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INTRODUCTION 
 

AML is a heterogeneous hematologic cancer dis-

tinguished by the growth of progranulocytes or bone 

marrow primitive cells that cannot properly develop [1]. 

In the United States, there were a projected 21,450 new 

cases of AML in 2019, which accounted for 1.2% of all 

new cancer diagnoses. The incidence rises with age, with 

instances hitting people between the ages of 65 and 74 at a 
rate of 25.1% and those over 75 at a rate of 33.7%. In 

addition, AML patients have a 28.3 % five-year survival 

rate, and there will likely be 10,920 AML fatalities in 

2019. Similarly, the rate of both mortality and morbidity 

increases with age, and is highest in individuals at the age 

of 75 or older (43.7%) [2]. Despite the development of 

cellular and immunotherapies, chemotherapies, and 

targeted therapies [3, 4] that have provided more options 

of treatment modalities for patients, AML is still a type of 

disease which is complex and difficult to treat. Awfully, 

the development of reliable biomarkers for precision 

medicine remains a challenge. 

 
A possible target for therapy is aberrant RNA 

alterations since they are linked to cancer cell survival, 

proliferation, invasion, and resistance to treatment [5, 

6]. RNA species such as messenger RNA (mRNA), 

www.aging-us.com AGING 2023, Vol. 15, No. 18 

Research Paper 

m5C methylation modification guides the prognostic value and 
immune landscapes in acute myeloid leukemia 
 

Ya Liu1,*, Yiying Chen2,*, Maoping Cai1,*, Yunguang Hong1, Xiang Wu1, Songyu Li1,* 
 
1Zhanjiang Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang 
524045, China 
2Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union 
Medical College, Beijing 100005, China 
*Equal contribution 
 
Correspondence to: Songyu Li; email: lsyu@gdmu.edu.cn 
Keywords: acute myeloid leukemia, m5C, tumor microenvironment, immunotherapy 
Received: April 26, 2023 Accepted: September 2, 2023     Published: September 25, 2023 

 
Copyright: © 2023 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 

 

ABSTRACT 
 

The development, incidence, and metastasis of tumors are all intimately correlated with 5-methylcytosine (m5C). 
However, uncertainty surrounds the function of m5C in acute myeloid leukemia (AML). In this study, multicenter 
AML data were collected and analyzed comprehensively to grasp the gene expression level, clinicopathological 
characteristics, prognostic significance of m5C in AML and its relationship with the tumor microenvironment (TME). 
The m5C gene-mediated scoring system (m5CSS) was created using principal component analysis, and multiple cox 
regression analyses were utilized to determine the prognostic relevance of the m5C score. The investigation of the 
correlation among m5C, immune characteristics, clinical characteristics, immune infiltration level, as well as drug 
reaction at immune checkpoints, and immunotherapy efficacy confirmed that the change of the characteristics of 
immune cell infiltration and patient prognosis are linked with the m5C gene. Moreover, the m5CSS was employed 
to assess the pattern of m5C modification. Further analyses showed that the m5C score can served as a reliable 
indicator of AML prognosis. Crucially, the prognostic value of the m5C score was validated in terms of drug 
resistance and immunotherapy. This work reveals that AML diversity and the generation of complex TMEs are both 
impacted by m5C modifications. Therefore, understanding the m5C modification pattern will improve grasp of TME 
infiltration characteristics and assist exploring more efficient immunotherapeutic approaches. 
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ribosomal RNA (rRNA), transporter RNA (tRNA), and 

non-coding RNA (ncRNA) are all commonly found in 

bacteria, prokaryotes, and eukaryotes. High-throughput 

and biochemical studies have demonstrated that m5C is 

a common RNA modification in these RNA species [7–

11]. So far, 95,391 m5C sites in the human genome 

have been identified [12]. It is a typical human RNA 

alteration that has a significant impact on RNA biology 

[9, 13]. By changing the conformation of rRNA to 

control ribosome production and processing, m5C has 

an impact on translation. m5C sites on tRNA are 

evolutionarily conserved and help maintain tertiary 

structure, and it also functions in mRNA, affecting its 

transport and translation [14–16]. Recent researches 

have revealed that m5C can efficiently increase gene 

expression levels and decrease a few tumor suppressor 

genes via promoter hypermethylation [17, 18]. 

Importantly, expression levels of genes controlled by 

m5C are related to tumor development [19–23]. 

 

It has been demonstrated in numerous studies that 

another important element in the growth of tumors is 

the microenvironment in which tumor cells thrive and 

develop. The immune system, cancer cells, and 

extracellular matrix make up the heterogeneous system 

known as the tumor microenvironment (TME) [24, 25]. 

With increasing knowledge concerning variety and 

complexity of the TME, more and more evidence 

support its significance for tumor development, immune 

escape, and the effectiveness of immunotherapeutic 

treatment. TME affects cancer onset and progression, 

correlating with clinicopathological features such as 

age, grade, stage, and molecular subtypes with 

prognosis [26, 27]. Accordingly, it is conceivable to 

identify different tumor immunophenotypes and look 

for interesting biomarkers by thoroughly addressing the 

heterogeneity and complexity of TME [28]. 

 

In our study, we systematically described the expression 

of the m5C gene in AML. The association among m5C 

and clinical factors, immune infiltration levels, checkpoint 

drug response, and immunotherapy efficacy were also 

analyzed. It confirmed that multilayer alterations of the 

m5C gene were connected to patients’ prognosis and 

immune cell infiltration characteristics. Additionally, a 

m5C gene-mediated scoring system (m5CSS) was 

constructed to quantify these subtypes in AML by m5C 

score, which provided a feasible reference for the 

optimization of therapeutic regimens in AML. 

 

MATERIALS AND METHODS 
 

AML data set collection 
 

Clinical data (Table 1) was obtained using the R 

program cgdsr, and the mRNA expression profile data 

and sample copy number variation (CNV) information 

for AML were collected from the UCSC Xena 

database (https://xenabrowser.net/datapages/). The R 

package “TCGAbiolinks” was utilized to obtain 

somatic mutation data. The GEO database 

(https://www.ncbi.nlm.nih.gov/geo/) was used to 

retrieve expression data and matched survival data of 

the microarray dataset GSE37642 as the validation set. 

Patients without a record of survival were disqualified. 

The collection of 21 m5C genes used to identify 

different cell types was taken from a study by Jiao Hu 

et al. [29]. 

 

Gene set variation analysis 

 

The most common application of the unsupervised, 

non-parametric Gene Set Variation Analysis  

(GSVA) technique is to estimate changes in the 

pathway and biological process activity of samples. 

We performed GSVA enrichment analysis using the  

R package GSVA to examine the variation in  

expression levels of distinct sample types in  

relation to biological processes. The Molecular 

Signature Database (MSigDB; https://www.gsea-

msigdb.org/gsea/msigdb/) was used to acquire the 

gene set h.all.v7.4.symbols.gmt of the GSVA. 

Statistical significance was defined as an adjusted P- 

value< 0.05. 

 

TME cell immune infiltration assessment 

 

The Wilcoxon test was used to examine the 

distribution of immune cell infiltrations in various 

subgroups of samples in order to assess the TME cell 

immune infiltration. The percentage of infiltrations 

was estimated based on the following three 

modalities. (1) The single-sample gene set enrichment 

analysis (ssGSEA) was originally used to express the 

relative abundance of each cell infiltrate in TME. The 

gene set labeling TME-infiltrating immune cell type 

came from a study by Pornpimol Charoentong et al. 

[30]. It contained 28 different varieties of human 

immune cells, such as dendritic cells, activated CD8 T 

cells, macrophages, etc. (2) The 22 cell phenotype 

proportions in the samples were calculated using 

CIBERSORT combining LM22 feature matrix, with 

predicted immune cell percentage of each sample 

added together equaling 1. (3) The method from the 

xCell R package was also applied to compute the 

percentage of 64 immune cell infiltrations. Finally, 

the ESTIMATE method was applied to calculate the 

immune score, stromal score, and tumor purity of 

each tumor sample. The differences in immunological 
score, stroma score, and tumor purity were then 

compared between the sample groups by using 

Wilcoxon test. 

https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/geo/
https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
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Table 1. Clinical information 
statistics of TCGA-LAML. 

Characteristic Number of patients 

Age  

<=65 86 

>65 31 

Sex  

Female 52 

Male 65 

FAB  

M0 11 

M1 28 

M2 29 

M3 11 

M4 25 

M5 10 

M6 2 

M7 1 

 

Unsupervised clustering of m5C-related regulators 
 

In order to ensure the stability of the classification and 

to determine the survival of samples with various 

subtypes, the ConsensusClusterPlus package for 

consistent clustering analysis with 1000 replications 

was employed to disease type cancer samples using the 

expression of m5C-related genes. Based on the subtypes 

obtained, genes significantly differentially expressed 

(|log2FC|>1 and adjP<0.05) were analyzed using 

limma. To search for significantly enriched biological 

processes and associated pathways, differential genes 

were subjected to GO and KEGG enrichment analyses 

(P<0.05). The consistency clustering analysis for 

differential expressed genes was also performed using 

the ConsensusClusterPlus package to parse the survival 

of various categories. 
 

Construction and validation of m5C scoring system 

(m5CSS) 
 

Combined with differential genes, the protein-coding 

genes among them were screened. To identify genes 

strongly connected to OS, univariable cox regression 

analysis was used (P < 0.005). m5CSS was constructed 

based on prognosis-related genes using principal 

component analysis (PCA). The calculation formula 

was as follows: 
 

5 ( 1 2 )i im CSS PC PC= +  

 

The m5C score was produced in the validation set using 

the same formula. For the high and low group samples, 

the median value was chosen as the threshold for 

categorization. The predictive ability of the scoring 

system was evaluated using ROC curves and Kaplan-

Meier survival analyses. According to the categories to 

which the above samples belonged, the CNV data from 

several groups of samples were tested for significant 

amplification deletion levels using the GISTIC2  

tool from the GenePattern website (https://www. 

genepattern.org/). 

 
Drug sensitivity and immunotherapy analysis 

 
We conducted a thorough analysis using the Genomics  

of Drug Sensitivity in Cancer (GDSC) database 

(https://www.cancerrxgene.org/) [PMID: 23180760] to 

identify drugs that exhibited a significant correlation 

(p-value ≤ 0.05) with m5CSS scores. Subsequently,  

we compared the sensitivity variations of these  

drugs across different subgroups. Next, TIDE was 

implemented to validate the scoring system in 

predicting immunotherapy response and to reconcile 

the disparities in immunotherapy predictive indicators, 

such as TMB, HRD, and TIDE between the m5C score 

groups. 

 
RT-qPCR analysis 

 
The experiments were authorized by the Ethics 

Committee, and RT-qPCR analysis was described in 

earlier publications [31]. Using the TRIzol reagent 
(Invitrogen), total RNA was isolated from Peripheral 

Blood Mononuclear Cell from 16 AML patients and 10 

healthy individuals. By cDNA synthesis kit (Takara), 

https://www.cancerrxgene.org/
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total RNA was reverse transcribed into cDNA with 

oligo (dT) primers. TB Green Premix Ex Taq II 

(Takara) was adapted for RT-qPCR following the 

recommendations of manufacturers. Using the 

comparative CT (2-ΔΔCT) approach and adjusting for 

B-actin levels, the relative quantification was carried 

out. Supplementary Material Table 2 contains a list of 

the RT-qPCR primer sequences. 

 

Statistical analysis 

 

To determine the statistical significance of three or 

more groups, the Kruskal-Wallis test was utilized, and 

the Wilcoxon test was used to examine if tumor samples 

from various clinical groupings showed different 

patterns of expression. By using Spearman correlation 

analysis, the correlation coefficients were determined. 

The R package survminer determined the cutoff for 

each dataset subgroup based on the correlation between 

the m5C score and the survival of patients. The R 

package maftools was employed to display the mutation 

status of all genes as well as the level of mutation in 

m5C-related genes. Similarly, the CNV of m5C-related 

genes in the overall tumor sample was characterized and 

their specific distribution on chromatin was visualized 

using the R package Circos. Interactions among m5C-

related genes were resolved using the String database 

(https://cn.string-db.org), and those with medium 

confidence (Score>0.4) were assessed. The significance 

level for each two-sided test was p<0.05. 

 

Data availability 
 

The datasets analyzed for this study can be  

found in the UCSC Xena database (https:// 

xenabrowser.net/datapages/), TCGA (https://portal.gdc. 

cancer.gov/) and the GEO database (https://www.ncbi. 

nlm.nih.gov/geo/). 

 

RESULTS 
 

Expression, mutation and copy number variation of 

m5C gene 

 

The analysis of m5C gene expression differences 

among subgroups based on clinical characteristics 

revealed several significant findings. Firstly, when 

considering the French-American-British (FAB) typing 

groups, we observed significant differences in the 

expression of DNMT3A, DNMT3B, MBD2 and TET1 

(Figure 1A). Additionally, DNMT1 exhibited 

significant differences between gender groups (Figure 

1B). Furthermore, three genes, namely TDG, UNG, and 

ZBTB33, showed significant differences among age 

groups (Figure 1C), respectively. The study summarized 

the mutations in the m5C gene of the TCGA dataset. 29 

of the 151 samples underwent m5C regulation 

(19.21%), and followed by TET1 and UHRF2, the 

DNMT3A gene displayed the highest mutation 

frequency, both with a mutation rate of 3% (Figure 1D). 

CNV alteration frequency displayed that 21 regulators 

were partially CNV altered and some copy number 

amplification deletion occurred, while DNMT1 and 

UHRF1 had extensive CNV deletion frequency  

(Figure 1E). Figure 1F depicted where the CNV change 

occurred. To analyze whether the m5C gene was 

associated with OS, the median gene expression values 

were used to divide the samples into high and low 

expression groups, and univariable cox regression 

analysis showed that DNMT3A and ZBTB38 were 

substantially linked to OS (Supplementary Figure 1A, 

1B). The aforementioned research revealed significant 

heterogeneity in the landscape of genetic and expression 

alterations, suggesting the crucial role that m5C control 

of expression disequilibrium plays in the initiation and 

development of AML. 

 

Cluster analysis of m5C regulators 

 

Analysis of interactions of high-confidence m5C 

genes using the String database indicated that m5C 

genes had more extensive connections (Figure 2A), 

and DNMT1, DNMT3A, DNMT3B, and other genes 

were closely bound, suggesting that they may be  

hub genes for m5C RNA methylation regulators. 

Subsequently, consistent clustering regarding the 

expression profile of the m5C gene identified four 

subgroups with significant differences in OS (Figure 

2B) which were named Subtype 1-4. Principal 

component analysis (PCA) demonstrated a clear 

differentiation among the four subgroups 

(Supplementary Figure 1C). The heatmap of m5C 

genes exhibited distinct and noticeable differences 

among the four subtypes. ZBTB4 expression of M7 

patients in Subtype1 was highly expressed 

(Supplementary Figure 1D), and survival analysis 

revealed that these four subtypes exhibited substantial 

differences. Subtype 3 has the worst survival among 

them (Supplementary Figure 1E). Additionally, 

Subtype1, Subtype 3 were merged into Subtype A 

while Subtype2, Subtype4 were merged into Subtype 

B according to their OS outcomes. Subtype B has a 

significant better survival (Figure 2C). 

 

To examine the biological distinctions among the 

sample groups, we conducted GSVA, resulting in the 

identification of 20 significantly different pathways 

between the two groups. Notably, Subtype A and 

Subtype B exhibited a strong association with heme 
metabolism, the MYC gene set and other pathways. The 

m5C genes downregulated in various pathways that are 

found to be related to AML in previous literature, such 

https://cn.string-db.org/
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Table 2. The RT–qPCR primer sequences used in the 
study. 

Genes Primer sequences 

β-actin 
F: TGGCACCCAGCACAATGAA  

R: TAAGTCATAGTCCGCCTAGAAG 

LPO 
F: GGGACTACCTACCCATTTTGC 

R: CCAGGCGGAACATACTAGAGG 

CLIP4 
F: CCTGGGAGCAGACATTAGTTTG 

R: GCACACAAGTTGTATGCTGCAA 

PLXNC1 
F: AGAGTCCAACCAATCGCATCA 

R: AGTCCTGTTCATTACCACGGT  

CPNE8 
F: GGGCAGTCACAATTCAACGTA 

R: TTGCGTCCCTCCCTTAATGTA 

BCL2A1 
F: TACAGGCTGGCTCAGGACTAT 

R: CGCAACATTTTGTAGCACTCTG 

MPO 
F: TGCTGCCCTTTGACAACCTG 

R: TGCTCCCGAAGTAAGAGGGT 

PRDM16 
F: CGAGGCCCCTGTCTACATTC  

R: GCTCCCATCCGAAGTCTGTC 

LSP1 
F: GGAGCACCAGAAATGTCAGCA 

R: TCGGTCCTGTCGATGAGTTTG 

SIX3 
F: CTGCCCACCCTCAACTTCTC 

R: GCAGGATCGACTCGTGTTTGT 

ACSM1 
F: GGGGCATCCACAAATCCTTC 

R: TCTTGGGGCTCCAAATTCTGA 

CFD 
F: GACACCATCGACCACGACC 

R: GCCACGTCGCAGAGAGTTC 

HTR1F 
F: ACTTGACCTCAGAGGAACTGT 

R: ATTGCAGCGATCACAAGGGAG 

SORT1 
F: GGGGACACATGGAGCATGG 

R: GAATAGACAATGCCTCGATCAT 

 

as interferon response [PMID: 36964168], protein 

secretion [PMID: 36475901], bile acid metabolism 

[PMID: 36084349]. Specifically, Subtype A displayed 

enrichment in metabolic pathways involved in heme 

metabolism and erythropoietic differentiation, 

indicating a potential role in promoting these processes. 

Conversely, Subtype B was primarily characterized by 

an inhibition of heme metabolism, suggesting a 

potential disruption or suppression of these metabolic 

pathways. Heme metabolism plays a crucial role in 

multiple biological processes, including oxygen 

transport, cellular respiration, and enzymatic reactions. 

It is intricately linked to erythropoiesis, the process of 

red blood cell production. The dysregulation of heme 

metabolism in Subtype B might result in impaired 

erythropoietic differentiation and altered cellular 

responses to heme-related stimuli. These findings shed 
light on the distinct molecular characteristics and 

functional differences between Subtype A and Subtype B 

in relation to heme metabolism. The identification of these 

pathways provides valuable insights into the underlying 

mechanisms driving these subtypes and may have 

implications for further research and targeted 

interventions in acute myeloid leukemia (Figure 2D). 

When the immune cell abundance of the tumor samples 

was calculated for TME cell infiltration using ssGSEA, it 

was shown that the bulk of the immune cell abundances 

was significantly distinct between the two subtypes 

(Figure 2E). Infiltrating innate immune cells in m5C 

Subtype A included plasmacytoid dendritic cells, mast 

cells, MDSC, natural killer cells, macrophages, and 

eosinophils. Comparably, it was examined if the two 

subtypes of immune checkpoint gene expression 

significantly differed from each another. PDL1, PDL2, 

CD86, CTLA4, CD80, LAG3, and TIGIT genes were 

significantly expressed differently between the Subtype A 

and Subtype B groups, while HAVCR2 genes were not 
(Figure 2F). Finally, the immunological score and tumor 

purity were discovered to be significantly different by 

analyzing the distribution of the immune score, stromal 
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Figure 1. Expression, mutation and copy number variation of m5C gene. (A–C) The expression differences of m5C gene among 

different groups (FAB, Sex, Age), (D) mutation, (E) copy number variation and (F) localization of m5C gene on chromosome. 
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score, and tumor purity between the two subtypes of 

samples (Figure 2G). 

 

Patterns of m5C methylation modification mediated 

by m5C regulators 

 

114 differential genes encoding proteins were 

identified from Subtype A and Subtype B after further 

investigation into the likely biological behavior of each 

m5C alteration pattern (threshold |log2FC|>1 and 

padj<0.05). According to the findings presented in 

Figure 3A, the top 10 significant pathways in terms of 

biological processes (BP), molecular functions (MF), 

cellular components (CC), and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) were predominantly 

associated with the regulation of tumor necrosis  

factor (TNF) production. This demonstrated that  

immune control in the TME is significantly 

 

 
 

Figure 2. Clustering analysis of m5C regulators. (A) Interaction relationship plot, (B) sample correlation matrix of consistent clustering, 
(C) KM curves of new subtypes Subtype A, Subtype B, OS and (D) GSVA analysis, (E) differences in immune cell abundance between subtypes, 
(F) differences in immune checkpoint gene expression and (G) differences in stromal score, immune score and tumor purity. 
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influenced by m5C alterations. These differential genes 

were largely enriched in biological functions associated 

with the immune system, such as regulation of tumor 

necrosis factor production, neutrophil activation 

involved in immune response, and leukocyte migration. 

To further validate this regulatory mechanism,  

the tumor samples were subsequently clustered 

consistently based on the differential gene expression 

levels. The samples were categorized into two classes 

with expression patterns, DEG. Subtype A, and DEG. 

Subtype B. This suggested that m5C methylation 

modification patterns were indeed present in AML. 

Significant OS differences between these two subtypes, 

as determined by differential gene expression, were 

shown by survival analyses, with 52 of 117 AML 

patients clustered in DEG. Subtype B associated with a 

better prognosis, and patients with DEG. Subtype A 

(65  patients) with a worse prognosis (Figure 3B). The 

analysis also identified that different signature genes 

were found in two separate gene clusters, with opposite 

DEG. Subtype A and DEG. Subtype B m5C patterns 

observed for the FAB classification. FAB classes M4 

and M5 concentrated in DEG. Subtype A and M2 

patients were clustered in DEG. Subtype B (Figure 3C). 

Significant changes in m5C regulator expression were 

found in m5C DEG. Subtype A and DEG. The results of 

Subtype B were in line with what was expected given 

the m5C methylation modification pattern (Figure 3D). 

 

Gene signature construction by m5CSS 

 

Next, we investigated the value of m5CSS as a 

prognostic predictor was investigated in AML. The 

univariable cox regression model with a cutoff of 

P<0.005 was used to recognize 13 OS-related 

differential genes to identify genes significantly 

correlated with OS as characteristic genes. The m5C 

score was generated in the training and validation sets 

using the m5CSS formula. The m5CSS formula refers 

to the sum of PC1 and PC2 values for each sample in 

PCA analysis. The samples were then separated into 

high and low subgroups based on the median m5C score 

(Supplementary Figure 2A). Their survival distribution 

in Supplementary Figure 2B reflected that patients with 

high m5C scores have a better outcome. The m5C group 

with a high score displayed increased SIX3 gene 

expression in the training set (Supplementary Figure 

2C). Significant OS differences between the high and 

low subgroups were discovered using survival analysis 

(Supplementary Figure 2D). These finding was also 

validated in the validation dataset (GSE37642) 

(Supplementary Figure 2E–2H). The m5CSS was 

evaluated in the training set and validation set by 

combined univariate cox and multifactor cox regression 

(including patient age, gender, and FAB classification) 

analyses, respectively. Age and m5C score were 

strongly connected with OS in the univariate and 

multifactor cox regression analysis, showing that the 

m5C score can indeed be employed as an independent 

prognostic indicator in the training set (Figure 4A). 

Likewise, in the validation set, when univariable cox 

regression analysis used, only the m5C score was 

significantly associated with OS, and the further results 

of the multifactorial analysis revealed that the  

m5C score was remained strongly related to OS, 

suggesting the role of m5C score as a predictor 

 

 
 

Figure 3. Patterns of m5C methylation modification mediated by m5C regulators. (A) Functional enrichment analysis of differential 
genes, (B) KM curves of OS, (C) heat map of m5C gene expression distribution, (D) and histogram of m5C gene expression distribution. 
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(Supplementary Figure 3A). To clearly describe the 

information about the different categories of the 

samples, the subtypes to which the samples belonged 

and their corresponding m5CSS groupings and 

prognosis were depicted with a shocking plot (Figure 

4B), which showed that m5C DEG. Subtype B had and 

high m5CSS and the lowest survival rate. Then, 

Wilcoxon-test was used to analyze whether there were 

distinctions in m5CSS between different m5C subtypes 

and DEG subtypes, and the results illustrated that the 

m5C score was markedly different between subtypes of 

both of these classifications (Supplementary Figure 3B, 

3C). In addition, the m5C scores of tumor samples in 

FAB subgroups were different, even though age and sex 

clinical characteristics subgroups did not differ 

significantly, (Supplementary Figure 3D–3F). 

 

Based on MSigDB cancer hallmarks, the Pearson 

correlation between the m5C score and cancer 

hallmarks was calculated to evaluate their correlation. 

The m5C score was discovered to have a substantial 

inverse relationship with a number of pathways, 

including INTERFERON _GAMMA RESPONSE and 

MYC TARGETS V2 (Figure 4D). Similarly, parsing 

the GO and KEGG enrichment of m5CSS samples with 

high and lows scores revealed that biological processes 

include the MAPK cascade, cytokine-mediated 

signaling pathway, and T cell activation that are 

positively regulated by high scoring and highly 

expressed genes (Figure 4C, 4E). The m5C score 

improved evaluation of the m5C modification pattern of 

specific tumors and provided additional evaluation of 

the tumor TME cell infiltration characteristics. 

Subsequently, combining the immune cell abundance of 

the disease samples calculated by the three methods of 

CIBERSORT, xCELL, and xxGSEA, most immune 

cells were considerably different in abundance between 

the two score groups (Figure 4G). Additionally, to 

determine whether there were any appreciable 

variations between the high and low score categories, 

the expression of immune checkpoint genes was 

evaluated. The bulk of the low score groupings were 

found to have significantly higher gene expression 

(Figure 4F). Finally, in both the high and low scoring 

groups, there were substantial disparities in the 

distribution of the stromal score, immunological score, 

and tumor purity discrepancies (Figure 4H). 

 

Afterward, we examined the variations in the 

distribution of somatic mutations between the two m5C 

scores. While PKHD1 had 2% mutations in the low 

m5C score group compared to while only 19% in the 

high m5C score group, TTN showed lesser mutations in 
the low m5C score group at 10% compared to samples 

from the high m5C score group at 19%. The Fisher-test 

was utilized to screen for genes with mutational 

differences between the two categories at P<0.05 to 

further characterize the mutational differences between 

the two groups, and ultimately no genes were 

discovered to be substantially different (Figure 5A). The 

GISTIC2 tool on the GenePattern website was next used 

to examine the CNV data from the high and low-scoring 

group samples for their amplification deletions in an 

attempt to find statistically different levels of 

amplification deletions, however, no such differences 

were discovered (Figure 5B). All in all, these findings 

will open up new avenues for investigation into the 

mechanisms behind TME development, immune 

checkpoint blockade therapy, and m5C methylation 

alteration in tumor somatic mutations. 

 

Drug resistance analysis of m5C groups with high 

and low scores 

 

To predict drug resistance in the samples from the 

subgroups with high and low score, the GDSC dataset 

was employed. The Pearson correlation between the 

m5C score and drug IC50 was then determined. Most 

medications demonstrated a greater correlation with the 

m5C score (Figure 5D, |cor|>0.3, p < 0.05). It was 

demonstrated in Figure 5E that between the high and 

low score groups, there were significant disparities in 

each type of treatment resistance. The results of 

IGF1R_3801_1738 and Ribociclib_1632 demonstrated 

a substantial difference between the high and low 

groups, thus demonstrating the value and potency of the 

m5C score as a predictor for prognosis and therapeutic 

response assessment of immunotherapy. 

 

Evaluation of immunotherapy efficacy in m5C 

groups with high and low scores 

 

The m5CSS traits established in the AML cohort were 

applied to other independent cohorts to further test the 

stability of the system. With the assistance of TMB and 

HRD, the TIDE was used to predict how the sample 

would respond to immunotherapy. The results suggested 

that low m5C scores were more responsive to 

immunotherapy (Figure 5F), and between the groups with 

high and low scores, there was a significant statistical 

difference in the TIDE scores (Figure 5G–5J). 

 

Verification of prognostic gene expression by RT-

qPCR 

 

Finally, 13 hallmark prognostic genes were examined 

for expression levels using RT-qPCR in 16 AML 

patients and 10 healthy people from The Central 

People’s Hospital of Zhanjiang. Among these 13 genes, 
the expression levels of PRDM16, SIX3, CLIP4, 

SORT17 and ACSMl between normal and AML 

samples did not significantly alter. LPO, CFD, CPNE8, 
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Figure 4. Construction of m5C gene signature. (A) Univariate cox analysis in training set and (B) impact plots (from left to right, 
m5C isoforms, differential gene expression subtypes and m5C score classification and final sample survival, respectively),  
(C) KEGG enrichment for high and low scoring subgroups, (D) correlation between m5C score and hallmark pathway, (E) GO 
enrichment for high and low scoring subgroups, (F) immune checkpoint gene expression differences, (G) immune cell 
differences, (H) stromal score, immune score and tumor purity in high and low subgroups. 
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Figure 5. Distribution of m5C score in clinical characteristics samples and m5C subtypes. (A, B) Differences in mutations between 

high and low m5C score groups, (C) differences in copy number variants, (D) correlation between m5C score and drugs, (E) differences in drug 
resistance between high and low score groups, (F) proportion of patients responding to immunotherapy, differences in (G) TMB, (H) HRD,  
(I) LOH, (J) TIDE between high and low score groups. 
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HTR1F, and MPO showed noticeably higher expression 

in the AML sample than in the normal sample, while 

LSPl, PLXNCI and BCL2A1 showed decreased 

expression (Figure 6). The level of expression showed a 

substantial statistical difference, indicating that these 8 

genes were risk factors of and could be potential 

treatment targets for AML patient. 

 

DISCUSSION 
 

One of the most prevalent and deadly hematological 

malignancies is AML, which prevents myeloid 

differentiation to form leukemic stem cells that may 

self-renew (LSC) [17]. Enhancing early detection is 

crucial to treat AML. Despite recent advancements in 

combination therapies, the diagnosis and prognosis of 

AML are still not satisfactory. Furthermore, a major 

obstacle is the absence of confirmed biomarkers for 

early diagnosis, and the existing clinical markers lack 

precision and specificity in predicting patient prognosis 

and treatment response. Therefore, it is imperative to 

investigate the genetic and epigenetic mechanisms 

underlying AML development to identify new treatment 

targets and biomarkers. While RNA alterations have 

been associated with cancer growth and disease 

pathogenesis, the potential connection between AML 

and m5C (5-methylcytosine) remains unknown. To 

address this gap, we conducted a study using gene 

expression profiles of 117 AML patients obtained from 

the TCGA (The Cancer Genome Atlas) database. From 

these profiles, we developed an m5C-related scoring 

system. To the best of our knowledge, this is the first 

comprehensive investigation into the role of m5C in 

AML. By studying m5C and its impact on AML, we 

aim to uncover new insights into the disease’s 

mechanisms and potentially identify novel biomarkers 

for early detection. This research may contribute to the 

development of more precise diagnostic tools and 

targeted therapies, ultimately improving patient 

outcomes in AML. 

 
M5C is frequently present in long non-coding RNAs and 

participates in several biological processes related to 

cancer and growth. Current findings have demonstrated 

that m5C-related genes can control the breast cancer 

tumor immunological microenvironment [32]. By 

increasing m5C levels, NSUN2 encourages gastric cancer 

(GC) cells to proliferate, migrate, and invade [33]. In 

bladder cancer (BLC), m5C modification of PKM2 

mRNA enhances glucose metabolism [34]. Despite 

 

 
 

Figure 6. Verification of prognostic gene expression by RT-qPCR. RT-qPCR analyses of LPO (A), CFD (B), CPNE8 (C), HTR1F (D), MPO  

(E), PLXNC1 (F), BCL2A1 (G) and LSP1 (H) expression in 16 AML patient and 10 healthy people. 
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extensive studies, the whole regulatory function of m5C 

remains unclear, and further studies of m5C-related 

regulators are necessary to elucidate their potential 

regulatory mechanisms in TME. 

 
In the TCGA-LAML dataset, we examined the m5C 

gene expression patterns in AML and extensively 

described their expression. After confirming the 

differences of m5C genes expression levels among 

clinical factors such survival, FAB subtyping, gender, 

age and mutation. We performed unsupervised 

clustering to identify four subtypes which shows 

distinct differences in survival and expression levels. 

The four subtypes were combined into two subtypes 

according to their survival. Subsequently, the immune 

cell abundance of tumor samples was calculated using 

algorithms of three tools, CIBERSORT, xCELL, and 

ssGSEA, respectively, to evaluate how immune cells 

were distributed among the various sample subgroups. 

The process of heme metabolism can indeed have 

divergent outcomes between the two subtypes. Clinical 

parameters, immune infiltration levels, immunological 

characteristics, immune checkpoint medication respon-

siveness, and immunotherapy effectiveness were all 

examined for associations with m5C. The findings 

demonstrated that the immune cell infiltration 

characteristics and patient prognosis were both 

correlated with the m5C gene. Based on this, m5CSS 

was constructed. We discovered that the model 

performed similarly well in independent data. With 

considerable OS differences, the score might classify 

the samples into high and low groups. The m5C score 

can act as an independent prognostic indicator to more 

precisely assess the TME cell infiltration features of 

tumors and measure the pattern of m5C modification in 

individual tumors. 

 

Additionally, the study revealed a substantial  

inverse connection between the m5C score and  

the INTERFERON_GAMMA_RESPONSE and 

MYC_TARGETS_V2, and that IFN gamma 

production is a hallmark of innate and adaptive 

immunity [35]. The excessive release of IFN gamma 

has been connected to the chronic inflammatory 

disorders and etiology of autoimmune, in addition to 

its crucial role in host defense. And MYC is a human 

gene that regulates the promotion of cell growth and 

proliferation [36]. Then, analysis of medication 

resistance and immunotherapy response revealed that 

immunotherapy was more responsive to low m5C 

scores. The study discussed support the value of the 

m5C score in predicting immunotherapy and imply 

that m5C alteration may be an important factor of 

immunotherapy response. However, in terms of the 

validation of our experiments, we conducted RT-qPCR 

and successfully confirmed our research findings. To 

further develop and apply m5CSS, our future work will 

consider conducting additional experiments such as 

immunohistochemistry or Western blot for in-depth 

validation of the results. 
 

To summarize, the m5C score can be applied in clinical 

practice to thoroughly evaluate the m5C methylation 

modification pattern and its associated TME cell 

infiltration characterization in specific patients, which 

will further define the immunophenotype of the tumor, 

and help direct more efficient clinical management. We 

subsequently demonstrated that the m5C score can 

indeed be utilized as a prognostic indicator to evaluate 

the clinicopathological parameters of patients and 

predict patient survival independently. Drug resistance 

and the clinical outcome of immunotherapy can both be 

forecasted with the m5C score. 
 

CONCLUSIONS 
 

In this study, we determined how m5C alteration 

patterns in AML function. Based on the m5C profiles 

with different modification patterns, m5CSS with good 

prognostic efficacy was constructed. Interestingly, the 

m5C score was able to quantify m5C subtypes, and the 

score might be applied as an independent prognostic 

indicator for prediction of individual responses to 

immunotherapy. Our thorough examination of m5C 

modifications may offer fresh perspectives into the 

investigation of AML and potentially aid in the future 

creation of TME and immunotherapies. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. m5C gene prognostic correlation and clustering analysis. (A) KM curves of DNMT3A.and (B) ZBTB38,  

(C) principal component analysis of Subtype 1-4, (D) m5C gene expression distribution in Subtype 1-4, (E) KM curves of Subtype 1-4. 
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Supplementary Figure 2. The m5CSS gene characteristics of training and validation set. In training set, (A) the m5CSS distribution, 

(B) survival time of different samples, (C) expression of model genes, (D) survival analysis of high and low m5CSS group; in validation set,  
(E) m5CSS distribution, (F) survival time of different samples, (G) expression of model genes, (H) survival analysis of high and low m5CSS 
group.  
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Supplementary Figure 3. Distribution of m5C score for clinical characteristics samples and m5C subtypes. (A) Univariable cox 

analysis in validation set, (B) m5C score difference between m5C subtypes, (C) m5C score difference between DEG subtypes, (D–F) m5C score 
distribution of different clinical characteristics samples (Age, Sex and FAB, respectively). 

 


