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INTRODUCTION 
 

Pancreatic cancer (PC) is one of the foremost common 

malignant tumours in the digestive system, with the 

characteristics of insidious onset, rapid progression, and 
poor prognosis; therefore, the 5-year survival rate is 

simply 2%-9% [1]. In the United States, PC was the third 

leading explanation for tumour-related death, with an 

estimated 62,210 new cases and 49,830 deaths of PC in 

2022 [2]. By 2030, PC is anticipated to rank as the second 

most common cancer-related cause of death [3]. In recent 

years, the treatment and prognosis of PC have not 

significantly improved. Surgery combined with adjuvant 
systemic chemotherapy is the mainstay for PC. However, 

because of the shortage of typical symptoms within the 

early stage of PC, most patients square measure already 
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ABSTRACT 
 

Endoplasmic reticulum stress (ERS) is caused by the accumulation of intracellular misfolded or unfolded proteins 
and is associated with cancer development. In this study, pan-cancer analysis revealed complex genetic variations, 
including copy number variation, methylation, and somatic mutations for ERS-related genes (ERGs) in 33 kinds of 
cancer. Consensus clustering divided pancreatic cancer (PC) patients from TCGA and GEO databases into two ERS-
related subtypes: ERGcluster A and B. Compared with ERGcluster A, ERGcluster B had a more active ERS state and 
worse prognosis. Subsequently, the ERS-related prognostic model was established to quantify the ERS score for a 
single sample. The patient with a low ERS score had remarkably longer survival times. ssGSEA and CIBERSORT 
algorithms revealed that activated B cells and CD8+ T cells had higher infiltration in the low ERS score group, but 
higher infiltration of activated CD4+ T cells, activated dendritic cells, macrophages, and neutrophils in the high ERS 
score group. Drug sensitivity analysis indicated the low ERS score group had a better response to gemcitabine, 
paclitaxel, 5-fluorouracil, oxaliplatin, and irinotecan. RT-qPCR validated that MET, MUC16, and KRT7 in the model 
had higher expression levels in pancreatic tumour tissues. Single-cell analysis further revealed that MET, MUC16, 
and KRT7 were mainly expressed in cancer cells in PC tumour microenvironment. In all, we first constructed the 
ERS-related molecular subtypes and prognostic model in PC. Our research highlighted the vital role of ERS in PC 
and contributed to further research on molecular mechanisms and novel therapeutic strategies for PC in the 
future. 
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within the middle and advanced stages after they present 

with symptoms and thus lose the opportunity for radical 

surgery; only 10%-20% of patients can receive surgical 

treatment [4]. Chemotherapy remains the primary 

treatment option for patients with metastatic PC. But even 

with first-line chemotherapy regimens like FOLFIRINOX 

(fluorouracil, oxaliplatin, irinotecan, and leucovorin)  

or gemcitabine combined with nab-paclitaxel, the 

response rate for PC is only about 30% [5]. In recent 

years, targeted therapy and immunotherapy have created 

great progress, revolutionizing the treatment of cancers 

like hepatocellular carcinoma, non-small cell lung cancer, 

and nephritic cell carcinoma [6–9]. However, targeted 

therapy and immunotherapy have not achieved the  

desired effect for PC due to the complex, highly 

immunosuppressive tumour microenvironment [10, 11]. 

Hence, it's still important and imperative to explore the 

mechanisms of PC development as well as find effective 

treatment methods. 

 

Endoplasmic reticulum is the central organelle that 

functions in protein synthesis, folding, and modification. 

Although this process is finely regulated, a variety of 

cellular internal and external factors can disrupt the 

ability of endoplasmic reticulum to fold proteins and 

trigger endoplasmic reticulum stress (ERS) characterized 

by the accumulation of misfolded or unfolded proteins 

[12]. Tumour cells are often exposed to various factors 

that affect protein homeostasis (e.g., hypoxia, nutrient 

deficiency, acidosis, oncogenic activation, changes in 

chromosome number, and increased secretory capacity), 

resulting in persistent ERS, which ultimately affects 

tumour cell function and survival [13]. In response to 

ERS, cells activate a range of adaptive mechanisms to 

enhance folding and clearance and restore protein 

balance within the endoplasmic reticulum, called the 

unfolded protein response (UPR) [14]. UPR can favour 

cell survival, help reduce the buildup of misfolded 

proteins, and restore the function of the endoplasmic 

reticulum. If ERS cannot be addressed, the UPR signal 

will switch from survival to pro-apoptosis [15]. In 

mammalian cells, UPR is initiated primarily by three 

endoplasmic reticulum transmembrane proteins, 

including IRE1α, PERK, and ATF6 [14, 16]. Many 

studies have demonstrated that UPR activation is 

associated with many characteristics of cancer, including 

angiogenesis, genomic instability, cell proliferation, 

invasion and dormancy, chemotherapy resistance, and 

tumour immunity [13, 17]. Pereira et al. [18] found that 

positive angiogenic regulatory factors (including 

VEGFA, FGF2, angiogenin, and IL8) were significantly 

upregulated during ERS, and activation of UPR could 

promote the expression of VEGFA mRNA and protein 
more effectively than hypoxia, thus promoting angio-

genesis. Study from Cubillos-Ruiz et al. [19] showed 

that activation of ERS response factor XBP1 induced the 

biosynthesis of triglycerides in tumour-associated 

dendritic cells, resulting in abnormal lipid accumulation 

and inhibition of the ability of tumour-associated 

dendritic cells to support anti-tumour T cells, thereby 

promoting the progression of ovarian cancer. Adjuvant 

therapies such as chemotherapy and targeted therapy are 

important means to improve the survival time for cancer 

patients. However, their effectiveness is challenged by 

multiple drug resistance mechanisms formed by tumour 

cells before and during treatment, including reduced 

drug uptake, drug target change, repair of drug-induced 

harm, and unfitness to drug-induced cell death [20]. 

Salaroglio et al. [21] showed that PERK mediated Nrf2-

driven MRP1 transcription, thereby inducing tumour  

cell resistance to ERS and chemotherapy. Presently,  

the specific mechanism of ERS in PC has not been 

comprehensively studied. Exploring the molecular 

characteristics and roles of endoplasmic reticulum stress-

related genes (ERGs) in PC may help find new strategies 

for diagnosis and treatment. 
 

Based on this evidence, we first identified the ERS-

related molecular subtypes and prognostic signature for 

PC by comprehensive bioinformatics analysis and  

in vitro and in vivo experiments. 

 

MATERIALS AND METHODS 
 

Data acquisition and preprocessing 
 

The RNA expression data as well as clinical 

information (containing 185 cases of PC samples) 

were acquired via The Cancer Genome Atlas (TCGA) 

platform (https://portal.gdc.cancer.gov/). In addition, 

the copy number variation (CNV), methylation and 

somatic mutation data of thirty-three kinds of cancer 

from TCGA database were acquired to explore the 

genetic variations for ERGs in pan-cancer. GSE28735 

(containing 45 cases of PC), GSE62452 (containing 69 

cases of PC), GSE57495 (containing 63 cases of PC) 

and GSE85916 (containing 80 cases of PC) datasets 

were acquired via the Gene Expression Omnibus 

(GEO) platform (https://www.ncbi.nlm.nih.gov/geo/). 

Genotype-Tissue Expression Project (GTEx) 

(including 167 cases of pancreatic tissue from healthy 

people) was acquired via the UCSC Xena platform 

(https://xenabrowser.net/datapages/). Using the “sva” 

package to get rid of batch effects among totally 

different datasets [22, 23]. Samples with a survival 

time of less than 30 days were excluded for survival 

analysis. ERGs were acquired through the Molecular 

Signatures Database (MSigDB, http://www.gsea-

msigdb.org/) [24]. Differentially expressed genes 
(DEGs) were identified between the pancreatic tumour 

and normal tissue from TCGA and GTEx datasets by 

using the “limma” R package with the filter condition 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://xenabrowser.net/datapages/
http://www.gsea-msigdb.org/
http://www.gsea-msigdb.org/
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of |log2 fold change (FC)| > 1 as well as adjusted p-

values < 0.05. Then, the intersection of DEGs and 

ERGs was identified for follow-up analysis. 

 

Consensus clustering 

 

We first combined all the PC patients from the TCGA, 

GSE28735, GSE62452, GSE57495 and GSE85916 

datasets, then used the "ConsensusClusterPlus" package 

to conduct an unsupervised cluster analysis based on the 

differentially expressed ERGs. The optimal cluster 

number was determined using the consensus matrix and 

the cumulative distribution function (CDF) curve. Every 

patient could be grouped into different subtypes 

(ERGcluster A and B). The principal component analysis 

(PCA) with good dimensionality reduction ability was 

used to illustrate the consistency of the cluster. Survival 

times between different subtypes were compared utilizing 

Kaplan-Meier curve. Gene set variation analysis (GSVA) 

as well as gene set enrichment analysis (GSEA) were 

performed to compare the differences in biological 

behaviour in different subtypes [25]. Single-sample gene 

set enrichment analysis (ssGSEA) was performed to 

explore the variations of pancreatic tumour immune 

microenvironment between different subtypes. 

 

Differential expression analysis between the 

different ERS-related subtypes 

 

To analyze the differences between the different ERS-

related patterns, we utilized the “limma” package to spot 

the ERS-related DEGs between different subtypes. Then 

we performed univariate Cox regression to assess the 

prognostic value of the ERS-related DEGs, and the p-

value < 0.05 was considered statistically significant. The 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) enrichment analyses were 

performed to explore the enriched pathways for the 

ERS-related DEGs, and the filter’s parameters was  

set to a q-value < 0.05 [26]. What’s more, the 

“ConsensusClusterPlus” package was utilized to perform 

unsupervised cluster analysis based on the expression of 

ERS-related DEGs, and each patient could be classified 

into a type of geneCluster A or B. 

 

Construction of the ERS-related prognostic model 

 

For further quantifying the ERS score in a single 

sample, we used LASSO and multivariate Cox 

regression analyses to establish an ERS-related 

prognostic model for PC based on the ERS-related 

DEGs. Utilizing the “caret” package to randomly divide 

all PC samples into training cohorts and verification 
cohorts in a ratio of 5:5. The ERS score of every sample 

could be computed through the model formula, while 

each sample was grouped into high or low ERS score by 

comparing it to the median value of ERS score in the 

training cohort. 

 

Enrichment analysis and immune analysis 

 

GSVA as well as GSEA were performed to compare the 

differences in the enriched pathways in the different ERS 

score groups [25]. To further explore the variations of 

pancreatic tumour immune microenvironment between 

different clusters and between different ERS score 

groups, ssGSEA was performed to compute a total of 28 

immune cell infiltration scores for each sample through 

the “GSVA” and “GSEABase” packages. What’s more, 

the proportions of 22 immune cells were computed for 

each sample by CIBERSORT algorithm [27]. The p-

value < 0.05 represented that the infiltration assessment 

of 22 immune cell subtypes for PC was accurate, and 

these samples were utilized to further analysis. 

 

Mutation analysis and drug sensitivity analysis 

 

Utilizing the “maftools” package to investigate and 

visualize the mutation landscape in both high and low 

ERS score groups. 38Mb is routinely extracted 

according to the length of human exons, so tumour 

mutation burden (TMB) per sample was calculable to be 

up to the whole mutation frequency divided by 38 Mb 

[28]. Subsequently, the association between ERS score 

and TMB was further evaluated. 

 

The “OncoPredict” package has a predictive effect on 

in vivo drug responses for patients with malignant 

tumours [29]. It can fit the gene expression data to the 

semi-maximum inhibitory concentration of neoplastic 

cell lines for medication in Genomics of Drug 

Sensitivity in Cancer (https://www.cancerrxgene.org/). 

The “OncoPredict” package was utilized to assess  

the variations in drug sensitivity between different  

PC patients. For further assessing the correlation 

between model gene and drug sensitivity, we down-

loaded relevant gene expression data and  

Food and Drug Administration approved drug 

sensitivity data from the CellMiner database 

(https://discover.nci.nih.gov/cellminer/) [30]. 

 

Gene expression analysis and single-cell analysis 

 

GEPIA database (http://gepia.cancer-pku.cn/) is an open 

platform that can analyze gene expression difference, 

correlation, and prognostic value [31], which was 

employed for investigating gene expression variations 

between pancreatic tumour and normal tissues.  

The Human Protein Atlas (HPA) (version 22.0 
https://www.proteinatlas.org/) is a public platform 

designed for creating maps of protein expression 

patterns [32], which was employed for investigating the 

https://www.cancerrxgene.org/
https://discover.nci.nih.gov/cellminer/
http://gepia.cancer-pku.cn/
https://www.proteinatlas.org/
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distribution and expressed variations of genes in the 

model. Single-cell RNA-seq offers transcription data 

from a single cell. The Tumour Immune Single-Cell Hub 

(TISCH) database (http://tisch.comp-genomics.org) is a 

single-cell RNA-seq platform immersed in tumour 

microenvironment [33, 34], which was employed for 

investigating the proportion of each cell subset in the 

pancreatic tumour. 

 

Cell lines and tissues 

 

HPDE6-C7, a human pancreatic ductal epithelium cell 

line, was obtained through the American Type Culture 

Collection (ATCC, Manassas, VA, USA). Human PC 

cell lines (CF-PAC1 as well as Panc-1) were obtained 

from Procell Life Science and Technology Co., Ltd. 

And KeyGEN BioTECH (Jiangsu province, China) 

supplied the human PC cell line BxPC-3. Seven pairs 

of pancreatic tumour tissues and paracancer tissues 

were obtained from PC patients operated on at the 

First Affiliated Hospital of Dalian Medical University. 

All acquired tissues are immediately flash-frozen in 

liquid nitrogen and kept at -80° C. Informed consent 

was obtained from the patients participating in this 

study. 

 

Real-time quantitative PCR 

 

Total RNAs were extracted from cell lines and tissues by 

an extraction reagent, TRIzol (Accurate Biotechnology, 

Shanghai, China). Subsequently, reverse transcription 

was performed to acquire cDNAs. Finally, real-time 

quantitative PCR (RT-qPCR) was conducted using 

SYBR® Green Premix Pro Taq HS qPCR Kit (Accurate 

Biotechnology, Shanghai, China). And GAPDH was 

used as a control reference, utilizing ΔΔCt technique for 

quantifying RNA expression. We acquired primer 

sequences through GenePharma (Suzhou, China), for 

human KRT7 (Forward: 5’-CCAGGAGGAGAGCGA 

GCAGATC-3’; Reverse: 5’-GCAGCAGCGTCCACT 

TGGTC-3’), MUC16 (Forward: 5’-CATTACCAGC 

AAGTAGCCACTCCTC-3’; Reverse: 5’-CGTCCAAC 

ACCTCAGTAGTCTTCAC-3’); MET (Forward: 5’-GT 

CCTATGGCTGGTGGCACTTTAC-3’; Reverse: 5’-TG 

GTTTGGGCTGGGGTATAACATTC-3’). 

 

Statistical analysis 

 

R (version 4.1.2) and GraphPad Prism 9 were utilized 

for statistical analysis and visualization in the current 

investigation. For metric data with a normal distribution, 

utilizing t-test to perform the differential analysis. For 

metric data without a normal distribution, Wilcoxon’s 
rank sum test was utilized for comparison between two 

groups, and the Kruskal-Wallis test was utilized for 

comparison among multiple groups. Utilizing the 

Spearman or Pearson test to perform the correlation 

analysis. Utilizing the Kaplan–Meier method to perform 

survival analysis. A p-value < 0.05 represented statistical 

significance. 

 

RESULTS 
 

Identification and pan-cancer analysis of ERGs 

 

The process of this study was shown in Figure 1. Based 

on TCGA and GTEx databases, we obtained 5552 

DEGs in tumour tissue and normal tissue of the 

pancreas (Figure 2A). 15 endoplasmic reticulum stress-

related gene sets with a total of 660 genes were obtained 

from MSigDB (Supplementary Table 1). After 348 

duplicate genes were removed, 312 ERGs remained 

(Supplementary Table 2). Then the intersection of 

DEGs and ERGs was used to acquire 99 differentially 

expressed ERGs (Figure 2B). The univariate Cox 

regression analysis revealed 38 ERGs were related to 

the prognosis of PC (Figure 2C). 

 

The genetic changes of 38 ERGs in pan-cancer were 

further assessed. And the results found the CNV 

frequency of ERGs was generally more than 5% in 

most cancer types except thyroid carcinoma (THCA), 

the CNV types of genes CAV1, BCL2L1, CEBPB, 

IGFBP1, SERINC3, COPS5, and PTPN1 were mainly 

amplification; the CNV types of gene BRSK2 were 

mainly deletion; and the CNV types of most ERGs in 

uterine carcinosarcoma (UCS) and testicular germ cell 

tumors (TGCT) were mainly amplification, which was 

the opposite trend in diffuse large B-cell lymphoma 

(DLBC) and kidney renal papillary cell carcinoma 

(KIRP) (Figure 2D). The CNV and expression levels 

of ERGs showed a remarkably positive correlation in 

most cancer types. For instance, the expression of 

COPS5 has a remarkably positive correlation with 

CNV in bladder urothelial carcinoma (BLCA), lower 

grade glioma (LGG), skin cutaneous melanoma 

(SKCM) (Figure 2E). These revealed that the CNV for 

ERGs was a common genetic alteration and was 

associated with gene expression within most tumours. 

Besides, DNA methylation could also affect gene 

expression and be linked to carcinogenesis. We 

analysed the methylation difference between tumour 

and normal tissues, and results manifested the most 

ERGs were hypermethylated within most malig-

nancies, while ANKS4B was hypomethylated within 

most cancers types (Figure 2F). We found a complex 

relationship between gene methylation and expression. 

The relationship between methylation and expression 

of genes GSK3B, THBS1, and PTPN1 manifested a 

positive correlation in most tumour types, whereas this 

was reversed for genes PPP1R14D (Figure 2G). 

Finally, the mutation of ERGs in pan-cancer was 

http://tisch.comp-genomics.org/
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evaluated. The most common type of genetic mutation 

was missense mutation, and the top four ERGs with the 

highest mutation frequency were THBS1 (10%), 

TMTC3 (8%), PPP1R13B (7%), and PLA2G6 (6%) 

(Figure 2H). The top four cancer types with a relatively 

high mutation frequency were SKCM, uterine corpus 

endometrial carcinoma (UCEC), colon adenocarcinoma 

(COAD) and stomach adenocarcinoma (STAD) (Figure 

2I). 
 

Identification of ERS-related molecular subtypes 
 

All samples in the TCGA, GSE28735, GSE62452, 

GSE57495 and GSE85916 datasets were pooled, and 

 

 
 

Figure 1. The flowchart of this study. 
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Figure 2. Identification and pan-cancer analysis of endoplasmic reticulum stress-related genes (ERGs). (A) The differentially 
expressed genes (DEGs) between pancreatic tumours and normal tissues. (B) The intersection of DEGs and ERGs. (C) Univariate Cox 
regression analysis for ERGs. (D) The copy number variation (CNV) of ERGs within pan-cancer. (E) The correlation between CNV and 
expression. (F) Methylation difference of ERGs between tumour and normal tissues. (G) The correlation between methylation and 
expression. (H) The oncoplot of ERGs mutation within pan-cancer. (I) Mutation frequency of ERGs. 
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then unsupervised cluster analysis was performed to 

identify the ERS-related molecular feature for PC.  

The CDF curve indicated the optimal cluster number 

was 2 (Supplementary Figures 1, 2). All samples were 

classified into two clusters: ERGcluster A and B 

(Figure 3A). PCA could clearly distinguish PC  

patients with different ERS-related molecular features  

(Figure 3B). Survival analysis revealed that the prognosis 

of ERGcluster A was considerably better than that of 

ERGcluster B (Figure 3C). Most ERGs were highly 

expressed in ERGcluster B, indicating that ERGcluster 

B may have a higher ERS level (Figure 3D). 

 

 
 

Figure 3. Identification of endoplasmic reticulum stress (ERS)-related molecular subtypes. (A) Heatmap of consensus matrix 

when k = 2. (B) The principal component analysis could remarkably distinguish ERGcluster A and B. (C) The survival curve of ERGcluster A 
and B. (D) The expression difference of endoplasmic reticulum stress-related genes (ERGs) between ERGcluster A and B. (E) GSVA analysis. 
(F) GSEA analysis. (G) ssGSEA analysis. (*p<0.05; **p<0.01; ***p<0.001). 
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GSVA showed that the remarkable enrichment 

pathways in ERGcluster A included “primary bile acid 

biosynthesis”, “tryptophan metabolism”, “maturity 

onset diabetes of the young”, etc. The remarkable 

enrichment pathways in ERGcluster B contained 

“basal transcription factors”, “p53 signaling pathway”, 

“cell cycle”, “focal adhesion”, “pathways in cancer”, 

and “pancreatic cancer”, and these enrichment 

pathways may be associated with the poorer prognosis 

in ERGcluster B (Figure 3E). GSEA suggested that 

“cell cycle”, “DNA replication”, “p53 signaling 

pathway” and “spliceosome” were remarkably 

enriched in ERGcluster B, “maturity onset diabetes of 

the young”, and “neuroactive ligand receptor inter-

action” were remarkably enriched in ERGcluster A 

(Figure 3F), which was consistent with the GSVA 

result. 

 

For understanding the variations of the tumour immune 

microenvironment in different ERS-related molecular 

features, ssGSEA was carried out. The results indicated 

that the infiltration level in activated B cells and 

monocytes was significantly higher in ERGcluster A, 

and activated CD4+ T cells, activated dendritic cells 

(DC), immature B cells, natural killer (NK) cells, 

neutrophils, regulatory T cells (Tregs), myeloid-derived 

suppressor cells (MDSCs), and type 1 and type 2 T 

helper cells had a significantly higher infiltration score 

in ERGcluster B (Figure 3G). 

 

Differentially expressed analysis in the different 

ERS-related molecular subtypes 

 

For further exploring the variations between different 

ERS-related molecular subtypes, we screened 164  

ERS-related DEGs between ERGcluster A and B 

(Supplementary Figure 3). Univariate Cox regression 

revealed 99 ERS-related DEGs were related to the 

prognosis in PC (Supplementary Figure 4). GO 

enrichment analysis showed the 99 ERS-related DEGs 

were considerably enriched in “epidermis development”, 

“extracellular matrix organization”, “wound healing”, 

“skin development”, etc. (Figure 4A). KEGG pathway 

enrichment analysis indicated the 99 ERS-related 

 

 
 

Figure 4. Differentially expressed analysis in the different endoplasmic reticulum stress-related subtypes. (A) GO enrichment 
analysis. (B) KEGG enrichment analysis. (C) Heatmap of consensus matrix when k = 2. (D) The principal component analysis could remarkably 
distinguish geneCluster A and B. (E) The survival curve of geneCluster A and B. 
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DEGs were considerably enriched in “ECM−receptor 

interaction”, “Complement and coagulation cascades”, 

“PI3K−Akt signaling pathway”, “IL−17 signaling 

pathway”, etc. (Figure 4B). Subsequently, consensus 

clustering analysis was carried out based on the 99 ERS-

related DEGs, and all samples were classified into two 

clusters: geneCluster A and B (Figure 4C). PCA could 

clearly distinguish the different patients between 

geneCluster A and B (Figure 4D). Survival analysis 

indicated the prognosis of geneCluster A was remarkably 

worse than geneCluster B (Figure 4E). 

 

Establishment of ERS-related prognostic model 

 

For further quantifying the ERS state for a single 

sample, all samples from the TCGA, GSE28735, 

GSE62452, GSE57495 and GSE85916 datasets were 

combined and then randomly grouped into training 

and verification cohorts using a ratio of 5:5. Then 

LASSO and multivariate Cox regression analysis were 

performed to establish a three-gene ERS-related 

model utilizing the ERS-related DEGs (Figure 5A–

5C). Survival analysis showed that in the training, 

validation and whole cohort, the survival time of 

patients with a low ERS score was remarkably longer 

than those with a high ERS score (Figure 5D–5F). In 

addition, Kaplan–Meier survival curves indicated that 

high expression of MET, MUC16, and KRT7 were 

related to worse survival in PC (Figure 5G–5I). 

Alluvial diagram indicated the low ERS score group 

mainly corresponded to ERGcluster A and gene-

Cluster B, while high ERS score patients mostly 

corresponded to ERGcluster B and geneCluster A 

(Figure 5J). The ERS score of patients in ERGcluster 

A was remarkably lower compared to ERGcluster B 

(Figure 5K), and the ERS score of patients in 

geneCluster B was remarkably lower compared to 

geneCluster A (Figure 5L). We then examined the 

relationships between the model genes and ERGs, and 

the findings revealed that model genes were 

remarkably positively correlated with most ERGs, 

while negatively correlated with SCAMP5, PLA2G6, 

CLU and BRSK2 (Supplementary Figure 5). The 

association between the ERS score and the clinico-

pathological characteristics of PC was assessed in this 

study. The findings demonstrated that at high 

pathological grade, ERS score was remarkably higher 

(Supplementary Figure 6). High TNM stage patients 

had ERS score that were higher than low TNM stage 

patients, but the difference was not statistically 

significant, which may have been caused by the small 

sample size (Supplementary Figure 7). Additionally, 

ERS score was found to be an independent risk  
factor for a poor outcome in PC by univariate  

and multivariate Cox regression (Supplementary 

Figure 8). 

GSVA, GSEA and immune analysis 

 

Compared to the patients in the low ERS score group, 

most ERGs were considerably higher expressed in the 

high ERS score group, which indicated a higher ERS 

degree in the patients with a high ERS score (Figure 

6A). GSVA found that the remarkable enrichment 

pathways within the low ERS score group included 

“neuroactive ligand-receptor interaction”, “tryptophan 

metabolism”, “calcium signaling pathway”, etc. By 

contrast, “p53 signaling pathway”, “nucleotide excision 

repair”, “pancreatic cancer”, “cell cycle” and “pathways 

in cancer” were considerably enriched in the high ERS 

score group (Figure 6B). GSEA also indicated “p53 

signaling pathway” and “cell cycle” were remarkably 

enriched in the high ERS score group, and “neuroactive 

ligand-receptor interaction” and “maturity-onset 

diabetes of the young” were considerably enriched in 

the low ERS score group (Figure 6C). 

 

To identify the relationship of the tumour micro-

environment and ERS-related model, ssGSEA and 

CIBERSORT algorithms were carried out. The ssGSEA 

found remarkably higher infiltration score in activated B 

cells, activated CD8+ T cells, mast cells, and monocytes 

within the low ERS score group. The levels of infiltration 

of activated CD4+ T cells, activated DC cells, NK cells, 

neutrophils, and type 2 T helper cells within the high 

ERS score group were significantly increased (Figure 

6D). CIBERSORT algorithm indicated ERS score was 

remarkably negatively associated with B cells, monocyte, 

memory resting CD4+ T cells, and CD8+ T cells, but 

positively associated with DCs, macrophages M0, and 

NK cells (Figure 6E–6L). 

 

Mutation and drug sensitivity analyses 

 

Previous studies indicated that inactivated mutations in 

the tumour suppressor genes TP53, SMAD4, and 

CDKN2A and activated mutations in the proto-oncogene 

KRAS were closely related to the incidence as well as 

the bad prognosis in PC [35, 36]. The genetic mutation 

landscapes between the different ERS score groups were 

analyzed in this study. Results found KRAS, TP53, 

SMAD4, and CDKN2A were the top four mutated 

genes, and the mutation frequency within the high ERS 

score group was higher (Figure 7A, 7B). In addition, 

TMB for every sample was computed, and results 

showed TMB within the high ERS score group was 

remarkably higher, as well as the ERS score being 

considerably positively related to TMB (Figure 7C, 7D). 
 

Drug-assisted therapy, especially chemotherapy, is vital 
to improving the survival time for PC. However, the 

effectiveness of drug therapy is challenged by drug 

resistance that develops before and during treatment. 
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Figure 5. Establishment of endoplasmic reticulum stress-related prognostic model. (A) Coefficient path diagram for LASSO 

regression. (B) The cross-validation curve. (C) Coefficients of MET, MUC16, and KRT7 in the model. Survival curve of the training cohort (D), 
validation cohort (E), and whole cohort (F). Survival curve between high-expression and low-expression groups of MET (G), MUC16 (H), and 
KRT7 (I). (J) Alluvial diagram of changes in ERGclusters, geneClusters, ERS score and survival state. (K) The difference of ERS score between 
ERGcluster A and B. (L) The difference of ERS score between geneCluster A and B. 
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Figure 6. GSVA, GSEA and immune analysis. (A) The expression difference of endoplasmic reticulum stress-related genes between high 
and low ERS score. (B) GSVA analysis. (C) GSEA analysis. (D) ssGSEA analysis. Correlation of naive B cells (E), activated dendritic cells (F), 
macrophages M0 (G), monocytes (H), activated NK cells (I), plasma cells (J), memory resting CD4+ T cells (K) and CD8+ T cells (L), and ERS 
score based around the CIBERSORT algorithm. (*p<0.05; **p<0.01; ***p<0.001). 
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Clarifying each patient's sensitivity to different drug 

therapies is critical for clinicians to form personalized 

treatment plans. The relationship of drug sensitivity and 

ERS-related model was evaluated through the 

“oncoPredict” package. Results showed that the low 

ERS score group had a better response to 5-fluorouracil, 

cisplatin, gemcitabine, irinotecan, KRAS (G12C) 

inhibitor-12, oxaliplatin, and paclitaxel, while higher 

ERS score had better response to trametinib (Figure 8A–

8H). Utilizing the CellMiner database, we revealed that 

MET was remarkably negatively related to the 

sensitivity of paclitaxel and oxaliplatin, and remarkably 

positively related to trametinib. MUC16 was conside-

rably negatively related to the sensitivity of oxaliplatin, 

irinotecan, and gemcitabine, and considerably positively 

related to the sensitivity of erlotinib. KRT7 was 

considerably negatively related to the sensitivity of 

oxaliplatin and positively related to the sensitivity of 

erlotinib (Figure 8I). 

Gene expression validation and distribution 

exploration 

 

Based on GEPIA database, we found that mRNA 

expression of MET, KRT7, and MUC16 was remarkably 

higher in pancreatic tumour than in normal tissues 

(Figure 9A–9C). We downloaded immunohistochemical 

images of pancreatic tumour tissue and normal  

tissue through HPA platform, and found the protein 

expression of MET, KRT7, and MUC16 in pancreatic 

tumour were higher than normal tissues (Figure 9D–9F) 

(Figure 9D is available from the following URL: 

https://www.proteinatlas.org/ENSG00000105976-MET/ 

tissue/pancreas#img, https://www.proteinatlas.org/ENSG 

00000105976-MET/pathology/pancreatic+cancer#img; 

Figure 9E is available from the following URL: 

https://www.proteinatlas.org/ENSG00000135480-KRT7/ 

tissue/pancreas#img, https://www.proteinatlas.org/ENSG 

00000135480-KRT7/pathology/pancreatic+cancer#img; 

 

 
 

Figure 7. Mutation analysis. (A) Waterfall map of mutation landscape within the high ERS score group. (B) Waterfall map of mutation 

landscape within the low ERS score group. (C) The tumour mutation burden (TMB) between the different ERS score groups. (D) Correlation of 
TMB and ERS score. 

https://www.proteinatlas.org/ENSG00000105976-MET/tissue/pancreas#img
https://www.proteinatlas.org/ENSG00000105976-MET/tissue/pancreas#img
https://www.proteinatlas.org/ENSG00000105976-MET/pathology/pancreatic+cancer#img
https://www.proteinatlas.org/ENSG00000105976-MET/pathology/pancreatic+cancer#img
https://www.proteinatlas.org/ENSG00000135480-KRT7/tissue/pancreas#img
https://www.proteinatlas.org/ENSG00000135480-KRT7/tissue/pancreas#img
https://www.proteinatlas.org/ENSG00000135480-KRT7/pathology/pancreatic+cancer#img
https://www.proteinatlas.org/ENSG00000135480-KRT7/pathology/pancreatic+cancer#img
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Figure 9F is available from the following URL: 

https://www.proteinatlas.org/ENSG00000181143-MUC 

16/tissue/pancreas#img, https://www.proteinatlas.org/ 

ENSG00000181143-MUC16/pathology/pancreatic+ 

cancer#img). What’s more, we validated the expression 

of MET, KRT7, and MUC16 using RT-qPCR through in 
vivo and in vitro experiments. Compared to HPDE6-C7, 

MET was significantly higher expressed in PC cell lines 

BxPC-3, CF-PAC1 (Figure 9G), KRT7 was significantly 

higher expressed in PC cell lines BxPC-3, CF-PAC1 

(Figure 9H), and MUC16 was significantly higher 

expressed in PC cell lines BxPC-3, CF-PAC1, and  

Panc-1 (Figure 9I). Compared to pancreatic normal 

tissues, the expression levels of MET, KRT7, and 

MUC16 were remarkably higher in pancreatic tumour 

tissues (Figure 9J–9L). 

 

We further explored the distribution of gene 

expression in different cell substructures as well as 

different cell types. MET was detected in the 

 

 
 

Figure 8. Drug sensitivity analysis. The sensitivity of 5-Fluorouracil (A), cisplatin (B), gemcitabine (C), irinotecan (D), KRAS (G12C) 
inhibitor-12 (E), oxaliplatin (F), paclitaxel (G), and trametinib (H) between the high and low ERS score groups. (I) Correlation of drug sensitivity 
and MET, KRT7, and MUC16 expression. 

https://www.proteinatlas.org/ENSG00000181143-MUC16/tissue/pancreas#img
https://www.proteinatlas.org/ENSG00000181143-MUC16/tissue/pancreas#img
https://www.proteinatlas.org/ENSG00000181143-MUC16/pathology/pancreatic+cancer#img
https://www.proteinatlas.org/ENSG00000181143-MUC16/pathology/pancreatic+cancer#img
https://www.proteinatlas.org/ENSG00000181143-MUC16/pathology/pancreatic+cancer#img
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Figure 9. Expression levels of MET, KRT7, and MUC16. The expression of MET (A), KRT7 (B), and MUC16 (C) at RNA level. 
Immunohistochemical images of MET (D), KRT7 (E), and MUC16 (F). The expression differences of MET (G), KRT7 (H), and MUC16 (I) between 
pancreatic ductal epithelium and pancreatic cancer cell lines. The expression difference of MET (J), KRT7 (K), and MUC16 (L) between 
pancreatic tumour and adjacent tissue. (*p<0.05; **p<0.01; ***p<0.001). 
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plasma membrane and cytosol and was predicted to  

be secreted out of the cell (Figure 10A, the URL  

is https://www.proteinatlas.org/ENSG00000105976-

MET/subcellular). MUC16 was predicted to be 

secreted out of the cell (Figure 10B, the URL  

is https://www.proteinatlas.org/ENSG00000181143-

MUC16/subcellular). KRT7 was detected in intermediate 

filaments and the cytosol (Figure 10C, the URL is 

https://www.proteinatlas.org/ENSG00000135480-KRT7/ 

subcellular). Unlike the gene expression data obtained 

from conventional tissue RNA-seq, single-cell RNA-

seq may offer transcription data from a single cell. The 

single-cell analysis was performed using the single-

cell dataset CAR001160 through TISCH platform. 

Results revealed that in the tumour microenvironment 

of PC, malignant, duct, endothelial and stellate cells 

were the top four cell types with the highest proportion 

(Figure 10D–10F). Compared to other cell subtypes in 

the tumour microenvironment, the expression of MET, 

MUC16, and KRT7 was higher in pancreatic 

malignant cells (Figure 10G–10L). 

 

DISCUSSION 
 

PC is an extremely malignant digestive tract tumour with 

a 5-year survival rate of just 10% [37]. Even though the 

therapy for malignancies has undergone significant 

evolution in the last few decades, the prognosis of PC 

has not been distinctly improved. It is unquestionably a 

long and difficult task to explore the pathologic process 

of PC and uncover potential treatment strategies. 

Tumorigenesis, as a pathophysiological process with 

extremely complicated mechanisms, involves multi-level 

reactions and mutation accumulation, which are related 

to a variety of internal and external factors, such as 

genetic factors, environmental exposure, dietary habits, 

and so on. As the largest organelle in eukaryotic cells, 

endoplasmic reticulum is involved in protein synthesis, 

folding, and transport [38]. Many adverse factors, such 

as hypoxia, nutritional deficiency, oxidative stress, 

oncogene activation, and calcium imbalance, can 

interfere with the normal protein folding process in 

endoplasmic reticulum, leading to the aggregation of 

unfolded or misfolded proteins within the endoplasmic 

reticulum, thus inducing ERS [39–41]. Relevant studies 

have shown that ERS is involved in multiple 

mechanisms of tumorigenesis and progression, including 

tumour formation and metastasis, angiogenesis, chemo-

therapy resistance, and immune escape [42–44]. 

However, majority of ERGs have not been investigated 

in PC. In this study, we established the ERS-related 

molecular subtypes as well as a prognostic model  

for PC. 
 

Based on consensus clustering analysis, all the PC 

patients were classified into ERGcluster A and B. 

ERGcluster B with a higher ERS level had a 

significantly worse prognosis. In malignant tumours, 

cancer cells are in vigourous activity of proliferation 

and division, facing more oxygen and nutrient 

deficiency, DNA damage, and other stress stimuli, 

which makes cancer cells have a more active ERS level 

[45]. GSVA analysis showed that compared with 

ERGcluster A, ERGcluster B was significantly 

enriched within malignant tumor-related pathways like 

“cell cycle”, “p53 signaling pathway”, “pancreatic 

cancer”, etc. Immune escape is one of the most 

important mechanisms in malignant tumour formation. 

Tumour cells may escape the recognition of the 

immune system depending on whether they create 

“self” markers or have sufficient immunosuppressive 

ability in their microenvironment so as to survive and 

grow continuously [46]. Previous studies showed that 

ERS in tumour cells not only participates in regulating 

intracellular events such as cell proliferation, but may 

also be involved in the regulation of extracellular 

effects such as modulating the tumour immune micro-

environment and immune responses [47, 48]. Cubillos-

Ruiz et al. [19] found that XBP1, an ERS response 

factor, can restrain the anti-tumour immune response 

and promote neoplasm endogenous growth. Study from 

Liu et al. [49] showed that ERS could cause 

hepatocellular carcinoma cells to release exosome miR-

23a-3p, which mediated macrophages to overexpress 

programmed death ligand 1, thereby inhibiting the anti-

tumor immune function of T cells. A large amount of 

evidence has confirmed that Tregs, neutrophils, and 

MDSCs contributed to the establishment of an 

immunosuppressive tumour microenvironment, which 

in turn helps tumour cells escape the killing function of 

the immune system [50–53]. In the current study, 

ssGSEA analysis revealed considerable variations in 

pancreatic tumour microenvironment between the 

different ERS-related patterns. Treg cells, neutrophils, 

and MDSCs were significantly more infiltrated in 

ERGcluster B with a more active ERS state. This 

indirectly indicated that ERS might be related to anti-

tumour immunity and involve in the process of tumour 

cells escaping the killing of immune cells. 

 

The ERS-related prognostic model was further 

established to quantify the ERS score in each individual 

patient. ssGSEA indicated Treg cells had significantly 

higher infiltration scores within the high ERS score 

group, and higher infiltration of CD8+ T cells and B 

cells within the low ERS score group. CD8+ T cells can 

kill tumour cells by secreting large amounts of 

interferon-γ, tumour necrosis factor α and protease 

granzyme B. Therefore, CD8+ T cells compete for a 
very important role in anti-tumour immunity and are 

considered to be associated with a better prognosis for 

malignant tumour [54–56]. A large sample study of 

https://www.proteinatlas.org/ENSG00000105976-MET/subcellular
https://www.proteinatlas.org/ENSG00000105976-MET/subcellular
https://www.proteinatlas.org/ENSG00000181143-MUC16/subcellular
https://www.proteinatlas.org/ENSG00000181143-MUC16/subcellular
https://www.proteinatlas.org/ENSG00000135480-KRT7/subcellular
https://www.proteinatlas.org/ENSG00000135480-KRT7/subcellular
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12,439 breast cancer patients [57] found that the 

infiltration of CD8+ T cells in tumour tissue may 

significantly improve the survival time for breast 

cancer. The study by Miller et al. [58] found that a 

higher CD8+ T cell infiltration within the tumour was 

related to a better prognosis in colon cancer. Wang et al. 

[59] showed that higher CD8+ T cell infiltration within 

gastric cancer tissues was related to a improved 

 

 
 

Figure 10. Expression distribution of MET, MUC16, and KRT7 and single-cell analysis. The expression distribution of MET (A), 
MUC16 (B), and KRT7 (C) in different cell substructures. (D) Annotation of each cell subset. (E) The proportion of each cell subset in each 
sample. (F) The percentages of each cell in pancreatic tumour microenvironment. (G, H) The distribution and proportion of MET expression 
within each cell subset. (I, J) The distribution and proportion of MUC16 expression in each cell subset. (K, L) The distribution and proportion 
of KRT7 expression in each cell subset. 
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prognosis. Our study showed CD8+ T cells infiltration 

levels were significantly higher within the low ERS 

score group. In vivo, B cells are mainly involved in 

humoral immune response, immunoglobulin secretion, 

antigen presentation, and T cell immune regulation [60, 

61]. However, unlike CD8+ T cells, the function of B 

lymphocytes in tumours is controversial. On the one 

hand, some studies found that the infiltration of CD20+ 

B lymphocytes in tumour tissues played a negative 

regulatory role in tumour growth, and was relate to 

improved prognosis and reduced recurrence rates in 

ovarian cancer and cervical squamous cell cancer  

[62–64]. On the other hand, B cells with STAT3 

activity were revealed to be associated with tumour 

angiogenesis, thus determining that B cells with STAT3 

activity can mediate tumour progression and may be 

utilized as potential treatment targets for malignant 

tumour [65]. Dong et al. [66] found that CD19+ B cells 

within metastatic ovarian cancer tissues were related to 

worse survival. Lundgren et al. [67] indicated that 

incremental infiltrations of CD20+ and CD138+ B cells 

were related to a worse prognosis for epithelial ovarian 

carcinoma. The different roles of B cells in anti-tumor 

response may depend on different B cell subtypes with 

distinct phenotypes and functions, which still need to be 

explored in future studies. 

 

The ERS-related prognostic model included three genes: 

MET, MUC16, and KRT7, which were associated with a 

poor prognosis for PC. MET, a proto-oncogene, is 

transcribed and translated to form c-Met protein, which 

is a transmembrane tyrosine kinase that takes part in the 

occurrence and development of a variety of malignant 

tumours [68, 69]. Study from Dai et al. [15] found that 

calcium disturbances in endoplasmic reticulum could 

induce the conversion of the precursor Met (Pro-Met) 

into a more stable functional form of c-Met 

(P190MetNC), thereby inhibiting ERS-induced apoptosis 

in hepatocellular carcinoma by maintaining the high 

activity of PI3K/Akt and MEK/ERK pathways. Li et al. 

[70] showed that human induced pluripotent stem cell-

derived mesenchymal stem cells (iPS-MSCs) can 

alleviate ERS, inflammation, and apoptosis in the 

kidneys of high-fat diet-induced obese mice by 

activating the hepatocyte growth factor (HGF) /c-Met 

paracrine signaling pathway. MUC16, also known  

as CA125, is a type I transmembrane glycosylated  

protein, which is involved in the growth, proliferation, 

apoptosis inhibition, chemotherapy resistance, metabolic 

reprogramming, and immune evasion of tumour cells 

[71, 72]. MUC16 was detected to be highly expressed in 

various tumours, like PC [73], ovarian carcinoma [74] 

and cervical cancer [75], etc. Liang et al. [76] showed 
that high expression of CA125 in serum was related to a 

worse prognosis of pancreatic cancer. Our study showed 

that MUC16 was significantly higher expressed in 

pancreatic tumour than normal pancreatic tissues and 

was related to a worse prognosis. Keratin 7 (KRT7), as a 

member of the keratin gene family, is abnormally 

expressed in different types of malignant tumours, such 

as esophageal squamous cell carcinoma [77], colorectal 

cancer [78] and ovarian cancer [79]. The current study 

found KRT7 was remarkably overexpressed in pancreatic 

tumours and related to a worse prognosis, suggesting 

KRT7 might function as a possible therapeutic target  

for PC. 

 

Chemotherapy is the main treatment for postoperative 

and advanced PC patients. At present, the first-line 

chemotherapy regimen for PC is FOLFIRINOX 

(fluorouracil, oxaliplatin, irinotecan, and leucovorin) or 

gemcitabine combined with nab-paclitaxel [5]. 

However, the response rate of pancreatic cancer patients 

to chemotherapy is not high, and chemoresistance is 

often the cause of chemotherapy failure. ERS is 

associated with sensitivity to drug therapy for cancer. 

Wang et al. [80] found that apatinib could induce  

ERS-mediated apoptosis and autophagy through the 

IRE-1α/AKT/mTOR pathway in esophageal squamous 

cancer, and make tumour cells more sensitive to 

paclitaxel. Huang et al. [81] showed that reticulocalbin-

1 gene knockout can promote ERS-induced apoptosis 

and make nasopharyngeal carcinoma cells more 

sensitive to doxorubicin. We study revealed that 

patients with a low ERS score had a better response to 

5-fluorouracil, gemcitabine, irinotecan, oxaliplatin, and 

paclitaxel, while the high ERS score group had a better 

response to the targeted drug trametinib. These are 

instructive for the individualization of patients with PC. 

 

In the current study, we first clarified that ERGs compete 

for important roles in the carcinogenesis and progression 

of PC through comprehensive bioinformatics analysis 

and in vivo and in vitro experiments. However, there are 

also some limitations that could be improved in future 

studies. Firstly, survival information for PC was acquired 

from online databases. Although we used different 

databases to validate our prognostic model, prospective 

large clinical samples are still necessary to further 

confirm the reliability of the model. Secondly, we 

utilized in vivo and in vitro experiments to validate the 

expression of the genes in our panel, but the specific 

mechanisms of ERS in inducing PC development and 

interfering with the tumour immune microenvironment 

still need to be investigated in more in-depth experiments 

in the future. 

 

CONCLUSIONS 
 

We first evaluated the genetic variations of ERGs in pan-

cancer, and constructed the ERS-related molecular 

subtypes and prognostic model for PC by extensive 
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bioinformatics analysis and in vitro and in vivo 

experiments, which revealed ERS was closely associated 

with the prognosis, tumour immune microenvironment, 

genomic mutation, and drug sensitivity of PC. These 

results will contribute to the further study of molecular 

mechanisms and novel therapeutic strategies for PC in 

the future. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Cumulative distribution function curve when cluster number k = 2–9. 
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Supplementary Figure 2. Relative change of the area under the cumulative distribution function curve. 
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Supplementary Figure 3. The differentially expressed genes between ERGcluster A and B. 
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Supplementary Figure 4. Univariate Cox regression analysis using the differentially expressed genes between ERGcluster A 
and B. 
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Supplementary Figure 5. The correlation of model genes and ERGs. 
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Supplementary Figure 6. The comparison of ERS score between the high and low pathological grade. 

 

 
 

Supplementary Figure 7. The comparison of ERS score between the high and low TNM stage. 
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Supplementary Figure 8. Forest maps of univariate and multivariate Cox regression. 
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Supplementary Tables 
 

 

Please browse Full Text version to see the data of Supplementary Tables 1, 2. 

 

Supplementary Table 1. 15 endoplasmic reticulum stress-related gene set with 660 genes were acquired 
through the Molecular Signatures Database. 

 

Supplementary Table 2. After 348 duplicate genes were removed, 312 endoplasmic reticulum stress-related 
genes remained. 


