purity were estimated using R package “estimate”. Then, 

single sample gene set enrichment analysis (ssGSEA) 
algorithm was used to evaluate the proportion of 23 types 

of immune cells and the immune function score of each 

CM sample via the “GSVA” R package. Spearman-
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ranked correlation analysis was used to investigate the 

association of prognostic IHRLs and immune cells, which 

were visualized in a heatmap using the “ggplot2” R 

package. In addition, the Immunophenoscore (IPS) results 

of CM patients were downloaded from the TCIA 

database, and the TIDE score of each sample was 

calculated using the TIDE database. Finally, the 

Genomics of Drug Sensitivity in Cancer (GDSC) database 

was utilized to evaluate drug sensitivity (IC50), and the 

response to antineoplastic drugs for each CM sample was 

predicted using the “pRRophetic” R package. Correlation 

analysis was used to investigate the correlation between 

risk score and drug sensitivity (IC50), and all statistical 

analysis were visualized using the “ggplot2” R package. 

 

Statistical analysis 

 

In this study, all statistical analyses were conducted 

using R software version 4.1.0 (http://www.R-

project.org) and Perl scripts. The correlation between 

two variables was calculated using the Spearman’s rank 

correlation algorithm, and statistical significance was 

set at a threshold of P < 0.05. Differential functions 

were analyzed using the Wilcoxon rank-sum test 

between the two groups, and statistical significance was 

set at a threshold of p < 0.05. 

 

Availability of data and materials 

 

The data used to support the findings of this study are 

included within the article. The data and materials in the 

current study are available from the corresponding 

author on reasonable request. 

 

RESULTS 
 

Risk model development based on HRLs prognostic 

signature in CM 

 

In this study, we developed a novel risk model to 

investigate the prognostic value of HRLs in predicting 

the prognosis for CM. To identify the HRLs, we 

performed Pearson correlation analysis and identified  

186 lncRNAs that were associated with HRGs 

(Supplementary Figure 1A). Then, we used the least 

absolute shrinkage and selection operator (LASSO) 

analysis and identified 8 HRLs that were associated with 

OS rate (Figure 1A and Supplementary Figure 1B) based 

on univariate Cox regression analysis. Multivariate Cox 

regression analysis showed that 5 HRLs could 

independently predict the OS rate of CM, and they were 

used to construct the risk model. Based on the median of 

risk score, we ranked and divided the patients with CM 

into low- and high-risk groups. The scatter dot plot 

showed that the HRLs prognostic signature was inversely 

associated with survival time in CM (Figure 1B). The 

Kaplan-Meier survival curve analysis indicated that 

patients with low-risk scores had a significantly higher 

OS rate compared to those with high-risk scores (Figure 

1C). Moreover, principal component analysis (PCA) 

illustrated a clear separation between the low- and high-

risk groups based on the HRLs prognostic signature 

(Figure 1D). The heatmap visualizable diagram result 

showed that the expression of LINC00324, USP30-AS1, 

EBLN3P, and THCAT158 were significantly higher in 

the low-risk group, whereas the expression of 

MIR205HG was higher in the high-risk group (Figure 

1E). These findings indicate that the construction of the 

risk model for the HRLs prognostic signature is closely 

associated with the prognosis of patients with CM. 

 

Validation of risk model based on HRLs prognostic 

signature 

 

An internal validation was conducted to assess the 

accuracy and independence of the HRLs prognostic 

signature in predicting the prognosis of CM patients. The 

patients were randomly split into a training cohort and a 

test cohort in a 7:3 ratio, resulting in 318 samples in the 

training cohort and 136 samples in the test cohort. Using 

the 5 prognostic HRLs, the risk score of each CM sample 

was calculated and categorized into low- and high-risk 

groups in both cohorts. The patients in the training cohort 

were ranked based on their median risk score, and the 

scatter dot plot showed an inverse correlation between 

the risk score and survival time (Figure 2A). Similarly, 

the patients in the test cohort were ranked according to 

the median risk score, and the scatter dot plot indicated 

an inverse correlation between the risk score and survival 

time (Figure 2C). The Kaplan-Meier survival curve 

analysis showed that patients in the low-risk group had a 

significantly higher OS rate than those in the high-risk 

group (Figure 2D). The PCA score plot revealed a clear 

separation between the low- and high-risk groups in both 

cohorts (Figure 2E–2H). Furthermore, the heatmap 

diagram showed that the low-risk group had higher 

expression levels of LINC00324, USP30-AS1, EBLN3P, 

and THCAT158, while the high-risk group had a higher 

expression level of MIR205HG, in both cohorts. These 

findings suggest that the HRLs prognostic signature 

accurately predicts the prognosis of CM patients. 

 

The prognostic signature based on HRLs was an 

independent prognosis indicator for CM 

 

Univariate and multivariate Cox regression analyses 

were employed to assess the ability of the risk score 

based on HRLs prognostic signature to serve as an 

independent prognostic indicator for CM. The results of 
the univariate analysis showed a close association 

between age (HR = 1.020, P < 0.001), stage (HR = 

1.473, P < 0.001), T (HR = 1.445, P < 0.001), N (HR = 

http://www.r-project.org/
http://www.r-project.org/
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1.443, P < 0.001), risk score (HR = 1.798, P < 0.001) 

and OS rate in patients with CM (Figure 3A). On the 

other hand, the multivariate Cox regression analysis 

indicated that age (HR = 1.013, P = 0.025), T (HR = 

1.315, P = 0.002), N (HR = 1.550, P < 0.001), and risk 

score (HR = 1.546, P < 0.001) were all independent 

prognostic indicators for CM patients (Figure 3B). The 

ROC curve demonstrated that the risk model had an 

AUC of 0.729, indicating a satisfactory predictive 

ability for CM (Figure 3C). Furthermore, a stratified 

subgroup analysis was conducted to evaluate the 

prognostic value of the HRLs prognostic signature in 

different clinicopathological characteristics. The 

patients with CM were categorized into low- and high-

risk groups based on the median risk score, and the 

analysis was performed across various clinico-

pathological characteristics, including age (age ≤ 65 vs 

age > 65), gender (female vs male), N (N 0-1- vs N 2-

3), stage (stage 0-1 vs stage 2-4), T (T 0-1 vs T 2-4). 

The Kaplan-Meier survival curve analysis revealed that 

the OS rate of patients with a low-risk score was 

significantly higher than those with a high-risk score 

across different clinicopathological characteristics 

(Figure 3D–3M). These results collectively demonstrate 

that the risk score based on the HRLs prognostic 

signature is an independent prognostic indicator that can 

effectively predict the prognosis of CM patients in 

comparison to other clinicopathological characteristics. 

 

Nomogram construction based on the HRLs 

prognostic signature and clinicopathological 

characteristics 

 

A nomogram has been developed to accurately assess 

the probability of survival at 1, 3, and 5 years for 

patients with CM, based on their HRLs prognostic 

 

 
 

Figure 1. Risk model construction based on the HRLs prognostic signature in CM. (A) LASSO regression analysis shows the optimal 

coefficients and minimum lambda. (B) Risk score distribution, and the scatter dot plot shows the correlation between risk score and survival 
time in CM. (C) Kaplan-Meier survival curve analysis suggests that the OS rate of patients with low-risk score is longer than those with high-
risk score. (D) Principal component analysis illustrates a significant separation between low- and high-risk group. (E) Heatmap diagram shows 
the expression of 5 prognostic HRLs of patients in the low- and high-risk group. 



www.aging-us.com 11923 AGING 

signature and clinicopathological characteristics (Figure 

4A). The concordance index (C-index) curve showed 

that the predictive capability of the HRLs signature in 

predicting prognosis of CM patients was better than 

other clinicopathological characteristics (Figure 4B). 

The calibration curve indicated that the predicted OS 

rates for 1, 3, and 5 years using the nomogram were 

consistent with the actual OS rates (Figure 4C). The 

decision curve analysis (DCA) and ROC curve results 

also suggested a satisfactory predictive ability of the 

nomogram for predicting the survival probability of CM 

patients (Figure 4D, 4E). The time-dependent ROC 

curve indicated that the AUC for 1, 3, and 5 years was 

0.689, 0.658, and 0.699, respectively (Figure 4F). In 

summary, these findings demonstrate that the 

nomogram construction based on HRLs prognostic 

signature accurately predicts the prognosis of CM 

patients and is highly reliable. 

 

Functional enrichment analysis of differential 

expressed genes (DEGs)  

 

To investigate the potential molecular mechanisms of 

CM patients in the low- and high-risk groups, GSVA 

and enrichment analysis were employed. The volcano 

diagram (Figure 5A) illustrates the differentially 

expressed genes (DEGs) in the low- and high-risk 

groups. GSVA was used to calculate the activity of 

KEGG pathways, and the results suggested a 

remarkable down-regulation in immune-related 

signaling pathways of CM patients in the high-risk 

group (Figure 5B). KEGG enrichment analysis 

indicated that the DEGs were significantly enriched in 

cytokine-cytokine receptor interaction, cell adhesion 

molecules, and chemokine signaling pathways (Figure 

5C). GO enrichment analysis illustrated that DEGs were 

enriched in immune-related biological processes, such 

as leukocyte-mediated immunity, positive regulation of 

cell activation, and positive regulation of leukocyte 

activation (Figure 5D). These results suggest that 

immune-related processes may play a role in mediating 

the effects of HRLs in CM patients. 

 

Consensus clustering analysis and immune 

infiltration landscape 

 

The molecular subtypes of cutaneous melanoma (CM) 

were further investigated using a set of five prognostic 

HRLs. Consensus clustering was employed to classify 

the CM patients into different molecular subtypes, 

 

 
 

Figure 2. Risk model construction in training cohort and test cohort based on the prognostic HRLs. (A) Distribution of risk score 

in training cohort. (B) Kaplan-Meier survival curve analysis of patients with CM in training cohort. (C) Distribution of risk score in test cohort. 
(D) Kaplan-Meier survival curve analysis of patients with CM in test cohort. (E) PCA score plot shows a clear separation between low- and 
high-risk group in training cohort. (F) Heatmap diagram displays the expression of 5 prognostic HRLs in training cohort. (G) PCA score plot 
shows a clear separation between low- and high-risk group in test cohort. (H) Heatmap diagram displays the expression of 5 prognostic HRLs 
in test cohort. 
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resulting in an optimal classification of K=2, with 309 

samples in Cluster A and 145 samples in Cluster B, as 

illustrated in the heatmap (Figure 6A). Kaplan-Meier 

survival analysis revealed a significant difference in the 

overall survival (OS) rate between patients in Cluster A 

and Cluster B, with Cluster A exhibiting a higher OS 

rate than Cluster B (Figure 6B). Additionally, the results 

of principal component analysis (PCA) demonstrated a 

clear separation of patients in Cluster A and Cluster B 

based on the five prognostic HRLs (Figure 6C). 

Furthermore, the ESTIMATE assessment algorithm 

indicated that patients in Cluster B had higher stromal, 

immune, and ESTIMATE scores and lower tumor 

purity than those in Cluster A (Figure 6D–6G). 

Similarly, the results of the ssGSEA algorithm revealed 

that the proportion of most immune cells was higher in 

patients in Cluster B (Figure 6H). Moreover, immune 

function analysis demonstrated that patients in Cluster 

B had a higher immune function score than those in 

Cluster A, as evidenced by higher cytolytic activity and 

T cell co-inhibition (Figure 6I). These findings 

demonstrate that the five prognostic HRLs can 

accurately classify CM samples into different molecular 

subtypes that are associated with prognosis and immune 

infiltration landscape. 

 

Association of HRLs prognostic signature and 

immune infiltration landscape  

 

The present study investigated the association between 

the HRLs prognostic signature and the immune 

infiltration landscape. The ESTIMATE analysis showed 

that patients in the low-risk group had higher stromal, 

immune, and ESTIMATE scores, and lower tumor 

purity (Figure 7A–7D). Additionally, the immuno-

therapy prediction analysis indicated that patients with 

high-risk scores had lower TIDE scores, suggesting a 

better response to immunotherapy for patients 

 

 
 

Figure 3. Independent prognosis analysis of HRLs prognostic signature and clinicopathological characteristics. (A) Univariate 

Cox regression analysis shows that age, stage, T, N, and risk score are closely associated with OS rate in CM. (B) Multivariate Cox regression 
analysis reveals that risk score is an independent prognostic indicator of patients with CM. (C) ROC curve shows the AUC of HRLs prognostic 
signature and different clinicopathological characteristics. (D–M) The Kaplan-Meier survival curve shows the OS rate of patients with low- and 
high-risk score in different clinicopathological characteristics. 
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in the high-risk group (Figure 7E). Furthermore, the 

response to anti-CTLA4 and anti-PD-1 immuno-

therapies was evaluated for CM patients in the low- and 

high-risk groups. The IPS analysis suggested that the 

low-risk group showed a promising response to anti-

CTLA4, antiPD-1, and anti-CTLA4/PD-1 (Figure 7F–

7H). ssGSEA and immune function score analysis 

revealed that patients in the low-risk group had a higher 

proportion of immune cells and immune function scores 

than those in the high-risk group (Figure 7I, 7J). 

Moreover, the expression of ICI analysis showed higher 

expression of LAG3, CTLA4, PD−1, PDCD1LG2, and 

PD−L1 in the low-risk group (Figure 7K). Finally, a 

correlation analysis was conducted to investigate the 

association between the 5 prognostic HRLs and immune 

infiltration landscape. The results showed that 

LINC00324 and USP30−AS1 were positively correlated 

with 23 types of immune cells, while EBLN3P and 

 

 
 

Figure 4. Nomogram construction based on HRLs prognostic signature and clinicopathological characteristics. (A) Construction 
of nomogram model to predict 1-, 3-, and 5-years survival probability of patients with CM. (B) Concordance index curve of risk score and 
clinicopathological characteristics. (C) Calibration curve reveals the consistence of nomogram-predict OS and actual OS. (D) Decision curve 
analysis (DCA). (E) ROC curve shows the AUC of nomogram, risk score, and clinicopathological characteristics. (F) Time-dependent ROC curve 
shows the AUC of 1-, 3- , and 5-years. 
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THCAT158 were negatively associated with most of the 

23 types of immune cells (Figure 7L). These findings 

suggest that the risk model based on HRLs prognostic 

signature is closely associated with the immune 

infiltration landscape and may aid in the evaluation of 

the immunotherapy response of CM patients in different 

risk subgroups. 

 

Correlation analysis of risk score and drug 

sensitivity  

 

Targeted drug therapy has emerged as a promising 

approach in treating patients with cutaneous melanoma 

(CM). In light of the substantial differences in 

immunotherapy responses among CM patients in 

various risk subgroups, we conducted further inves-

tigations to assess the sensitivity of antineoplastic drugs 

in different risk groups. Our results, as depicted in 

Figure 8A–8H, demonstrate that the IC 50 values of 

Paclitaxel, AKT inhibitor VIII, Rapamycin, Pazopanib, 

Lapatinib, Crizotinib, and Sunitinib were significantly 

higher in the high-risk group, whereas the IC 50 of 

Sorafenib was significantly higher in the low-risk 

group. Furthermore, correlation analysis revealed a 

positive correlation between risk score and Paclitaxel, 

AKT inhibitor VIII, Rapamycin, Pazopanib, Lapatinib, 

Crizotinib, and Sunitinib, but a negative correlation 

with Sorafenib (Figure 8I–8P). Taken together, these 

results suggest that CM patients in different risk 

subgroups may exhibit distinct sensitivities to 

antineoplastic drugs, providing a new perspective for 

the development of precisely targeted drug and chemo-

therapy for CM. 

 

The landscape of somatic gene mutations based on 

the HRLs prognostic signature 

 

Tumor mutational burden (TMB) has emerged as a 

promising biomarker for predicting immunotherapy 

response in tumors. Our analysis of TMB indicated that 

patients in the low-risk group exhibited a higher TMB 

compared to those in the high-risk group (Figure 9A). 

Furthermore, Kaplan-Meier survival curve analysis 

revealed that patients with a high-risk score had a 

 

 

 

Figure 5. Functional enrichment analysis of differential expression genes (DEGs) in low- and high-risk group. (A) Volcano 
diagram shows the DEGs in the low- and high-risk group with the threshold set at |Fold Change| ≥ 2 and P < 0.05. (B) GSVA reveals the 
activity of KEGG signal pathways of each CM patient in the low- and high-risk group. (C) KEGG enrichment analysis of DEGs. (D) GO 
enrichment analysis of DEGs. 
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Figure 6. Consensus clustering of CM samples and immune infiltration landscape evaluation.  (A) Consensus clustering 

heatmap shows the optimal classification under K= 2-9. (B) The Kaplan-Meier survival curve analysis of patients with CM in Cluster A and 
Cluster B. (C) PCA score plot illustrates a clear distribution between Cluster A and Cluster B. (D–G) Stromal, immune and ESTIMATE scores, 
and tumor purity. (H) The proportion of 23-type immune cells in Cluster A and Cluster B. (I) Immune function score of patients in Cluster A 
and Cluster B. 
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Figure 7. Association of risk score and immune infiltration landscape in CM. (A–D) Stromal, immune, ESTIMATE scores, and tumor 
purity. (E) TIDE score. (F–H) IPS score. (I) The proportion of 23-type immune cells of patients in the low- and high-risk group. (J) Immune 
function score. (K) Expression of immune checkpoints inhibitor (ICI) of in low- and high-risk group. The expression of ICI was transformed by 
log2 (expression + 1). (L) Correlation analysis of 5 prognostic HRLs and 23-type immune cells. 
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significantly lower overall survival (OS) rate than those 

with a low-risk score (Figure 9B). Additionally, the OS 

rate of patients with a low-risk score was significantly 

higher than those with a high-risk score in both H-TMB 

and L-TMB groups (Figure 9C). Analysis of the 

mutation frequencies of genes revealed that the low-risk 

group had higher mutation frequencies in most genes, 

including TTN, MUC16, BRAF, DNAH5, and PCLD 

(Figure 9D, 9E). These findings suggest that TMB may 

be a useful biomarker for predicting immunotherapy 

response in CM patients, and that patients in the low-

risk group may benefit from immunotherapy treatment. 

In vitro validation of the expression levels of five 

independent prognostic factors 

 

To validate the results of the public database, we 

assessed the expression of five distinct prognostic 

factors in both normal and CM cells using the human 

fibroblasts cell line HFB4 and human melanoma cell 

line A375. Our findings indicate that EBLN3P, 

LINC00324, THCAT158, and USP30-AS1 were 

significantly overexpressed in HFB4 cells, while 

MIR205HG was significantly overexpressed in A375 

cells (Figure 10). 

 

 
 

Figure 8. Correlation analysis of risk score and drug sensitivity. IC 50 of (A) Paclitaxel, (B) Sorafenib, (C) AKT inhibitor VIII, (D) 

Rapamycin, (E) Pazopanib, (F) Lapatinib, (G) Crizotinib, and (H) Sunitinib. (I–P) Correlation analysis of risk score and frug sensitivity. 
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DISCUSSION 
 

CM is a malignant skin tumor with a poor prognosis, 

and its incidence has been increasing in recent years. 

CM has the ability to metastasize and evade immune 

and cytotoxic attacks, making conventional therapies, 

particularly chemotherapy, insufficient [16, 20]. While 

early-stage CM is usually treated with surgical 

resection, immunotherapy has shown positive outcomes 

for inoperable or metastatic cases [21, 22]. Notably, the 

mechanisms involved in immunotherapy are too broad 

and individual differences in different patients, and the 

prognosis of cancer patients through immunotherapy 

also varies from different population [18, 23]. Thus, 

exploring CM in-depth and discovering new biomarkers 

and diagnostic options are critical for improving patient 

outcomes. 

 

The tumor microenvironment, particularly the hypoxic 

milieu, is known to play a significant role in the 

regulation of tumor cells, thereby influencing tumor 

progression and response to antitumor therapy [24, 25]. 

A mounting body of evidence indicates that the hypoxic 

microenvironment exerts a profound impact on tumor 

progression and response to therapy [26, 27]. The 

hypoxic microenvironment can facilitate tumor 

progression, metastasis, and heterogeneity, while also 

eliciting a range of immunosuppressive responses, such 

as modulating the levels of macrophages, natural killer 

cells, and T cells [28, 29]. Long non-coding RNAs 

(lncRNAs) are recognized to play a pivotal role in the 

communication between cancer cells and the hypoxic 

microenvironment. 

 

Long non-coding RNAs (lncRNAs) have emerged as 

critical players in various aspects of tumorigenesis, 

particularly as novel biomarkers for tumor diagnosis 

and prognosis [30]. However, current research on the 

relationship between lncRNAs, hypoxia, and CM 

mainly focuses on individual or select lncRNAs, and a 

 

 
 

Figure 9. The tumor mutational burden landscape of patient in the low- and high-risk group. (A) TMB analysis in the low- and 
high-risk group. (B) The Kaplan-Meier survival curve analysis of patients with low- and high-TMB. (C) Kaplan-Meier survival curve of patient 
with L-TMB and H-TMB in the low- and high-risk group. (D, E) The mutant landscape of CM patients in the low- and high-risk group. 
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systematic study on the prognostic prediction of CM 

patients using high-risk lncRNA (HRL) signatures is 

lacking. Therefore, it is crucial to establish HRL 

signatures based on large-scale databases for accurate 

prognosis prediction in CM. In this study, we developed 

a novel risk model based on five HRLs. Univariate and 

multivariate Cox regression analyses revealed that the 

risk score derived from the HRL prognostic signature 

could serve as an independent prognostic factor, 

distinguishing it from other clinicopathological charac-

teristics. Functional enrichment analysis demonstrated 

that HRLs may be involved in immune-related 

processes in CM. Results from immune infiltration 

analysis revealed that the HRL-based risk model  

could reflect the immune status of CM patients, 

providing insights for individualized immunotherapy. 

Additionally, drug sensitivity analysis revealed 

differences in response to antineoplastic drugs between 

the two CM subgroups identified by our risk model. 

Furthermore, mutation frequency analysis indicated that 

the low-risk group had higher mutation frequencies. 

Collectively, our findings provide a comprehensive 

view for the treatment of CM, contributing to the 

improvement of patient prognosis. 
 

Recent evidence suggests that long non-coding RNAs 

(lncRNAs) play a significant role in tumor tumorigenesis, 

invasion, and metastasis, and their dysregulated 

expression is associated with the progression and 

recurrence of various cancers, including cutaneous 

melanoma (CM). In our study, we found that the 

expression levels of LINC00324, USP30-AS1, EBLN3P, 

and THCAT158 were significantly higher in the low-risk 

group, whereas the high-risk group exhibited higher 

expression of MIR205HG. LINC00324, a 2115 bp 

lncRNA located on chromosome 17p13.1, has been found 

to be abnormally expressed in multiple human cancer 

types, correlating with tumor initiation and progression 

[31, 32]. Ding et al. reported that LINC00324 is a 

protective factor in melanoma patients [33], which is 

consistent with our findings. USP30-AS1, transcribed 

from the antisense strand of the USP30 gene, has been 

implicated in autophagy and is a potential prognostic 

indicator in cancer, according to Sun et al. [34].  

 

 
 

Figure 10. Relative expression of five independent prognostic factors in HFB4 and A375 cell lines. Relative expression of (A) 
EBLN3P; (B) LINC00324; (C) MIR205HG; (D) THCAT158; (E) USP30-AS1. Data: mean±SD, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 
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Chen et al. revealed that USP30-AS1 significantly 

inhibited cell proliferation, migration, and invasion in 

vitro, as well as tumor growth in vivo [35]. EBLN3P 

(Endogenous bornavirus-like nucleoprotein) is a 

recently identified lncRNA located on the forward 

strand of chromosome 9:37,079,935–37,086,874 [36]. 

EBLN3P has been found to be prognostic and 

incorporated into prognostic lncRNA signatures in 

multiple tumors [37, 38]. Clinical assays have 

demonstrated that high EBLN3P expression is 

positively correlated with tumor size, differentiation, 

and TNM stage, indicating a poor prognosis [39]. 

Although THCAT158 has not been frequently reported 

to be associated with tumors, it warrants further 

investigation. A study indicated that the lncRNA 

MIR205HG promoted the proliferation, migration, and 

invasion ability of Hepatoblastoma (HB) [40]. Taken 

together, these findings suggest that the candidate HRLs 

are involved in the progression of multiple human 

tumors. Therefore, it is necessary to construct a risk 

model based on HRLs to stratify CM patients by risk 

and predict their prognosis. 

 

There is mounting evidence to suggest that hypoxia 

promotes tumor growth by suppressing the immune 

response [41, 42]. The potential involvement of long 

non-coding RNAs (lncRNAs) in immune regulation 

cannot be overlooked in hypoxic conditions. In our 

study, we observed a marked down-regulation of 

immune-related signaling pathways in high-risk CM 

patients. Enrichment analysis revealed that immune-

related processes may mediate the role of hypoxia-

related lncRNAs (HRLs) in CM patients. Furthermore, 

our immune function analysis demonstrated that Cluster 

B patients exhibited higher immune function scores 

compared with Cluster A patients, leading to differences 

in tumor growth, progression, infiltration, and angio-

genesis across risk groups, ultimately resulting in poor 

prognosis. In summary, the differences in immune 

function suggest that the HRL signature we established 

may also reflect the infiltration of immune cells in CM 

and provide valuable information for clinical 

immunotherapy. Therefore, the HRL signature is not 

only a prognostic biomarker but also a predictor of 

tumor immune status, which can assist clinicians and 

physicians in better managing patients with CM. 

 

Immunotherapy plays a crucial role in the treatment of 

various diseases, including cutaneous melanoma (CM). 

Emerging immunotherapeutic strategies for CM 

primarily focus on immune checkpoint inhibitors (ICIs), 

such as PD-1, PD-L1, CTLA4, and LAG3. In our study, 

we aimed to predict the response of patients with 
different risk levels to immunotherapy. The findings 

showed that patients in the high-risk group 

demonstrated a better response to immunotherapy. 

Hypoxic TME can directly affect the biological 

characteristics of invasive immune cells and their 

response to therapy. Evidence has been provided for 

possible mechanisms by which the hypoxic state 

promotes immune escape [43]. Hypoxia allows 

myeloid-derived suppressor cells (MDSCs) to function 

and have immunosuppressive activity, allowing cancer 

cells to evade immune surveillance and resist immune 

checkpoint blockades [44, 45]. In addition, as a major 

transcriptional regulator of tumor cell response to 

hypoxia, HIF-1α can interact with histone deacetylase 1 

(HDAC1) and cause immune dysfunction [43, 46]. HIF-

1α is also involved in the transformation of tumor-

associated macrophages (tam) from antitumor pheno-

type (M1) to tumor-causing phenotype (M2) [47, 48]. 

The process of differentiation and functional 

implementation of T cell can also be inhibited by 

hypoxia through HIF-1α expression adjustment [49]. 

The above evidence shows the correlation between 

hypoxia and immune dysfunction and immune escape. 

We observed that patients in the high-risk group 

responded well to immunotherapy. Referring to the 

strong immunogenicity of CM, a possible explanation is 

that patients in the high-risk group have a strong 

dependence on the immune dysfunction and immune 

escape caused by hypoxia in the process of tumor 

development, so that the immune function recovery 

induced by immunotherapy can quickly kill tumor cells. 

The IPS results suggested that patients in the low-risk 

group benefited from anti-CTLA4, anti-PD-1, and anti-

CTLA4/PD-1 immunotherapy, exhibiting higher 

expression of LAG3, CTLA4, PD−1, PDCD1LG2, and 

PD−L1. Lymphocyte-activating gene-3 (LAG-3), as a 

next-generation immune checkpoint, plays a critical role 

in regulating immune homeostasis by negatively 

regulating T cell activation and function [50]. CTLA4, 

on the other hand, is a potent inhibitor of T-cell 

proliferation, which prevents overactivation of the 

immune response [51].  

 

Several studies have suggested that the programmed 

cell death‐1 (PD‐1)/programmed cell death ligand 1 

(PD-L1) pathway plays a vital role in regulating 

immune responses. Targeting this pathway has been 

considered a breakthrough in the treatment of CM [52, 

53]. Additionally, patients at different risk levels may 

have varying susceptibilities to anticancer drugs. High-

risk group patients have been found to exhibit higher 

IC50 levels to pathway inhibitors such as AKT 

inhibitors, JNK inhibitors, and some drugs approved for 

anti-tumor treatment, such as Pazopanib, Lapatinib, 

Crizotinib, among others. These findings suggest that 

CM patients in different risk subgroups exhibit a 
promising response to antineoplastic drugs, highlighting 

the critical need for precisely targeted drugs and 

chemotherapy for CM. 
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CONCLUSIONS 
 

In this study, we developed a novel risk model based on 

HRLs to classify CM patients into low- and high-risk 

groups, which demonstrated robust sensitivity and 

specificity as a prognostic predictor for CM. Our 

functional and immune cell infiltration analyses further 

validated the association of this risk model with 

immune response. Overall, our study offers unique 

insights into individualized immunotherapy treatment 

for CM. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Identification of prognostic HRLs for CM. (A) Identification of HRLs. (B) Univariate Cox analysis of HRLs  

for CM. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2. 

 

Supplementary Table 1. The gene list of HRGs. 

 

Supplementary Table 2. The gene list of HRLs. 

 

Supplementary Table 3. The gene list of prognostic related HRLs for CM. 

id HR HR.95L HR.95H pvalue 

ITGB2-AS1 0.671137140464625 0.513574621252859 0.877039173415981 0.00348900951483177 

AC012236.1 0.621561580041301 0.460708278308383 0.838575766864853 0.00185714885662621 

AC004847.1 0.662287419087852 0.473141617674038 0.92704722877333 0.0163309211976843 

AL590764.1 0.478280985133198 0.315412163019371 0.7252500935607 0.000516003678495533 

LINC01094 0.600491868719888 0.405236014858999 0.889828325165448 0.011031853462136 

U62317.1 0.553860169394149 0.384226457710112 0.798386162862209 0.00154133262224601 

AC055822.1 0.667031249640888 0.462789518326508 0.961410469291519 0.0299343132308147 

LINC00324 0.442066737936786 0.300795679698848 0.649686860481925 0.0000324883045091025 

AC011899.2 0.455762248212926 0.285616293583148 0.727266726593907 0.000982103145414571 

EBLN3P 0.634490589736191 0.493168859030723 0.816309264244723 0.000402085735652504 

LINC01943 0.487285682248631 0.332817139628501 0.713446838674111 0.000219248905195166 

AC138207.5 0.738604530517063 0.593008281862057 0.919947780134428 0.00683415200776554 

C5orf56 0.336688023105576 0.206142605416507 0.549904881010416 0.000013670350622382 

LINC01857 0.742018308421827 0.605420167118429 0.909436454113837 0.00404691568564592 

MIR205HG 1.30540847451519 1.0739512719983 1.58674916615657 0.00744119756070963 

MIAT 0.547092787681263 0.380303775215042 0.787030100249755 0.00115103759627039 

DBH-AS1 0.666095220817949 0.492272085045144 0.90129596350324 0.00845060687864858 

AC018755.4 0.61289198876965 0.458022849572396 0.82012631083516 0.000986632410538008 

LINC01871 0.716674355992356 0.613404340402243 0.837330450254474 0.0000271330719455452 

TRBV11-2 0.660828968423209 0.5020173421791 0.869880159142963 0.0031369323223515 

AL662844.4 0.606510655416521 0.392130500569982 0.938093758580576 0.0246300771922071 

AC010542.5 0.735848918132354 0.545106252832363 0.99333593680694 0.0451085274951982 

TFAP2A-AS1 1.30264568131898 1.11421479512221 1.52294313312621 0.000911217800086538 

AL365361.1 0.630505868341994 0.478687184726926 0.83047481256569 0.00103219257377634 

CARD8-AS1 0.726393086145709 0.5499712605248 0.959408160886062 0.0243298766170962 

AC016957.2 0.615179444574919 0.400571364043521 0.944764860891026 0.0264500470048086 

AC004687.1 0.70966160562014 0.564858576033377 0.891585284989277 0.0032242365942918 

AC136475.3 0.6925935812453 0.541465776739557 0.885902469534869 0.0034495169559226 

AP002954.1 0.538303946502239 0.373725163621561 0.775358918869353 0.000879271794920248 

AL359076.1 0.624213918049454 0.460422331989397 0.846273059352005 0.0024064630659777 

AC022706.1 0.539641405254255 0.364428479141049 0.799094645268039 0.00207221939928619 

UBR5-AS1 0.683390210799788 0.468035469825118 0.997835015349333 0.0487025705539239 

AC004918.1 0.694363600716074 0.497821932088729 0.96850053989477 0.0316752263018593 

PSMB8-AS1 0.73508994231721 0.63018619297253 0.857456461791243 0.0000894811274321151 

AC004585.1 0.7595671587066 0.603620564909099 0.955802870421588 0.0190015574082953 

TRG-AS1 0.637950864392539 0.463991469927423 0.877131007263663 0.00565786553116376 

AL133371.2 0.543516552700713 0.384993343493816 0.767312599170723 0.000529487227457248 
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AC090559.1 0.628246825066334 0.457011866855783 0.863640753841694 0.00419816885495861 

LINC00861 0.654209349170864 0.467383602976832 0.915714350731685 0.0133923767610554 

LINC02560 1.34969854740399 1.06152276516128 1.71610654867837 0.014397795867481 

AC242842.1 0.590066991169284 0.443020760890873 0.78592040103813 0.000309415122333841 

AC008105.3 0.629036739031298 0.439050643172713 0.901233662230337 0.0115108799395445 

PCED1B-AS1 0.70001944776536 0.578559643564831 0.846977891908232 0.000244366116422486 

AC015911.3 0.477123009615193 0.333467722195641 0.682663871649632 0.0000515169054696285 

THCAT158 0.825451467984621 0.719369436125531 0.947176918813473 0.0062717765541732 

AC098613.1 0.465653646578532 0.304498458558468 0.712099889104198 0.000420891226271034 

AC015819.1 0.658427754108841 0.450677607142769 0.961945081161922 0.0307301477891111 

LINC00239 0.650766834007573 0.477411523910338 0.887070066460684 0.00656481822821938 

USP30-AS1 0.575066411137741 0.457935399701657 0.72215726810876 1.92486188700598E-06 

AC243960.1 0.624651871984579 0.479251440969056 0.814165441808304 0.000500075355889725 

LINC01711 0.851963918614458 0.73244369507368 0.990987462248395 0.0377689440282985 

 


