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INTRODUCTION 
 

Hepatocellular Carcinoma (HCC) is considered as one 

of the five leading causes of cancer-related death 

worldwide [1]. In 2018, China recorded over 466,000 

new cases of HCC, which resulted in approximately 

422,000 HCC-related deaths [1]. Despite the availability 

of curative treatment options such as surgical resection, 

liver transplantation, or radiofrequency ablation for 

early-stage HCC, the majority of patients are diagnosed 

with advanced-stage disease, often presenting with 

distant metastasis or unresectable disease [2]. Therefore, 

there is a critical need to identify more effective specific 

biomarkers for HCC. 

 

Anoikis, a special type of apoptosis caused by the loss 

of proper adhesion of cells, plays a crucial role in 

maintaining normal tissue integrity and participating  

in tumor invasion and metastasis. The cause of death  

of most cancer patients is not local tumor cell 

proliferation, but tumor metastasis. Cancer cells 
metastasize to the distance after continuous mutual 

separation or ECM separation and reattach and 

proliferate [3]. This process usually results in resistance 
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ABSTRACT 
 

Hepatocellular Carcinoma (HCC) is the predominant cause of cancer-related mortality worldwide. The majority 
of HCC patients are diagnosed at advanced stages of the disease, with a high likelihood of metastasis and 
unfavorable prognosis. Anoikis resistance is a crucial factor contributing to tumor invasion and metastasis, 
although its specific role in HCC remains unclear. Based on the results of univariate Cox regression and least 
absolute shrink-age and selection operator (LASSO) analysis, a subset of anoikis-related genes (ARGs) 
significantly associated with overall survival (OS) was identified. A multivariate Cox regression analysis 
subsequently identified PDK4, STK11, and TFDP1 as three prognostic ARGs, which were then used to establish a 
prognostic risk model. Differences in OS caused by risk stratification in HCC patients were demonstrated. The 
nomogram analysis indicated that the ARGs prognostic signature served as an independent prognostic 
predictor. In vitro experiments further confirmed the abnormal expression of selected ARGs in HCC. The 
association between risk scores and OS was further examined through Kaplan-Meier analysis, CIBERSORT 
analysis, and single-sample gene set enrichment analysis (ssGSEA). This study is a pioneering effort to integrate 
multiple ARGs and establish a risk-predictive model, providing a unique perspective for the development of 
personalized and precise therapeutic strategies for HCC. 

mailto:cj1076@gzucm.edu.cn
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


www.aging-us.com 10256 AGING 

to anoikis [4–7]. To promote their aggressiveness and 

metastasis, cancer cells employ a variety of mechanisms 

to produce anoikis resistance, including cell acidosis, 

reactive oxygen species (ROS) production, epithelial-

mesenchymal transition (EMT), and changes in calcium 

ion transport pathways [8–11]. Multiple signaling 

pathways that contribute to cancer development are 

involved in the regulation of anoikis resistance level 

[12]. 

 

The role of anoikis in HCC has received increasing 

attention. Induction of anoikis prevents malignant 

transformation of liver cells by modulating the 

mTOR/S6K1 signaling axis [13]. In addition, as a 

critical player in the regulation of HCC carcinogenesis 

and drug resistance [14], EGFR pathway influences 

HCC distant metastasis by regulating the anoikis 

process [15]. Multiple targets play an antitumor role in 

HCC by weakening anoikis resistance [16–18]. 

Recently, a study revealed that histidine-rich calcium-

binding protein (HRC) increases anoikis resistance and 

promotes HCC metastasis through the protein kinase 

RNA-like ER kinase (PERK)-eIF2a-ATF4-CHOP 

signaling pathway [19]. In another study, inducing 

autophagy in the acidic environment of HCC enhanced 

the ability of HCC cells to resist anoikis, and autophagy 

inhibitors reversed this effect [20]. Despite the evidence 

that anoikis resistance contributes to the development of 

HCC and that ARGs play a central role in the 

progression and metastasis of various tumors [21–24], 

no reports exist on predicting the prognosis of HCC 

based on an ARGs risk model. 

 

The liver is rich in innate and adaptive immune cells, 

which result in an intrinsic immune tolerance [25]. 

Immune tolerance prevents the liver from overreacting 

to harmful stimuli. On the other hand, it impedes 

immune surveillance and promotes tumorigenesis and 

progression [26]. During the development of HCC, 

chronic inflammation caused by immune cell 

infiltration produces changes in the immune micro-

environment and induces DNA damage and genetic 

alterations, thus facilitating the development and 

progression of tumors [27]. Chronic inflammation is 

involved in up to 80% of HCC cases [27]. In addition, 

immune cells in the HCC tumor immune micro-

environment provide new targets for the next 

generation of immunotherapy. Immune checkpoint 

therapy targeting PD-1/PD-L1 in HCC patients has 

achieved considerable success (28434648). However, 

ICI efficacy in HCC patients still needs to be 

improved, and better understanding of HCC immune 

microenvironment is needed. 

 

This study systematically investigated the correlation 

between ARGs and the clinicopathological 

characteristics of HCC patients based on data from the 

Cancer Genome Atlas (TCGA) and GEO databases. A 

novel risk model was established, based on three 

prognostic ARGs, and its ability to predict outcomes 

in HCC was further evaluated. Additionally, this 

study provided comprehensive insight into immune 

infiltration and underlying signaling pathways in HCC 

patients with varying risk scores. The purpose of this 

study is to offer new insights into potential treatment 

strategies and related metastasis mechanisms for 

HCC. 

 

MATERIALS AND METHODS 
 

Data collection from the TCGA and GEO database 
 

For this study, the transcriptome matrix (TPM), which 

included survival time, survival status, age, gender, 

stage, T stage, and N stage, was retrieved from the 

TCGA database (https://portal.gdc.cancer.gov/). A 

total of 365 HCC samples were included in the 

analysis [28]. Perl scripts were utilized to merge the 

gene expression data of each sample. In addition, 115 

HCC samples from the GEO database (GSE76427) 

were obtained and subjected to further analysis 

(TPM). To ensure data normalization and remove any 

batch effects, the R package “sva” was employed 

[29]. The mutation file (MAF) and copy number 

variate (CNV) data of HCC were collected from the 

TCGA database. 

 

Construction and validation of anoikis-related genes 

risk model 

 

A total of 33 ARGs were obtained from the Molecular 

Signatures Database (https://www.gsea-msigdb.org/ 

gsea/) [30] (Supplementary Table 1). Univariate Cox 

regression analysis and the LASSO algorithm were 

used to identify the ARGs that could predict the 

prognosis of HCC. Subsequently, multivariate Cox 

regression analysis was performed to select the final 

set of prognostic ARGs. Based on these selected 

ARGs, a risk model was established to predict the 

prognosis of HCC. The risk score for each sample was 

calculated using the following formula: risk score = 

(−0.185 × PDK4) + (−0.540 × STK11) + (0.412 × 

TFDP1). The HCC samples were then divided into 

high- and low-risk groups using the median value of 

the risk score as the cutoff. The training cohort 

comprised 365 HCC samples from the TCGA 

database, while the validation cohort comprised 115 

HCC samples from the GEO database. In both 

cohorts, the risk score for each sample was calculated, 

and the samples were subsequently divided into  

low- and high-risk groups based on the median risk 

score. 

https://portal.gdc.cancer.gov/
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Independent prognosis analysis and consensus 

clustering analysis 

 

In this study, the “ConsensusClusterPlus” R package was 

utilized to conduct a consensus clustering analysis based 

on partitioning around medoids. The analysis was carried 

out with “euclidean” distances and 1000 verifications, 

with K values ranging from 2–9. Subsequently, patients 

with HCC were categorized into different subgroups 

based on the optimal classification obtained. To 

determine the independence of the risk model, univariate 

and multivariate Cox regression analyses were performed 

using the “survival” R package. Moreover, using the 

clinicopathological characteristics and risk scores, a 

nomogram model was developed with the “rms” R 

package, which enabled the calculation and evaluation of 

the 1-, 3-, and 5-year survival probabilities for patients 

with HCC. The diagnostic accuracy of the risk score was 

evaluated using the “pROC” R package. Additionally, a 

time-dependent receiver operating characteristic (ROC) 

analysis was conducted to assess the prognostic 

capability of the risk model. 

 

Real-time quantitative RT-PCR (qRT-PCR) and 

western blot analysis 

 

Total RNA was extracted from the L02 and Huh7 cell 

lines using Trizol reagent (Cat# 15596018, Thermo 

Fisher) and subjected to cDNA synthesis using an RT 

reagent kit with gDNA Eraser (Perfect Real Time) for 

real-time quantitative qRT-PCR (Cat# RR047A, Takara). 

The resulting mRNA expression was quantified using 

SYBR Premix Ex Taq II (TliR-NaseH Plus) (Cat# 

RR820B, Takara), with gene-specific primer pairs listed 

in Supplementary Table 2. To extract protein, the L02 

and Huh7 cells were lysed with RIPA lysis solution, and 

the protein concentration was subsequently measured 

using the BCA method. The protein was then subjected 

to SDS-PAGE electrophoresis for membrane transfer, 

electrotransfer, and closure. PDK4 (ab110336, 1:1000), 

STK11 (TA802377, 1:1000), and TFDP1 (PA5-86135, 

1:1000) antibodies were added to the membrane 

respectively and incubated overnight at 4°C. After 

washing with TBST buffer solution three times, the 

transferred membrane was incubated with a secondary 

antibody (1:20000) at room temperature for one hour and 

washed with TBST three times. Finally, the protein bands 

were visualized using an Odyssey Clx (Li-Cor, USA), 

and the blots were imaged and quantified using ImageJ 

software, with β-actin used as a loading control. 

 

Immune infiltration landscape, drug sensitivity and 

GSEA analysis 

 

In order to evaluate the proportion of immune cells, we 

employed the single-sample gene set enrichment 

analysis (ssGSEA) algorithm with the “GSVA”  

R package. The response to anti-PD1/CTLA4 therapy  

in patients with HCC was assessed using the  

Cancer Immunome Atlas (TCIA) database 

(https://tcia.at/home). To determine drug sensitivity, we 

utilized the Genomics of Drug Sensitivity in Cancer 

(GDSC) database and calculated the IC50 values with 

the “pRRophetic” R package. To investigate the 

correlation between IC50 values and the risk score, we 

conducted a Spearman-ranked correlation analysis and 

presented the results in a heatmap with the “ggplot2” R 

package. Differential expression genes (DEGs) were 

identified between the low- and high-risk groups (|Fold 

Change| ≥ 2 and P < 0.05). We conducted a gene set 

enrichment analysis (GSEA) on the DEGs to enrich 

them into KEGG pathways based on the reference gene 

set “c2.cp.kegg.v7.2.symbols”. 

 

Statistical analysis  

 

In this study, all statistical analyses were conducted 

utilizing R software (version 4.1.1) and Perl scripts. The 

Spearman-ranked correlation analysis was utilized to 

assess the association between ARGs and immune cells, 

with statistical significance set at P < 0.05. The 

differential functions between the two groups were 

analyzed using the Wilcoxon rank-sum test, while 

ANOVA test was used for multiple groups. A statistical 

significance level of P < 0.05 was employed in all 

analyses. 

 

Availability of data and materials 

 

The raw data of this study were derived from the TCGA 

(https://portal.gdc.cancer.gov/) and GEO data portal 

(https://www.ncbi.nlm.nih.gov/geo/; accession number: 

GSE76427, which were available from the corres-

ponding authors upon request. 

 

RESULTS 
 

Differential expression and somatic mutational 

analysis of ARGs in HCC 

 

In this study, a total of 33 ARGs were collected from 

the MSigDB database, and their potential role in HCC 

was investigated. To evaluate their expression profiles 

in normal and HCC tissues, we used “limma” script 

and conducted differential expression analysis. The 

results revealed that 32 ARGs were significantly 

differentially expressed in normal and HCC tissues 

(Figure 1A, p < 0.05). Furthermore, the somatic 

mutation waterfall plot displayed the mutation 

frequency of ARGs in HCC, and the analysis indicated 

that PIK3CA, TSC2, MTOR, SRC, NOTCH1, and 

NTRK2 had mutation frequencies of 4%, 3%, 2%, 2%, 

https://tcia.at/home
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
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2%, and 2%, respectively (Figure 1B). Additionally, 

the copy number analysis of ARGs in HCC showed 

significant amplification of most ARGs, such as 

MCL1, PTK2, TFDP1, PTRH2, SNAI2, and PIK3CA, 

while several genes including MTOR, STK11, BCL2, 

MAP3K7, AKT1, CHEK2, and MYBBP1A were 

significantly missing (Figure 1C). Moreover, we also 

explored the chromosomal location of the 33 ARGs 

(Figure 1D). The findings suggest substantial 

differences in ARG expression, mutation, and copy 

number variation in HCC, thus highlighting their 

potential role in HCC. 

 

Molecular subtype profiling of HCC based on 

prognostic ARGs 

 

Using LASSO-univariate Cox analysis, we identified 

6 ARGs that were associated with HCC prognosis, 

consisting of 4 risk factors (E2F1, ITGA5, SRC, 

TFDP1) and 2 favorable factors (PDK4, STK11) 

(Figure 2A–2C). Furthermore, multivariate Cox 

analysis was carried out to determine 3 independent 

prognostic factors that were associated with the clinical 

prognosis of HCC. To explore the potential relationship 

between ARGs and different molecular subtype 

characteristics of HCC, we conducted consensus cluster 

analysis based on the 3 independent prognostic factors 

of HCC, which demonstrated that HCC samples can be 

accurately classified into 3 different molecular subtypes 

when k = 3, with cluster A containing 102 HCC 

samples, cluster B containing 155 HCC samples, and 

cluster C containing 108 HCC samples (Figure 2D). It 

was observed that the clinical survival outcome of HCC 

in cluster C was significantly worse than that of cluster 

A and B, while the clinical survival outcome was 

similar between cluster A and cluster B (Figure 2E,  

p < 0.001). Moreover, unsupervised PCA plots 

displayed a significant variability among the 3 HCC 

molecular subgroups (Figure 2F). To further investigate 

the potential molecular mechanisms between the 

different ARG-based molecular subtypes, GSVA results 

illustrated that metabolism-related pathways were 

considerably downregulated in Cluster C compared to 

Cluster A and Cluster B, encompassing tyrosine 

 

 
 

Figure 1. Differential expression, somatic mutation and CNV analysis of ARGs in HCC. (A) Analysis of differential ARGs expression 

in normal and HCC tissues. (B) Somatic mutation frequency analysis of ARGs in HCC. (C) Analysis of copy number variation of ARGs in HCC. 
(D) The circle diagram shows the location of the 33 ARGs on the chromosome. 
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metabolism, pyruvate metabolism, and fatty acid 

metabolism (Figure 2G, 2H). 

 

Immune infiltration and immunotherapeutic 

response analysis of molecular subtypes of HCC 

 

We further investigated the relationship between the 

different molecular subtypes of HCC and immune 

infiltration. Our results from the IPS analysis indicated 

that HCC samples from cluster B may respond better to 

immunotherapy with PD-1 and CTLA4 (Figure 3A–

3D). Additionally, using the ssGSEA algorithm, we 

evaluated the immune infiltration landscape of the 

different HCC molecular subtypes. The findings from 

the immune infiltration assessment showed that most of 

the immune cell proportions were significantly higher in 

cluster B than in clusters A and C. These immune cell 

types included activated B cells, CD8+ T cells, 

immature B cells, neutrophils, type 1 T helper cells, and 

gamma delta T cells (Figure 3E). In summary, our 

results demonstrate a significantly different immune 

infiltration landscape between the various HCC 

molecular subtypes, which is closely associated with 

immunotherapeutic response. 

 

 
 

Figure 2. ARG-based molecular subtyping of HCC. (A–C) Identification of prognostic ARGs clinically relevant to HCC based on LASSO-

univariate Cox analysis. (D) ARG-based analysis of HCC molecular subtypes. (E) Clinical survival outcome analysis of HCC samples with 
different molecular subtypes. (F) Unsupervised PCA analysis. (G, H) GSVA analysis of molecular subtypes of HCC. 
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Risk model construction for HCC 

 

Using multivariate Cox analysis, we obtained risk 

coefficients and expression profiles of 3 independent 

prognostic factors, which we then used to calculate risk 

values for each HCC sample in the TCGA. HCC 

samples were subsequently divided into low- and high-

risk subgroups based on their risk values. Scatter plots 

of the risk model indicated that HCC samples in the 

high-risk group contained more deaths (Figure 4A, 4B). 

Notably, unsupervised PCA analysis demonstrated two 

clear patterns of distribution of HCC risk subgroups 

(Figure 4C). Clinical survival outcome curves suggested 

that clinical prognostic outcomes were significantly 

better for HCC samples in the low-risk subgroup than  

in the high-risk subgroup (Figure 4D, p < 0.001). 

Time-related ROC curves suggested AUC of 0.688, 

0.611, and 0.593 for 1-, 3-, and 5-years, respectively 

(Figure 4E). We also observed significantly higher risk 

scores for HCC samples in cluster C, which had the 

worst clinical prognosis, compared to clusters A and B 

(Figure 4F). Sankey plots demonstrating the association 

of HCC molecular subtypes and risk subgroups with 

clinical prognosis showed that HCC samples in cluster 

C were more likely to be classified into higher risk 

subgroups and were associated with poor clinical 

survival outcomes (Figure 4G). 

 

Prognostic ARG-based risk model validation 

 

To validate the independence and reliability of the 

prognostic ARG-based risk model, we conducted both 

 

 
 

Figure 3. Immune infiltration of HCC molecular subtypes and immunotherapy assessment analysis. (A–D) IPS analysis reveals 

the therapeutic response of different HCC molecular subtypes to PD-1 and CTLA-4. (E) Immune infiltration landscape of HCC molecular 
subtypes assessed based on the ssGSEA algorithm. Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001. 
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internal and external validation analyses using the 

TCGA dataset and GSE76427 dataset, respectively. 

Using the “caret” script, we randomly partitioned the 

HCC samples in TCGA into training and validation sets 

with a 7:3 ratio and calculated risk values for each 

sample in both sets. Our findings demonstrated that the 

clinical prognostic outcomes of the HCC samples in the 

low-risk subgroup were significantly better than those 

 

 
 

Figure 4. Risk model development based on prognostic ARGs. (A, B) Subgroup analysis of HCC risk based on prognostic ARGs. (C) 

Unsupervised PCA analysis. (D) Clinical survival outcome assessment of HCC risk subgroups. (E) Time-dependent ROC curve analysis. (F) Risk 
score distribution of HCC molecular subtypes. (G) Association analysis of HCC molecular subtypes, risk subgroups and clinical survival 
outcomes. 
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in the high-risk subgroup in both the training and 

validation sets, as shown in Figures 5A, 5B. 

Furthermore, in the external validation set, GSE76427, 

we observed consistent results where HCC samples in 

the high-risk subgroup exhibited worse clinical 

prognosis than those in the low-risk subgroup (Figure 

5C). Time-dependent ROC curves showed AUC of 

0.681, 0.632, and 0.616 for 1-, 3-, and 5-year 

predictions, respectively, in the training set, AUC of 

0.699, 0.530, and 0.509 in the validation set, and AUC 

of 0.918, 0.986, and 0.928 in GSE76427 (Figure 5D–

5F). Our results demonstrate that the ARG-based risk 

model can accurately and independently predict the 

clinical prognosis of HCC. 

 

Independent prognostic assessment of risk scores in 

an independent cohort 

 

We conducted further analysis to assess the independent 

prognostic value of the risk model developed based on 

the prognostic ARGs in combination with other 

clinicopathological characteristics. Using the TCGA 

cohort, we performed univariate analysis and found that 

stage (HR = 1.672 (.359–2.056), T (HR = 1.652 (1.357–

2.011), p < 0.001), and risk score (HR = 1.531 (1.274–

1.839), p < 0.001) were significantly associated with 

poor prognosis of HCC. Multifactorial Cox analysis 

indicated that the risk score (HR = 1.699 (1.353–2.133)) 

was an independent prognostic factor for HCC (Figure 

6A). We developed a nomogram based on the risk 

scores and clinicopathological characteristics of the 

TCGA cohort, which accurately predicted the 1-, 3-, 

and 5-year survival probabilities of HCC samples 

(Figure 6B) (Supplementary Figure 1A, 1B). For the 

GEO cohort, one-way Cox analysis showed that bclc-

staging (HR = 2.372 (1.310–4.294), p = 0.004), stage 

(HR = 1.709 (1.067–2.737), p = 0.026), and risk score 

(HR = 1.073 (1.046–1.100), p < 0.001) were 

significantly associated with poor prognosis of HCC. 

Multivariate Cox analysis indicated that the risk score 

(HR = 1.079 (1.049–1.109), p < 0.001) was an 

independent prognostic factor for HCC (Figure 6C). We 

developed a nomogram based on the risk scores and 

clinicopathological characteristics of the GEO cohort, 

which accurately predicted the 1-, 3-, and 5-year 

survival probabilities of HCC samples (Figure 6D) 

(Supplementary Figure 1C, 1D). In conclusion, our 

results indicate that the ARG-based risk model is an 

independent prognostic factor for HCC samples, which 

is independent of clinicopathological features. 

 

 
 

Figure 5. Independent cohort validation of the risk model developed based on the prognostic ARG.  (A, B) Clinical prognostic 

analysis of HCC samples from the training and validation sets in the TCGA cohort. (C) Clinical prognostic analysis of HCC samples from the 
GSE76427 dataset. (D–F) Time-related ROC curve analysis of the TCGA cohort and the GSE76427 cohort at 1-, 3-, and 5-year. 
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Mutational burden and GSEA analysis of risk 

subgroups 

 

In the subsequent study, we delved deeper into the 

landscape of mutational load in HCC among the risk 

subgroups. Our findings showed that out of 178 samples 

in the low-risk subgroup, somatic mutations occurred in 

145 (81.46%) samples, while in the high-risk subgroup, 

significant somatic mutations were present in 144 

samples (80.9%). As depicted in Figure 7A, 7B, we 

observed that the frequency of mutations in TP53 was 

significantly higher in the high-risk subgroup compared 

to the low-risk subgroup. Conversely, the frequency of 

mutations in ALB, PCLO, MUC16, TTN, and CTNNB1 

was significantly lower in the high-risk subgroup 

compared to the low-risk subgroup. To gain a better 

understanding of the potential regulatory mechanisms in 

different risk subgroups, we analyzed the KEGG 

pathway in the high- and low-risk subgroups based on 

GSEA. Our results suggested a significant enrichment 

of metabolism-related signaling pathways in the low-

risk subgroup, which included drug metabolism

 

 
 

Figure 6. Independent prognostic assessment and nomogram development of risk models based on ARG constructs in 
different independent cohorts. (A, B) Independent prognostic analysis and nomogram construction in the TCGA cohort. (C, D) Independent 

prognostic analysis and nomogram construction in the GEO cohort. 
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cytochrome p450 and fatty acid metabolism. In contrast, 

the high-risk subgroup showed a significant enrichment 

of tumor and immune-related signaling pathways such 

as cell cycle, DNA Replication, and cytokine-cytokine 

receptor interaction (Figure 7C, 7D). 

 

Immune infiltration landscape and drug sensitivity 

analysis in risk subgroups 

 

Using ssGSEA, we conducted a further analysis of the 

immune infiltration characteristics of HCC in the risk 

subgroups. Our findings indicated a significantly higher 

proportion of most immune cells in the high-risk 

subgroups compared to the low-risk subgroups, 

signifying a greater immune infiltration status of HCC 

in the former group (Figure 8A). Correlation analysis 

showed a significant positive correlation between the 

risk score and most immune cells, including MDSC, 

CD4+ T cells, macrophage, monocyte, and immature 

dendritic cells, while a significant negative correlation 

was observed with eosinophil and gamma delta T cells. 

We also observed significant correlations of PDK4, 

STK11, and TFDP1 with the majority of immunity 

(Figure 8B). Furthermore, we utilized the GDSC 

database to predict potential chemotherapeutic agents 

for HCC samples. Our results demonstrated 

significantly lower IC50 values for Z-LLNle-CHO,  

VX-680, TAE684, Sunitinib, S-Trityl-L-cysteine, 

Rapamycin, and Paclitaxel in the high-risk group 

compared to the low-risk group, whereas the IC50 for 

 

 

 
Figure 7. Tumor mutational burden and GSEA analysis in risk subgroups. (A, B) Somatic mutation landscape analysis in the risk 
subgroup. (C, D) GSEA analysis of risk subgroups. 
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Erlotinib was significantly higher in the high-risk group 

(Figure 8C–8J). 

 

qRT-PCR and western blot analysis 

 

In order to validate our findings, we conducted further 

in vitro experiments to assess the mRNA and protein 

expression levels of PDK4, STK11 and TFDP1. Our 

results showed that compared to the normal cell line 

L02, the expression of PDK4 was significantly lower, 

while the expression of STK11 and TFDP1 was 

significantly higher in the HCC cell line Huh7 (Figure 

9A–9C). Western blot analysis also confirmed our 

findings, as the protein levels of PDK4 were 

significantly higher in the L02 cell line, while STK11 

and TFDP1 were significantly higher in the Huh7 cell 

line (Figure 9D–9G). 
 

DISCUSSION 
 

Hepatocellular carcinoma (HCC) accounts for 90% of 

liver malignancies and is currently the second cause of 

 

 
 

Figure 8. Immune infiltration landscape and drug sensitivity analysis for risk subgroups. (A) Immune cell proportion of risk 

subgroups assessed based on the ssGSEA algorithm. (B) Correlation analysis of independent prognostic factors and risk scores with immune 
cells. (C–J) Predictive analysis of drug sensitivity in risk subgroups. 
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the cancer-related death worldwide [31]. In this study, 

3 ARGs (PDK4, STK11 and TFDP1) which are 

associated with OS rate for HCC patients were 

identified, establishing a new risk model in order to 

evaluate the prognosis of HCC subsequently. The qRT-

PCR and western blot results further confirmed the 

abnormal expression of these genes in HCC patients. 

The ARGs risk model was validated as an independent 

prognosis predictor by univariate and multivariate Cox 

regression analysis. Additionally, the ARGs risk model 

was also found to be closely related to tumor immune 

microenvironment and immunotherapy response for 

HCC, which might provide a new perspective for the 

future individualized immunotherapy. Drug sensitivity 

analysis illustrated a different response to targeted drugs 

by risk stratification. 

 

Our study provides the first evidence of the significance 

of anoikis in HCC. In fact, there is some evidence 

suggesting a role for anoikis in liver cancer. The 

extracellular environment, especially the extracellular 

matrix (ECM), provides adhesion and connection 

support between cells, which promotes cell survival and 

growth [6]. Loss of cell adhesion may lead to 

programmed cell death, which is called anoikis [32]. 

Anoikis can limit cancer progression by preventing the 

cell from disseminating to distant organs. Therefore, 

different mechanisms were developed from malignant 

aggressive tumor to counter anoikis which is inclined to 

obtain the ability to escape from the primary sites to 

distant organs or lymph nodes [33]. Multiple pathways 

can lead to the acquisition of anoikis resistance in HCC. 

Xia et al. found that histidine-rich calcium binding 

protein (HRC) could enhance the anoikis resistance and 

promote the HCC metastasis via protein kinase RNA-

like ER kinase (PERK)-eIF2a-ATF4-CHOP signaling 

axis [19]. Mo et al. found that upregulation of IQGAP1 

enhanced anoikis resistance, thus promoting the 

migration and invasion of HCC cells [34]. Based on 

these evidences, we hypothesized that ARGs were 

promising biomarkers of HCC. 

 

Cancer cells often exhibit altered glucose metabolism 

characterized by a preference for aerobic glycolysis or 

the Warburg effect [35]. PDK4 regulates mitochondrial 

glycolysis by phosphorylating pyruvate dehydrogenase 

(PDH) which controls the generation of reducing 

equivalents driving respiration [36]. Besides, PDK4 also 

plays an important role in survival, proliferation, 

invasion and metastasis of tumor cells [37]. Song et al. 

reported that inhibiting PDK4 could slow the 

proliferation of liver cancer [38]. In addition, Lu et al. 

found that when detached from the matrix, 

untransformed mammary epithelial cells underwent 

metabolic reprogramming by markedly upregulating 

PDK4, thereby inhibiting PDH and attenuating the flux 

 

 
 

Figure 9. qRT-PCR and Western blot analysis. (A–C) mRNA expression levels of PDK4, STK11 and TFDP1 in L02 and Huh7 cell lines.  
(D–G) Western blot and quantitative analysis. Data representation: mean ± SD. Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001, 
****P < 0.0001. 
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of glycolytic carbon into mitochondrial oxidation, and 

depletion of PDK4 increased mitochondrial respiration 

and oxidative stress in suspended cells, resulting in 

heightened anoikis [39]. These results suggested that 

PDK4 was a potential target for anti-metastasis therapy, 

consistent with our study. 

 

Serine/threonine kinase 11 (STK11) also referred as 

Liver kinase B1 (LKB1), encodes a 50 kDa evolutionary 

conserved serine/threonine kinase [40]. LKB1 can 

phosphorylate and activate several kinases including 

AMP-activated protein kinase and shows pleiotropic 

activity in multiple processes, including the cancer 

pathology related processes, such as energy metabolism, 

proliferation and apoptosis [41]. Recently, several 

studies have reported that LKB1 was upregulated in 

HCC, which was consistent with this study [42]. 

 

The TFDP family includes three members, TFDP1, 

TFDP2 and TFDP3 [43]. TFDP1 acts as a hetero-

dimerization partner for E2F family members of 

transcription factors and plays an important role in HCC, 

mainly through affecting the CDK-RB-E2F cell cycle 

regulation axis [44]. Moreover, TFDP1 has been 

identified as a c-Myc-targeted gene, which may promote 

hepatocyte transformation by changing cell cycle control 

[45]. Kohichiroh Yasui also found that since it promoted 

tumor cell growth, elevated TFDP1 expression may 

significantly affect HCC progression [46]. 

 

The liver has a unique immune microenvironment 

where exists immune cells such as Myeloid-derived 

suppressor cells (MDSC), dendritic cells (DC), tumor 

associated macrophages (TAMs), natural killer cells 

(NK), cytotoxic lymphocytes (CTL), and regulatory T 

cells (Treg). The non-immune cells in liver include 

cancer related fibroblasts (CAFs), hepatic stellate cells 

(HSCs), and liver endothelial cells [47]. Both the 

immune and non-immune cells participate in immune 

tolerance and response of HCC, and affect its 

development and prognosis. According to the immune 

infiltration analysis results, high-risk group had an 

immune microenvironment consisting of higher levels 

of activated CD4+ T cells, DC and macrophages. DC 

located in tumor microenvironment, are called tumor 

invasion dendritic cells (TIDC), which can present 

tumor antigen to initial T cells and induce specific anti-

tumor immunity. When the liver is damaged, DC can 

produce tumor necrosis factor (TNF) to promote T cell 

proliferation, NK cells activation, leading to 

inflammation and fibrosis of the liver [48]. The 

immunosuppressive cells (MDSC) were also 

significantly elevated in the high-risk group. IL-17 
plays an important role in the immune tolerance of 

MDSC. The loss of IL-17 receptor inhibits the 

infiltration of MDSC and promotes the infiltration of 

CD8+ T cells. Macrophages can chemotactic MDSC to 

tumor and promote their release of IL-17. By contrast, 

Tregs, which could induce immune escape, had no 

differences between the low- and high-risk group. 

Overall, the infiltration characteristics of different 

subgroups according to the risk score may help HCC 

patients get personalized immunotherapy. 

 

Risk stratification of hepatocellular carcinoma, including 

risk stratification algorithms and biomarkers, could help 

improve the effectiveness of HCC treatment by better 

identifying at-risk individuals [49]. In addition, the 

combination of valuable hepatocellular carcinoma 

biomarkers after screening into an array has positive 

significance in clinical application [50]. Due to the 

heterogeneity of tumors and individuals, a large enough 

biomarker pool is needed. Our study provides new targets 

for risk stratification and further screening. According to 

present studies, the results of drug sensitivity analysis 

showed significant differences in the susceptibility to 

chemotherapeutic or targeted agents in different risk 

groups. Compared with targeted therapy, immune 

checkpoint inhibitor (ICI), the most widely used method 

for immunotherapy of HCC, had a longer OS as the 

second-line treatment for advanced HCC [51]. However, 

the response rate of ICI was only 10%~20% [52]. In this 

study, ICI analysis suggested that the expression of 

LAG3, CTLA-4, and PD-L1 in high-risk group were 

significantly higher than that in low-risk group, which 

indirectly indicated that the anoikis risk score might have 

a great influence on predicting the effects of 

immunotherapy. The combination of targeted therapy and 

immunotherapy for HCC has made remarkable progress 

in recent years and has broad prospects [53]. The ARGs 

risk model may help screen more specific targets for 

combination therapy to improve the clinical efficacy. 

 

In the present study, we established a novel model 

based on three prognostic ARGs and confirmed its 

efficacy in prognosis predicting of HCC patients. By 

immune infiltration landscape and drug sensitivity 

analysis, the established ARGs risk model showed its 

potential value in clinical practice. Our study does have 

limitations. Although we have verified the abnormal 

expression of ARGs through qRT-PCR and western 

blot, further mechanism studies on the effect of ARGs 

are lacking. Additionally, due to the characteristics of 

bioinformatics analysis, the correlation analysis 

conclusions in this study lack further causation analysis. 

Further mechanism studies in the future will help us to 

better understand the ARGs role in HCC. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. The C-index and calibration analysis in TCGA and GEO cohorts. (A) Concordance index of TCGA 

database. (B) Calibration curve analysis of TCGA database. (C) Concordance index of GEO database. (D) Calibration curve analysis of GEO 
database. 
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Supplementary Tables 
 

Supplementary Table 1. The gene list of anoikis. 

Anoikis related genes 

CEACAM5 

MYBBP1A 

CHEK2 

CRYBA1 

SIK1 

E2F1 

AKT1 

DAPK2 

MTOR 

BRMS1 

ITGA5 

ITGB1 

MCL1 

CEACAM6 

NOTCH1 

NTRK2 

PTRH2 

PDK4 

PIK3CA 

ZNF304 

PTK2 

BCL2 

SNAI2 

SRC 

STK11 

MAP3K7 

TFDP1 

TLE1 

TSC2 

ANKRD13C 

IKBKG 

CAV1 

BMF 

 

 

Supplementary Table 2. The gene-specific primer pairs. 

PDK4  

F AGAGGTGGAGCATTTCTCGC 

R ATGTTGGCGAGTCTCACAGG 

STK11  

F CACTCAGGACTTCACGGTGC 

R CTCTGTGCCGTTCATACACAC 

 

 


