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ABSTRACT 
 

The present study investigates the clinical relevance of glycolytic factors, specifically PGAM1, in the tumor 
microenvironment of kidney renal clear cell carcinoma (KIRC). Despite the established role of glycolytic 
metabolism in cancer pathophysiology, the prognostic implications and key targets in KIRC remain elusive. We 
analyzed GEO and TCGA datasets to identify DEGs in KIRC and studied their relationship with immune gene 
expression, survival, tumor stage, gene mutations, and infiltrating immune cells. We explored Pgam1 gene 
expression in different kidney regions using spatial transcriptomics after mouse kidney injury analysis. Single-
cell RNA-sequencing was used to assess the association of PGAM1 with immune cells. Findings were validated 
with tumor specimens from 60 KIRC patients, correlating PGAM1 expression with clinicopathological features 
and prognosis using bioinformatics and immunohistochemistry. We demonstrated the expression of central 
gene regulators in renal cancer in relation to genetic variants, deletions, and tumor microenvironment. 
Mutations in these hub genes were positively associated with distinct immune cells in six different immune 
datasets and played a crucial role in immune cell infiltration in KIRC. Single-cell RNA-sequencing revealed that 
elevated PGAM1 was associated with immune cell infiltration, specifically macrophages. Furthermore, 
pharmacogenomic analysis of renal cancer cell lines indicated that inactivation of PGAM1 was associated with 
increased sensitivity to specific small-molecule drugs. Altered PGAM1 in KIRC is associated with disease 
progression and immune microenvironment. It has diagnostic and prognostic implications, indicating its 
potential in precision medicine and drug screening. 
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INTRODUCTION 
 

Renal cell carcinoma (RCC) represents around 3-5%  

of all oncological diagnoses worldwide, with higher 

incidence occurring in Western countries [1]. RCC  

has several pathological types and the histological 

classification is important due to different molecular 

targeted therapy or surgical treatment. Clear cell  

type accounts for 75% of all RCC cases. It is considered 

as malignant according to WHO classification and  

has poor prognosis comparing with other subtypes such 

as papillary or chromophobe [2, 3]. Although kidney  

renal clear cell carcinoma (KIRC) is highly aggressive 

and popular, relatively fewer are known about its 

etiology. The possible risk factors of KIRC include 

hereditary diseases or genetic aberration of mTOR 

pathway proteins [4]. Therefore, it is necessary to 

consider the newly change in KIRC and to discover 

novel biomarkers for improving the prognosis of KIRC. 

 
Phosphoglycerate mutase-1 (PGAM1) is a glycolytic 

enzyme that has been extensively studied in different 

types of malignancies [5]. Numerous studies have 

demonstrated that PGAM1 is frequently activated in 

glycolysis and highly expressed in various types of 

cancer, including KIRC [6, 7]. In KIRC, PGAM1 has 

been found to play a crucial role in tumor proliferation, 

and its high expression is associated with abnormal 

glycolysis and the formation of KIRC, making it a 

potential therapeutic target for cancer therapy [8, 9]. In 

addition to PGAM1, another subfamily of PGAM 

enzymes, PGAM5, has also been shown to regulate 

several aspects of cancer cell death, including apoptosis 

and necrosis, by altering mitochondrial function [10]. 

The role of PGAM5 in cancer is not as extensively 

studied as PGAM1, but it is emerging as an important 

player in cancer cell biology [11]. The dysregulation of 

PGAM enzymes, particularly PGAM1, plays a significant 

role in cancer cell metabolism and proliferation,  

making them attractive targets for cancer therapy. The 

immune microenvironment has been shown to be crucial 

for tumorigenesis in KIRC [12]. This study is the first  

to report the involvement of this metabolic gene in 

immune cell infiltration in KIRC. Further research is 

needed to fully understand the mechanisms underlying 

their involvement in cancer progression and to develop 

effective therapeutic strategies. 

 
The aim of our study was to explore the theragnostic 

potential of PGAM1 in KIRC through an integrated 

analysis. This included analyzing differential gene 

expression, protein correlation, pathway analysis,  

and prognostic analysis across various tumor types  

and stages. We also examined the correlation of 

PGAM1 expression with immune-infiltrating cells and 

immunomodulatory factors. Our findings indicate that 

PGAM1 could serve as a strong prognostic biomarker 

and is closely associated with immune mechanisms, 

highlighting its potential as an immunotherapeutic agent 

for KIRC. 

 

MATERIALS AND METHODS 
 

Analysis of gene expression differences and 

prognostic significance in KIRC 

 

In this study on differential expression of KIRC genes 

and their prognostic significance, various databases and 

tools were used to analyze gene expression levels in 

KIRC tumors and adjacent normal tissues, and survival 

analysis was performed as described in a previous study 

[13, 14]. Briefly, TNMplot, UALCAN (The University 

of ALabama at Birmingham CANcer data analysis 

Portal), and Gene Expression Omnibus (GEO) were 

accessed to retrieve relevant data. The Human Protein 

Atlas was also consulted to obtain immunohistochemical 

(IHC) staining images for further analysis. In conducting 

survival analysis, the Kaplan-Meier plotter tool was 

utilized to assess the relationship between clinical stages 

of KIRC and various factors such as immune cell 

content and tumor mutational burdens. To determine 

optimal patient groupings for survival analysis, the tool 

was configured to use the “Auto select best cut off” 

feature, which selects the best-performing cutoff value. 

Overall, the various analyses performed in this study 

provide important insights into the gene expression and 

prognostic significance of KIRC, and may inform future 

research and clinical decision-making in this area. 

 

Single-cell transcriptomic and immune profiling 

analysis 

 

Single-cell RNA sequencing (scRNA-seq) has emerged 

as a powerful tool to explore cellular heterogeneity and 

gene expression at the single-cell level. In this study, 

scRNA-seq data were obtained from the GSE159115 

and GSE121636 datasets of the GEO database. Quality 

control (QC) was performed using the R package Seurat 

to ensure the inclusion of high-quality cells and reduce 

the influence of batch effects. To identify distinct cell 

subpopulations, uniform manifold approximation and 

projection (UMAP) clustering was performed using the 

“BiocManager” and Gene Set Variation Analysis 

(“GSVA”) packages in R. Cell type annotation was 

performed by comparing the expression profiles of 

previously recognized cellular marker genes with those 

of the identified cell subpopulations using the “SingleR” 

package in R. The association between gene expression 

and immune cell infiltration/abundance was explored 

using the “Gene” module of TIMER, focusing on 

macrophages, dendritic cells (DC), and CD4+ T, CD8+ 

T, and B cells. Finally, the association between immune 
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infiltration and overall survival of KIRC patients was 

estimated using several algorithms, including TIMER, 

EPIC, MCPCOUNTER, CIBERSORT, CIBERSORT-

ABS, QUANTISEQ, and XCELL. 

 

Processing of spatial transcriptomics data using 

seurat algorithm 

 

We performed analysis based on previously published 

articles and established spatial transcriptome data  

of kidney injury model animals [15]. The spatial 

transcriptomics data were processed using the R package 

Seurat (v4.1.0) and log normalization was performed  

to normalize the data. To integrate Seurat objects  

into a single ST dataset and remove batch effects,  

we utilized the functions SelectIntegrationFeatures, 

FindIntegrationAnchors, and IntegrateData. To reduce 

dimensionality, we performed the function RunPCA, 

and then used the functions FindNeighbors and 

FindClusters to cluster similar ST points. Initially, 

different clusters were divided based on hematoxylin-

eosin stained (H&E) sections and annotated by 

unsupervised cluster analysis. Upon annotating clusters 

with cell markers, we observed that some clusters 

highly expressed multiple cell markers. To address this, 

we employed the ssGSEA algorithm to score common 

cell types based on the average expression matrix of 

different clusters, which was confirmed to be more 

effective in ST [16]. 

 

Analysis of human KIRC specimens 

 

Tissue microarray (TMA) slides (CL2) consisting of 

human renal cancer, metastatic, and normal tissues 

were procured from SuperBioChips Laboratories 

(Seoul, Republic of Korea). To perform an immuno-

histochemistry (IHC), the protocol described in a prior 

study [17] was followed. 

 

Colocalization analysis of immunofluorescence 

staining 

 

We employed a method that has been described 

previously, which is summarized as follows [18]. 

Immunofluorescence analysis was performed by fixing 

the tissue with 4% paraformaldehyde at room tempe-

rature for 10 minutes, permeabilizing it with 0.2% 

Triton X-100 for 5 minutes, blocking it with 5% BSA 

for 30 minutes, and incubating it overnight at 4° C with 

the specified primary antibodies PGAM1_A4170 and 

CD163_A22619 purchased from Abclonal, Woburn, 

MA, USA). After washing with PBST, the samples were 

incubated with secondary antibodies for 30 minutes  
at room temperature. The BX61VS® Fully Motorized 

Fluorescence Microscope (Olympus Corporation, Tokyo, 

Japan) at ×20 magnification was used to digitize all 

glass slides with high precision. The whole-slide images 

were viewed and analyzed with Olympus VS-ASW® 

software at Li-Tzung Pathology Laboratory (Kaohsiung, 

Taiwan). 

 

Pharmacogenetic prediction model 

 

We developed a pharmacogenetic prediction model to 

analyze drug sensitivity based on PGAM1 expression, 

using the knockdown-screen data repository of the 

Genomics of Drug Sensitivity in Cancer (GDSC) 

algorithm in Q-omics v.1.0. Pearson correlation 

coefficient analysis was performed to assess the 

correlation between PGAM1 expression levels and drug 

dose levels [19]. 

 

Statistical analysis 

 

The statistical analysis in this study followed the 

methods described in a previous publication [20]. 

Pearson’s correlation coefficient was used to evaluate 

gene expression correlation, while a t-test or Fisher’s 

exact test was used for the comparison between two 

groups, and one-way ANOVA was used for comparison 

within one group, all analyzed using GraphPad Prism 

software (GraphPad Software, La Jolla, CA, USA). A p-

value of less than 0.05 was considered statistically 

significant. 

 

RESULTS 
 

Differential expression and genetic variation analysis 

of PGAM1 in KIRC 

 

We first conducted an analysis of the expression levels 

of PGAM family genes in the male reproductive system 

and observed that PGAM1 exhibited higher expression 

in male reproductive organs of fat fruits (Figure 1A).  

We subsequently explored the association of PGAM1 

mutations with common cancer progression genes,  

such as VHL, PBRM1, and SETD2 (Figure 1B). 

Subsequently, we conducted an analysis in which we 

extracted data pertaining to PGAM1 expression from the 

TCGA database, focusing on patients diagnosed with 

Kidney Renal Clear Cell Carcinoma (KIRC). This 

information was presented using a waterfall plot, 

offering a visual representation of the top 25 genes that 

exhibited notable alterations in response to PGAM1 

expression changes. This analysis delved into the genetic 

variations that occur at different levels of PGAM1 

expression and their connections with genes that are 

frequently found to be mutated in KIRC. The insights 

gained from this examination are depicted graphically in 
Figure 1C, providing a comprehensive view of these 

associations and their potential implications in the 

context of KIRC. The mutation landscape identified 
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various types of mutations, including splice site, 

missense, frameshift, and nonsense mutations, as well  

as in-frame ins/dels. Moreover, we used protein-protein 

interactions to evaluate regulatory network maps and 

inferred underlying mechanisms. Our analysis revealed 

that PGAM1 was associated with VHL, which was 

consistent with the results from Figure 1C. Furthermore, 

we found that the intermediate factor connecting these 

two genes was HIF1A (Figure 1D). We conducted 

univariate and multivariate Cox regression analyses to 

evaluate the association of PGAM1 expression with  

OS. Our findings indicated that stage, sex, age, and 

PGAM1 (high vs low) were significantly associated with 

OS (Figure 1E). Finally, we applied multivariate Cox 

regression analysis to the same variables and found that 

the risk score could serve as an independent prognostic 

factor (P < 0.05) (Figure 1F). 

 

Subsequently, we conducted a comprehensive assess-

ment of various kidney cancers and discovered that  

the levels of phosphoglycerate mutase-1 (PGAM1)  

were elevated in both clear cell renal cell carcinoma 

(KIRC) and papillary renal cell carcinoma (KIRP)  

but reduced in chromophobe renal cell carcinoma 

(KICH) (Figure 2A). Upon scrutinizing the expression 

of PGAM1 across diverse sample types, cancer stages, 

metastasis stages, and ccRCC subtypes in The Cancer 

Genome Atlas (TCGA) (Figure 2B–2E), we observed 

 

 
 

Figure 1. Gene landscape and characteristics of PGAM1 in KIRC. (A) PGAM1 gene expression levels in the male urinary system were 
examined. (B) The relationship between PGAM1 and nine highly mutated genes in KIRC was investigated, with mutation sites indicated by red 
lines. (C) The frequency of mutations was compared between PGAM1-high and PGAM1-low groups using Fisher’s exact test. Mutation types, 
driver mutation types, and groups are shown in the right panel. (D) A PGAM1 interaction network was generated using the Reactome 
database. (E, F) Univariate and multivariate Cox regression models were used to calculate hazard ratios for PGAM1 at different stages of KIRC. 



www.aging-us.com 11302 AGING 

that PGAM1 expression was significantly amplified in 

the first stage of metastatic KIRC, and both subtypes  

of ccRCC exhibited an upward trend. Furthermore, 

analysis of immunohistochemical staining data from the 

Human Protein Atlas verified that the PGAM1 protein 

was upregulated in KIRC tumor tissues relative to 

normal tissues (Figure 2F). Strikingly, Kaplan-Meier 

analysis revealed that patients with elevated PGAM1 

immunohistochemical scores had a shorter overall 

survival time (Figure 2G), underscoring the potential 

clinical significance of PGAM1 in ccRCC. 

 

Spatial transcriptomics evaluation of PGAM1 

expression in injured kidneys 

 

To assess the changes and distribution of PGAM1 

expression in renal injury, we conducted an analysis of 

previously published data [15] that utilized two models 

of injured kidneys for spatial transcriptomic sequencing. 

The intact kidney tissue was sectioned coronally to 

expose each major physiologic region, cryosectioned 

and placed on a tissue capture area on a dedicated 10× 

Genomics Visium slide embedded with oligonucleotide 

sequences. Marker gene expression was visualized 

using Seurat, and distinct regions were identified by 

biomarkers in proximal tubules (Lrp2) and collecting 

ducts (Aqp2) (Figure 3A). Our results showed that 

PGAM1 expression was higher in the proximal tubules 

of renal injury compared to the control group. 

Furthermore, we also analyzed the gene levels of 

common kidney injury biomarkers as controls, including 

lipocalin/lipocalin 2 (Lcn2), kidney injury molecule  

1 (Havcr1), insulin-like growth factor binding protein  

7 (Igfbp7), all of which have significantly high 

expression in kidney injury. Therefore, we concluded 

that the metabolic gene PGAM1 was highly expressed 

in the damaged kidney, which may be related to the 

damage of this region and the change of metabolic 

pathway. 

 

Correlation analysis between PGAM1 and infiltrating 

immune cells 

 

In light of the role of the tumor immune 

microenvironment (TIME) in promoting kidney damage 

and recruiting immune cells, we further investigated the 

 

 
 

Figure 2. Evaluation of the diagnostic potential of PGAM1 expression in KIRC biopsy specimens. (A) PGAM1 gene expression 

levels in renal cancer. (B) Comparison of PGAM1 expression between KIRC tumor and non-tumor tissues. Boxplots depicting PGAM1 
expression levels across different stages (C), metastasis status (D), and ccRCC subtypes (E) of KIRC. (F) Comparative immunohistochemical 
analysis of PGAM1 expression in KIRC tissue samples from four different patients based on the Human Protein Atlas. (G) Prognostic 
significance of PGAM1 mRNA levels for overall survival, as determined using the Kaplan-Meier plotter dataset. 
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relationship between metabolism and the immune 

response in tumors. Our analysis showed that 

overexpression of PGAM1 resulted in Branch  

amino acid degradation, as reflected in the KEGG 

pathway analysis (Figure 4A). Moreover, the activation 

of the Immunoglobulin complex was observed in  

the GO-cellular component analysis (Figure 4B), and  

the same result was reflected in the GO-molecular 

function analysis, where the ratio of Immunoglobulin 

receptor binding and Immune response-mediated 

biological function was greatly increased (Figure 4C, 

4D). Based on these findings, we hypothesize that 

kidney damage, which requires high energy, not only 

leads to metabolic conversion and abnormality but  

also promotes infiltration of immune cells, playing a 

significant role in the tumor immune microenvironment. 

The activation of the Immunoglobulin complex and 

increased Immunoglobulin receptor binding observed  

in our analysis suggests that immune cells may be 

recruited to the damaged kidney, contributing to the 

immune response in tumors. 

 

Evaluation of PGAM1 transcriptome using single-

cell RNA sequencing database analysis 

 

To assess the transcriptome of PGAM1 in renal  

cancer at the single-cell level and to explore the 

heterogeneity of different cell types in the renal  

cancer microenvironment, we conducted an analysis of 

two publicly available single-cell RNA-sequencing 

databases (GSE159115 and GSE121636). A total of  

8 samples from GSE159115, comprising 8 types of  

cells and 32 clusters, and 3 samples from GSE121636, 

comprising 10 cells and 21 clusters, were included  

in the study. Using UMAP plots, we identified  

and visualized 8 and 10 major cell populations in 

GSE159115 and GSE121636, respectively (Figure 5A, 

5B). After quality control and batch effect removal, we 

analyzed 27,669 (GSE159115) and 25,681 (GSE121636) 

cells, respectively. We determined cell type-specific 

markers for each cluster based on the top-ranked 

differentially expressed genes, which were used for cell 

type classification. Figure 5C, 5D shows the clinical 

information for each cell population, where differences 

in the corresponding proportions of each cluster were 

observed for different clinical characteristics. We further 

analyzed the expression and distribution of PGAM1 in 

these two single-cell sequencing databases. As shown in 

Figure 6A, 6B, we found that PGAM1 expression levels 

in different cell types of renal cancer were high in the 

same region as the high glycolysis model. In addition, 

oxidative phosphorylation in Figure 6B was generally 

increased, which was also reflected in the Inflammatory 

response. 

 

 
 

Figure 3. Resolving spatial relationships of cell type and gene expression using spatial transcriptomics in a mouse kidney 
injury model. (A) H&E-stained sections of 3 mouse models: sham operation, ischemia/reperfusion injury (IRI), and cecal ligation and 
puncture (CLP), respectively. Different regions of the cortex (Lrp2) and medulla (Aqp2) were labeled using tissue-specific biomarkers.  
(B) Analysis of Pgam1 and different biomarkers of renal injury (Lcn2, Kim1, Havcr1). 
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PGAM1 over-expression is correlated with immune 

infiltration 

 

To investigate the potential relationship between KIRC 

and PGAM1, we performed gene set enrichment analysis 

(GSEA) using differentially expressed genes (DEGs) and 

identified highly correlated clusters with macrophages in 

two single-cell RNA sequencing databases (Figure 7A, 

7B). However, macrophages exhibit tissue residency and 

possess pro- or anti-inflammatory functions. Given our 

previous findings of PGAM1 overexpression in renal 

injury models and human KIRC, and the crucial role of 

the tumor immune microenvironment (TIME) in tumor 

growth, metastasis, and immune evasion, we further 

analyzed the relationship between PGAM1 and tumor-

immune interactions. 

 

Based on the hypothesis that PGAM1 expression 

might be associated with the tumor microenvironment 

of renal cancer and differ significantly in macrophages 

(Figure 8A), we assessed the correlation of macrophage 

subtypes (M0, M1, and M2) with PGAM1. Our 

analysis showed a positive correlation between 

PGAM1 and M1 and M2, while M0 showed the 

opposite trend (Figure 8B). We further analyzed 

macrophage biomarkers and found that PGAM1 was 

positively correlated with CD86, CCL15, CXCL10, 

CD163, TLR1, and TLR8 (Figure 8C). This result 

indicates that patients with high PGAM1 expression 

exhibited elevated renal cell score, immune score, and 

ESTIMATE score. 

 

To validate the connection between PGAM1 and 

CD163 in KIRC, we investigated the co-localization of 

these two proteins in TMA through triple-labeling the 

whole KIRC with immunofluorescence for PGAM1, 

CD163, and DAPI. We segmented the human KIRC 

TMAs into early and late stages and analyzed their 

fluorescence intensity through panoramic tissue scanning. 

In Figure 9A, the red fluorescent PGAM1 and green 

fluorescent CD163 demonstrated that the normal  

group had a higher intensity than the tumor group, and 

 

 
 

Figure 4. The co-expression genes of PGAM1 in KIRC were subjected to enrichment analysis. The target genes were analyzed 
using (A) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, (B) cellular component, focusing on (C) molecular function and  
(D) biological process. 
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the red fluorescent intensity was higher in the early stage 

than in the late stage, which was similar to Figure 2F. 

The green fluorescence was consistent with the late stage 

of the normal group being lower than that of the tumor 

group. The 2.5D image reconstruction showed a clear 

overlapping phenomenon of PGAM1 and CD163 signals. 

After quantitative analysis by fluorescence, we confirmed 

that PGAM1 was positively correlated with CD163  

(r = 0.3119; p = 0.0275) (Figure 9B). Taken together, 

these findings indicate that PGAM1 overexpression is 

associated with the active TIME of macrophages. 

 

Pharmacogenetic screening for potential PGAM1 

inhibitors in KIRC 

 

In this study, we aimed to identify drugs with potential 

efficacy against KIRC by analyzing the GDSC repository 

for drugs that exhibit enhanced potency in the presence 

of high PGAM1 expression. We performed a cross-

correlation analysis to investigate the effects of 473 

drugs on shRNA-mediated PGAM1 in various KIRC 

cells. Our analysis identified four drugs, namely GNE-

317, MS-275, AC45971100, and NSC-35468, that 

displayed altered potency (Figure 10A). Notably, KIRC 

cell lines with high shPGAM1 efficiency exhibited 

increased sensitivity to these drugs (Figure 10B–10E). 

Collectively, these findings suggest that GNE-317, MS-

275, AC45971100, and NSC-35468 hold potential as 

anticancer agents targeting PGAM1 to regulate KIRC 

growth. 

 

DISCUSSION 
 

Kidney injury and KIRC are two distinct conditions  

that can be associated with metabolic and glycolysis 

changes [21]. Chronic kidney disease (CKD) refers to a 

 

 
 

Figure 5. The use of single-cell RNA sequencing analysis has allowed for the identification of immune cell populations.  
(A, B) The relative proportions of each cell type found within the two datasets, while showcasing the proportion of integrated immune cells 
present within the databases. UMAP is an abbreviation for the Unified Manifold Approximation and Projection technique used in this study. 
Visual representations of all KIRC cells from both GEO datasets are depicted in (C, D) through the utilization of Unified Manifold 
Approximation and Projection (UMAP) and assigned specific colors according to clusters. 
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Figure 6. The single-cell transcriptomes of patient-derived cultures treated with PGAM1 were presented. The expression 

clusters of PGAM1 were visualized using UMAP plots in (A, B), while the UMAP plots of each distinct cluster were analyzed through Gene Set 
Enrichment Analysis (GSEA). 
 

 
 

Figure 7. The impact of PGAM1 on the Tumor Immune MicroEnvironment (TIME) was investigated. Immunological analyses of 

immune infiltrates and immunosuppressants were carried out using GSE159115 and GSE121636 databases, respectively, as shown in (A). 
Furthermore, a heatmap was presented to depict the correlation between PGAM1 expression and lymphocytic infiltration in human cancers (B). 
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Figure 8. Investigating the link between PGAM1 and immunization. (A) TIMER analysis determines the correlation between PGAM1 

expression and six different immune cells in KIRC. (B) The correlation between PGAM1 levels and various types of macrophages is assessed. 
(C) Additionally, the correlation between PGAM1 and genes related to macrophages is investigated. 
 

 
 

Figure 9. Analyzing the co-occurrence of PGAM1 and CD163 in tumor biopsies during KIRC development. (A) Merge indicates 

PGAM1/CD163/DAPI; inset indicates local magnification; 2.5D reconstructed image shows the local fluorescence changes, morphology and 
fluorescence intensity. The merge image displays PGAM1/CD163/DAPI, while the inset exhibits a local magnification. The 2.5D reconstructed 
image showcases local fluorescence changes, morphology, and fluorescence intensity. (B) The Pearson's correlation coefficient was employed 
to visualize the degree of overlap between PGAM1 and CD163 fluorescence signals. 



www.aging-us.com 11308 AGING 

progressive loss of kidney function over time [22].  

This can be caused by a variety of factors, including high 

blood pressure, diabetes, and other underlying medical 

conditions. In many cases, CKD is asymptomatic and may 

not be diagnosed until it has reached an advanced stage 

[23]. KIRC, on the other hand, is a type of kidney cancer 

that arises from the cells lining the small tubes within the 

kidney. This type of cancer is known for its potential to 

spread quickly to other parts of the body and can be 

difficult to treat [24]. Both CKD and KIRC have been 

associated with changes in metabolism and glycolysis. 

Metabolism refers to the chemical processes that occur 

within cells to generate energy, while glycolysis is the 

breakdown of glucose into energy [25, 26]. 

 

In cases of CKD, changes in metabolism and glycolysis 

may be related to the impaired function of the kidney. 

Studies have shown that in CKD patients, there is  

a decrease in the activity of key enzymes involved in 

glycolysis, such as hexokinase and pyruvate kinase 

[22]. This leads to a reduced ability of the kidneys to 

generate energy from glucose and may contribute to the 

development of insulin resistance and other metabolic 

abnormalities [27, 28]. Furthermore, CKD is associated 

with alterations in the metabolism of lipids and proteins, 

which can lead to the accumulation of toxic byproducts 

that can damage the kidneys further. The metabolic 

changes associated with CKD can have significant 

impacts on the function of the kidney [29]. 

 
One of the key metabolic alterations in KIRC is an 

increase in glycolysis, which is a process by which 

glucose is broken down to produce energy. This increase 

in glycolysis is thought to be due to mutations in the  

von Hippel-Lindau (VHL) tumor suppressor gene,  

which is commonly found in KIRC. The loss of VHL 

function leads to the stabilization of hypoxia-inducible 

factor (HIF), which in turn promotes glycolysis and 

angiogenesis [30, 31]. In addition to glycolysis, KIRC  

is also associated with changes in other metabolic 

pathways. For example, there is evidence to suggest that 

the tumor cells may undergo a shift towards increased 

fatty acid oxidation, which can provide an alternative 

source of energy for the tumor cells. There are also 

changes in the tricarboxylic acid (TCA) cycle, which is a 

key metabolic pathway that generates energy in the form 

of ATP [32, 33]. Understanding the metabolic and 

glycolysis changes associated with CKD and KIRC is  

an important area of research that may lead to new 

diagnostic and treatment approaches for these conditions. 

 
The PGAM1 gene encodes a mutase that facilitates  

the reversible conversion of 3-phosphoglycerate (3-

PGA) to 2-phosphoglycerate (2-PGA) in the glycolytic 

pathway, and its emerging research focus is on the 

regulation of cell damage and energy metabolism [34]. 

However, the clinical relevance, association with TIME, 

and therapeutic significance of PGAM1 in KIRC 

patients remain unknown. In this study, we employed  

a multi-omics approach, experimental studies, and 

clinical validation to uncover novel roles of PGAM1  

in KIRC. Our findings demonstrate that elevated 

PGAM1 expression is an independent diagnostic 

biomarker that correlates with advanced clinical status 

and poor prognosis in KIRC. Moreover, we identified 

macrophages as key contributors to PGAM1 up-

regulation in tumor tissues, and analysis of spatial 

transcriptome and single-cell sequencing showed that 

PGAM1 expression is associated with immune TIME 

[35]. Mechanistically, PGAM1 overexpression in KIRC 

may be attributed to metabolic abnormalities or the  

high energy requirements of metastatic cancer cells, as 

PGAM1 and HIF1A exhibit direct regulation [11]. 

Overall, our study highlights the intricate relationship 

between metabolism and the immune response in the 

tumor microenvironment and provides insight into the 

potential mechanisms underlying kidney damage and 

the recruitment of immune cells. 

 

In our pharmacogenomic data, we present four  

potential small-molecule drugs. GNE-317 is a PI3K/ 

mTOR inhibitor, and our Figure 1B indicates an 

association between PGAM1 mutations and PIK3CA/ 

mTOR alterations. Previous studies have shown that 

blocking PI3K/mTOR significantly inhibits various 

cancers, including gastric cancer, colorectal cancer, 

cervical cancer, and more [36–38]. GNE-275 is an 

HDAC inhibitor widely used in the treatment of various 

cancers, including prostate cancer, Diffuse Intrinsic 

Pontine Gliomas, and liver cancer [39–41]. AC45971100, 

also known as fluometuron, is an immune modulator 

that may exert its effects by inhibiting mitochondrial 

enzyme dihydroorotate dehydrogenase and effectively 

suppressing the growth of breast cancer cells [42]. 

NSC35468, or Podophyllotoxin bromide, is less com-

monly reported but has been suggested in literature to 

induce mitochondrial inner membrane depolarization and 

caspase-dependent apoptosis in colorectal cancer [43]. 

 

CONCLUSIONS 
 

The function of the PGAM1 gene in renal cancer  

remains unknown. Our study demonstrates that  

increased PGAM1 expression is linked to poor prognosis 

in KIRC and may impact the tumor microenvironment  

and macrophage infiltration. As a result, PGAM1  

could be a valuable diagnostic, prognostic, and immune-

related therapeutic target for KIRC (Figure 11). 

Additional research is required to confirm our findings 

and investigate the immunomodulatory effects and 

mechanisms of PGAM1 in KIRC. This study highlights 

the inverse relationship between PGAM1 and immune 
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Figure 10. Analysis of drug sensitivity and cytotoxicity in renal cancer cells. (A) The PGAM1 gene was queried in the 

pharmacogenetics database to identify gene signatures and potential drugs. Predictivity refers to the fold change in efficacy of short hairpin 
PGAM1 (shPGAM1), which indicates the efficiency of PGAM1 knockdown using shRNA, between cells with high and low response to the 
target drug. The drug sensitivity of the shPGAM1 gene to various chemical drugs was evaluated in KIRC cell lines. The boxplots show the log 
of the half maximal inhibitory concentration (IC50) values of GNE-317 (B), MS-275 (C), AC45971100 (D), and NSC-35468 (E). 

 

 
 

Figure 11. The proposed model depicts the potential significance of PGAM1 in various aspects of KIRC, such as diagnosis, 
prognosis, tumor immune microenvironment, and potential precision treatments. 
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response and identifies several genes worthy of further 

study as potential diagnostic biomarkers, therapeutic 

targets, and treatment options. 
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