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INTRODUCTION 
 

Gastric cancer (GC) is one of the most frequent and fatal 

upper gastrointestinal malignances, all ranking the top 

five among cancers globally in terms of the morbidity 

and mortality [1]. According to the World Health 

Organization (WHO), the incidence and mortality rate of 

GC have gradually declined, partly due to increased 

awareness of Helicobacter pylori (HP) infection [2]. 

Nevertheless, when patients with GC are diagnosed at a 

late phase or metastasis, they are usually linked with 

dismal clinical outcomes, with < 30% 5-year survival 
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ABSTRACT 
 

Helicobacter pylori (HP) is a gram-negative and spiral-shaped bacterium colonizing the human stomach and has 
been recognized as the risk factor of gastritis, peptic ulcer disease, and gastric cancer (GC). Moreover, it was 
recently identified as a class I carcinogen, which affects the occurrence and progression of GC via inducing 
various oncogenic pathways. Therefore, identifying the HP-related key genes is crucial for understanding the 
oncogenic mechanisms and improving the outcomes of GC patients. We retrieved the list of HP-related gene 
sets from the Molecular Signatures Database. Based on the HP-related genes, unsupervised non-negative 
matrix factorization (NMF) clustering method was conducted to stratify TCGA-STAD, GSE15459, GSE84433 
samples into two clusters with distinct clinical outcomes and immune infiltration characterization. 
Subsequently, two machine learning (ML) strategies, including support vector machine‐recursive feature 
elimination (SVM‐RFE) and random forest (RF), were employed to determine twelve hub HP-related genes. 
Beyond that, receiver operating characteristic and Kaplan‐Meier curves further confirmed the diagnostic value 
and prognostic significance of hub genes. Finally, expression of HP-related hub genes was tested by qRT-PCR 
array and immunohistochemical images. Additionally, functional pathway enrichment analysis indicated that 
these hub genes were implicated in the genesis and progression of GC by activating or inhibiting the classical 
cancer-associated pathways, such as epithelial-mesenchymal transition, cell cycle, apoptosis, RAS/MAPK, etc. In 
the present study, we constructed a novel HP-related tumor classification in different datasets, and screened 
out twelve hub genes via performing the ML algorithms, which may contribute to the molecular diagnosis and 
personalized therapy of GC. 
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rate [3]. Consequently, it is imperative to identify more 

valuable and accurate novel biomarkers to improve the 

early diagnosis and therapeutic avenues of GC. 

 

Over half of the world’s population is infected by HP, a 

spiral-shaped, gram-negative, microaerophilic bacterium 

that preferentially colonizes the human gastric mucosa 

[4]. Due to the majority of HP-positive individuals 

being asymptomatic or having subtle symptoms, it was 

able to elude researchers’ notice. It has progressively 

come to light that HP infection may predispose a person 

to a variety of stomach diseases, including atrophic 

gastritis, peptic ulcers, and even GC, until Barry 

Marshall and Robin Warren debunk it [5–8]. Recent 

research has shown a direct link between HP infection 

and GC, with individuals with HP positivity 

experiencing three to six times as many cases as those 

with HP negativity [9, 10]. Beyond that, HP infection 

may limit the death of tumor cells and promote gastric 

carcinogenesis in addition to methylating many cancer-

associated genes on CpG islands in gastric epithelial 

cells [11–14]. The International Agency for Research on 

Cancer (IARC) recently classified HP as a classification 

I biological carcinogen, and it has the potential to cause 

GC by one of the following three mechanisms: DNA 

damage to epithelial cells, a reduction in repair activity, 

a mitochondrial DNA mutation, and the emergence of 

transitory mutation phenotypes are all examples of this 

[15, 16]. 

 

Machine learning (ML), one of the most significant 

subfields of artificial intelligence (AI), has been 

extensively utilized in a variety of biomedical domains, 

including disease diagnosis, biomarker identification, 

and drug discovery, among others [17, 18]. Moreover, a 

number of well-known ML techniques, such random 

forest (RF) and support vector machine (SVM) with 

recursive feature elimination (RFE), have made 

significant progress in the creation of anti-cancer drugs 

and the diagnosis of complicated diseases [19–21]. 

 

In this study, based on the differentially expressed HP-

related genes, non-negative matrix factorization (NMF) 

clustering approach was applied to sort The Cancer 

Genome Atlas (TCGA) stomach adenocarcinoma 

(STAD), GSE15459, GSE84433 cohorts into two 

molecular subtypes with different prognosis, immune 

infiltration landscape, and anticancer drug sensitivity, 

indicating that the HP-related genes were closely 

related to the clinical outcomes and therapeutic efficacy 

of GC. Then, two classical ML algorithms, were 

employed to identify twelve HP-related hub genes, 

namely, EFNA3, UHRF1, FLT1, NRP1, CTLA4, 
L3MBTL3, MAPK10, MLEC, MYL9, THY1, MYB, 

and NCLN. Subsequently, receiver operating 

characteristic (ROC) and Kaplan‐Meier (K‐M) curves 

were utilized to examine the diagnostic and prognostic 

performance of these hub genes, and we also explored 

the anticancer drug sensitivity, immune cell infiltration 

and mutational features of the hub genes. Finally, 

quantitative reverse transcription polymerase chain 

reaction (qRT-PCR) experiments and immuno-

histochemical (IHC) images from online browsers were 

exploited to verify the differential expression of these 

twelve hub genes. 

 

MATERIALS AND METHODS 
 

Data acquisition and pre-processing 

 

The transcriptome profiles and corresponding clinical 

information of GC patients in the present study were 

retrieved and downloaded from the TCGA portal 

(https://portal.gdc.cancer.gov/, up to May 18, 2022) and 

GEO database (https://www.ncbi.nlm.nih.gov/geo/, up 

to May 18, 2022). After filtering out some cases without 

survival time and status, the ComBat method was 

employed to correct the batch effects of raw sequencing 

data sets from different platforms for ensuring 

comparability among all samples. In the meantime, the 

somatic mutation and copy number variation  

(CNV) data of GC patients in TCGA were obtained via 

querying the UCSC Xena browser (http://xena. 

ucsc.edu/, up to May 18, 2022), and the “MAFtools” 

and “RCircos” packages in R software (version 4.1.0, 

https://www.r-project.org/) were applied to summarize 

and visualize these data. In addition, the list of HP-

related gene sets was collected from the Molecular 

Signatures Database (MSigDB) (http://www. 

broadinstitute.org/gsea/msigdb). 

 

NMF consensus clustering analysis 

 

Non-negative matrix factorization (NMF) algorithm is a 

non-negative factorization of a matrix under the 

condition that all the elements of the matrix are non-

negative, so as to find out the relationships and 

interactions between them. Elements with similar 

characteristics are grouped into one group and elements 

with different characteristics are grouped into another 

group. Prior to performing the NMF clustering 

algorithm, the “limma” package with the thresholds of p 

< 0.05 and |logFC| (fold change) > 1 was utilized to 

screen out the differentially expressed HP-related genes. 

Afterwards, on the basis of these genes, the NMF 

clustering method was implemented to sort TCGA, 

GSE15459, GSE84433 samples into different clusters 

by using the “NMF” package, respectively. The number 

of clusters (K) from 2 to 10 were tested by running ten 

iterations per K, and the optimal K number was 

eventually determined in accordance with silhouette, 

consensus, as well as cophenetic. Principal component 

https://portal.gdc.cancer.gov/
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analysis (PCA) was used to detect the classification 

capability of clusters. Then, Kaplan‐Meier (K‐M) curve 

was carried out to estimate the differences of OS 

between distinct subtypes. Moreover, the CIBERSORT 

and ESTIMATE algorithms were performed to 

elucidate the immune infiltration landscape of different 

clusters. According to the half-maximal inhibitory 

concentration (IC50) value, the “pRRophetic” package 

was conducted to explore the sensitivity and resistance 

of common anticancer agents (e.g., Imatinib, Cisplatin) 

across different clusters. Finally, we also evaluated the 

expression level of five common immune checkpoint 

blockade-associated genes (i.e., PDCD1, BTLA, 

CTLA4, CD274, PD-L2) across different GC subtypes. 

 

Identification of the HP-related hub genes via ML 

strategies 

 

As it is well known, HP infection is clearly associated 

with the majority of GC patients [22]. To find out 

more deeply the impact of HP-related genes on GC 

patient prognosis, univariate Cox regression analysis 

(p < 0.05) was exploited to screen the prognostic-

associated HP genes prior to implementing ML 

strategies. ML methods displayed excellent and robust 

performance compared to traditional means, especially 

in disease diagnosis and predictive analytics [23, 24]. 

As the two most prevalent supervised ML algorithms, 

RF and SVM-RFE, were carried out in this study to 

identify the HP-related hub genes. The establishment 

of the SVM-RFE model mainly depends on the 

“e1071”, “kernlab”, and “caret” packages, and the RF 

classifier is performed via running the “randomForest” 

package. 

 

Assessment of diagnostic performance and 

prognostic value 

 

The area under the ROC curve (AUC) is the gold 

standard metric in diagnostic performance evaluation, 

which is calculated through executing the “pROC” 

package [25]. To obtain into a more convenient 

clinical application of the HP-related hub genes, a 

nomogram based on the TCGA-STAD cohort was 

built to assist with the diagnosis of GC via using the 

“rms” package. Furthermore, decision, clinical impact, 

as well as calibration curves were created to examine 

the sensitivity and accuracy of the diagnosis 

nomogram. 

 

To investigate the prognostic value of the HP-related 

hub genes, we categorized all TCGA-STAD patients 

into high- or low- expression subgroups in accordance 
with the median expression values of these genes, 

separately. Next, the K-M method and log-rank test 

were adopted to confirm the effects of these hub genes 

on GC prognosis. Apart from this, we also used another 

survival analysis approach (univariate COX analysis) to 

discern whether these hub genes were protective or risk 

factors in the clinical outcomes of GC patients. K-M 

Plotter is an online website (http://kmplot.com/ 

analysis/) containing a large amount of GEO GC 

datasets (GSE14210(N=145), GSE15459(N=200), 

GSE22377(N=43), GSE29272(N=268), GSE51105 

(N=94), GSE62254(N=300)), which is able to rapidly 

estimate the prognostic effects of genes. To demonstrate 

that the prognostic value of hub genes was not just 

confined to the TCGA cohort, KM Plotter was applied 

to further validate their broad applicability in numerous 

datasets from other sources. 
 

Characteristics of infiltrating immune cells 

 

To reveal the immune-infiltrating landscape of TCGA-

STAD samples, the CIBERSORT program was utilized 

to estimate the relative abundances of 22 types of 

infiltrating immune cells in each sample by using the 

“CIBERSORT” package [26, 27]. Furthermore, 

Spearman’s correlation analysis was performed to 

demonstrate the correlation between the expression levels 

of these hub genes and tumor-infiltrating immune cells.  

 

Drug response prediction 

 

By logging in to the Gene Set Cancer Analysis (GSCA) 

(http://bioinfo.life.hust.edu.cn/GSCA/#/drug) database, 

the association between the sensitivity of drugs derived 

from the Genomics of Drug Sensitivity in Cancer 

(GDSC) database and the mRNA expression of hub 

genes was explored [28]. At the same time, the 

chemical structural formulas of GDSC agents that 

exhibited a significant positive or negative correlation 

with the expression of these hub genes were collected 

by querying the MedChemExpress website 

(https://www.medchemexpress.cn/). 

 

Functional and pathway enrichment analysis 

 

To assess the interaction among hub genes, a protein–

protein interaction (PPI) network was created to 

examine how closely they were connected via using the 

GeneMANIA (http://genemania.org/) online tool. 

Moreover, an interaction map between hub genes and 

cancer-associated pathways was constructed to further 

explore the biological role of HP-related hub genes in 

the onset and progression of GC by making use  

of the GSCALite (http://bioinfo.life.hust.edu.cn/web/ 

GSCALite/). Gene set enrichment analysis (GSEA), 

another powerful method for functional enrichment of 
gene sets, was carried out to probe the biological 

functions of hub genes. Investigating the upstream 

regulated miRNAs is essential to gain insight into the 

http://kmplot.com/analysis/
http://kmplot.com/analysis/
http://bioinfo.life.hust.edu.cn/GSCA/#/drug
https://www.medchemexpress.cn/
http://genemania.org/
http://bioinfo.life.hust.edu.cn/web/GSCALite/
http://bioinfo.life.hust.edu.cn/web/GSCALite/
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mechanisms of action of genes, and a miRNA-mRNA 

regulatory network for hub genes was also predicted 

and generated through the GSCALite website. 

 

Validation of hub gene expression 

 

For mRNA expression levels of hub genes, qRT-PCR 

experiments were conducted in accordance with 

manufacturers’ instructions and our previous study [29]. 

A normal gastric epithelial cell line (GES-1) and five 

human GC cell lines (HGC-27, AGS, MKN-45, 

MGC803, and MKN-28) were obtained from the 

Shanghai Cell Bank of the Chinese Academy of 

Sciences. The glyceraldehyde-3-phosphate dehydro-

genase (GAPDH) was treated as internal reference. 

The 2−ΔΔCq method was adopted to calculate the 

relative expression levels of hub genes, and GraphPad 

Prism 6.0 software was utilized to plot bar graphs. 

Apart from this, the mRNA primer sequences of hub 

genes were summarized in detail (Supplementary 

Table 1). 

 

The Human Protein Atlas (HPA) (http://www. 

proteinatlas.org/) database provides large proteomics 

data of various normal tissues and corresponding 

cancers [30]. To verify the protein expression 

abundance of hub genes, immunohistochemical (IHC) 

staining images from HPA project were extracted for 

analysis and comparison. 

 

Data availability statement 

 

The datasets presented in this study can be found in 

online repositories (TCGA, https://portal.gdc.cancer. 

gov/), (GEO, http://www.ncbi.nlm.nih.gov/geo/). The 

names of the repository/repositories and accession 

number(s) can be found in the article/Supplementary 

Material. 

 

Consent for publication 
 

All contributors give consent for unrestricted 

publication of this work. 

 

RESULTS 
 

HP-related gene screening and functional 

enrichment analysis 
 

The flow-process diagram for this present research was 

summarized in Figure 1. Firstly, a total of 761 HP-

related gene sets were extracted from the MSigDB 

website (Supplementary Table 2). Subsequently, 

differential expression analysis was carried out to 

 

 
 

Figure 1. Flowchart illustrating the workflow of this study. 
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screen 232 differentially expressed HP-related genes via 

using the “limma” package (Supplementary Table 3). 

 

To further unravel the potential mechanisms of these 

genes in the occurrence and progression of GC, Gene 

Ontology (GO) functional and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway annotation 

analyses were executed by implementing the 

“clusterProfiler” package. GO analysis revealed that 

these genes were mainly enriched in cancer-associated 

biological functions, such as mitotic cell cycle, cell 

cycle, cell cycle process, chromosome organization,  

DNA replication, cell division, DNA conformation 

change, chromosomal region, condensed chromosome, 

heterochromatin, chromosome, ribonucleotide binding, 

DNA helicase activity, helicase activity, and integrin 

binding (Supplementary Figure 1A–1C). KEGG 

analysis disclosed the enriched top signaling pathways, 

including epithelial cell signaling in Helicobacter pylori 
infection, Vibrio cholerae infection, NOD-like receptor 

signaling pathway, pathways in cancer, spliceosome, 

Toll-like receptor signaling pathway, leukocyte 

transendothelial migration, as well as cytokine–cytokine 

receptor interaction (Supplementary Figure 1D). 

 

Establishment of molecular subtype based on the 

HP-related genes 

 

NMF consensus clustering was conducted on the 

TCGA-STAD (N=338), GSE15459 (N=192), 

GSE84433 (N=357) cohorts respectively on the basis of 

232 differentially expressed HP-related genes. 

 

Following the prompts of silhouette, consensus, as well 

as cophenetic, all samples of the three different datasets 

were eventually split into 2 clusters (Figure 2A and 

Supplementary Figures 3A, 4A). The silhouette, 

consensus, and cophenetic heatmaps of each dataset 

were displayed in Supplementary Figure 2. PCA results 

suggested that clusters based on HP-related genes had 

excellent classification ability in distinct datasets 

(Figure 2B and Supplementary Figures 3B, 4B). 

Survival analysis also revealed that there was an 

obvious difference in the OS of patients between 

Cluster C1 and C2 in all datasets (Figure 2C and 

Supplementary Figures 3C, 4C). The tumor 

microenvironment (TME) has a close correlation with 

patient prognosis and tumor progression, and the 

immune and stromal cells constitutes the main 

components of TME [31]. The TME score files showed 

that patients with Cluster C1 yielded a lower immune 

score than that of C2, and the CIBERSORT algorithm 

was adopted to further explore the composition of 
immune cell infiltration between different clusters 

(Figure 2D, 2E and Supplementary Figures 3D, 3E, 4D, 

4E). Notably, in the GSE84433 cohort, the infiltration 

abundance of immunosuppressive Tregs and 

Macrophages M2 in Cluster C1 was significantly higher 

than that in Cluster C2, which may be an important 

reason for the worse prognosis of patients with Cluster 

C1 (Supplementary Figure 3F). In contrast, in the 

TCGA-STAD cohort, patients in Cluster C1 exhibited a 

lower level of Tregs infiltration compared with that in 

Cluster C2, resulting in the better clinical outcomes for 

patients Cluster C1 (Figure 2F). Beyond this, in the 

GSE15459 cohort, a prevalent amplification in anti-

tumorigenic immune cells, including NK cells resting, 

NK cells activated, Macrophages M0, Mast cells 

activated, Dendritic cells activated, was observed in 

Cluster C1, whereas a higher infiltration degree with 

Macrophages M2 was found in Cluster C2, which was a 

great explanation for the poorer survival rate of patients 

with Cluster C2 (Supplementary Figure 4F). 

 

Considering that chemotherapy and targeted therapy are 

still served as a cornerstone of treatment for GC, we 

calculated the IC50 values of common anticancer agents 

in the two clusters to predict drug susceptibility or 

resistance. Immunotherapy has been an emerging 

therapeutic modality for GC, and the expression levels 

of five common immune checkpoint genes across 

different clusters were compared to predict the 

immunotherapeutic response of GC patients. 

Surprisingly, in the TCGA-STAD cohort, the IC50 

values of imatinib and sunitinib were significantly 

lower in Cluster C2 than in Cluster C1, while the 

expression levels of BTLA and PD-L2 were obviously 

higher in C2 than in C1, all indicating that patients in 

the Cluster C2 were more likely to benefit from targeted 

therapy and immunotherapy to improve their dismal 

prognosis (Figure 2G–2I). Similarly, in the GSE84433 

and GSE15459 cohorts, the expression levels of 

immune checkpoint genes and IC50 values of 

anticancer drugs across two clusters were also totally 

disparate (Supplementary Figures 3G–3I, 4G–4I).  

 

Collectively, these results revealed that HP-related 

genes were closely related to the prognosis and 

treatment of GC patients, and the novel molecular 

subtype had great clinical practicality and wide 

applicability. 
 

ML identifying the HP-related hub genes 

 

Before implementing the ML algorithms, univariate 

Cox regression analysis was employed to obtain 

seventeen prognostic-associated HP genes from the 

above differentially expressed HP-related genes 

(Supplementary Table 4). Then, two classical ML 
methods, RF and SVM-RFE, were conducted to 

determine the HP-related hub genes. Based on the 

RNA-sequencing data of the seventeen prognostic-
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associated HP genes in TCGA-STAD dataset, thirteen 

candidate genes were identified through the feature 

selection of RF model (Figure 3D, 3E and 

Supplementary Table 5), and thirteen genes were 

acquired via implementing the SVM-RFE strategy 

(Figure 3F and Supplementary Table 6). Reverse 

cumulative distribution and boxplots plots showed that 

residual values of the two ML algorithms considered 

negligible (Figure 3A, 3B), and ROC curves 

demonstrated that both the SVM-RFE and RF models 

in this present study had a very robust accuracy score 

(SVM-RFE: 0.997, RF: 1) (Figure 3C). Therefore, by 

taking the intersection of the results of two ML 

strategies, twelve genes were determined and served as 

HP-related hub genes for follow-up analysis  

(Figure 4A). 

 

Evaluation of diagnostic performance and 

prognostic value of the twelve hub genes 
 

To confirm the strong diagnostic power of the twelve 

hub genes, ROC curves were drawn by using the  

“pROC” package. All hub genes in the TCGA-STAD 

cohort reached the AUC values of 0.713–0.958, of 

 

 
 

Figure 2. Construction of a NMF subtype based on the differentially expressed HP-related genes in the TCGA-STAD cohort. 
(A) NMF consensus clustering for k = 2. (B) Kaplan–Meier analysis of overall survival (OS) for Cluster C1 and C2. (C) Principal component 
analysis (PCA). (D, E) Differential analyses of immune and stromal score between Cluster C1 and C2. (F) Violin plot showing the immune cell 
infiltration landscape across different clusters. (G, H) Box plot of estimated IC50 values for Imatinib and Sunitinib in Cluster C1 and C2. (I) Box 
plot visualizing the significant expression differences of immune checkpoints across distinct clusters, including BTLA and PD-L2. *:P<0.05 ** 
:P<0.01 ***:P<0.001. 
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which UHRF1 achieved the highest AUC value of 

0.958 (Figure 4B). To better make use of these hub 

genes, a nomogram containing all hub genes was 

established for the diagnosis of GC through the “rms” 

package (Figure 4D). The well-calibrated capability of 

the nomogram was observed by checking the calibration 

curve, and the mean absolute calibration error was only 

0.006 (Figure 4E). Both Clinical impact curve and 

decision curve analysis (DCA) further affirm the 

clinical utility of the diagnostic nomogram (Figure 4C, 

4F). Overall, the twelve HP-related hub genes could be 

expected to develop into the ideal diagnostic markers  

of GC. 

 

Given that patient prognosis is what counts, we sorted 

all TCGA-STAD samples into high- or low -expression 

subgroups according to the median expression of the 

twelve hub genes for subsequent survival analysis. K-M 

curves uncovered that only eight hub genes (EFNA3, 

FLT1, L3MBTL3, MAPK10, MLEC, MYB, NRP1, as 

well as UHRF1) existed a significant difference in the 

clinical outcomes of GC patients between high and low-

expression subgroups (Figure 5A–5H). However, 

univariate Cox regression analysis was also conducted 

to examine the association between the expression 

levels of hub genes and GC prognosis, and subsequent 

results revealed that all twelve hub genes were closely 

related to the survival time and status of patients with 

GC (Figure 5I). Thus, we could speculate boldly  

that the twelve HP-related hub genes affected these 

survival outcomes of GC patients together rather than 

individually. 

 

Aside from this, the K-M Plotter database including six 

GEO datasets (GSE14210(N=145), GSE15459(N=200), 

GSE22377(N=43), GSE29272(N=268), GSE51105 

(N=94), GSE62254(N=300)) were also utilized to mine 

the prognostic value of hub genes. The results of KM 

Plotter website suggested that the expression levels of 

twelve hub genes exert a drastic effect on the survival 

time in GC patients whether it was OS or progression-

free survival (PFS) (supplementary Figures 5, 6). 

 

 
 

Figure 3. Selection of the HP-related hub genes via machine learning strategies. (A, B) Boxplot and reverse cumulative distribution 
curve of residual. (C) Comparison of ROC curves for evaluating the diagnostic reliability of support vector machine‐recursive feature 
elimination (SVM‐RFE) and random forest (RF) models. (D) Error graph of RF model. (E) Based on RF algorithm to screen the HP-related hub 
genes. (F) On the basis of SVM-RFE method to identify the HP-related hub genes. 
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Immune infiltration landscape of the hub genes 

 

The state of TME profoundly influences the efficacy  

of immunotherapy [32]. Using the CIBERSORT 

algorithm, we deconvoluted the composition ratio of 

distinct immune cell subpopulations in the TCGA- 

STAD patients. Subsequently, Spearman’s correlation 

analysis was conducted to discover the relationship 

between the expression levels of the twelve genes and 

the degree of immune cell infiltration. Expression of 

CTLA4 and MYB were negatively correlated with the 

infiltration abundance of Monocytes, Mast cells resting, 

as well as T cells CD4 memory resting, while 

presenting the highest positive correlation coefficient 

with T cells CD4 memory activated (Figure 6A, 6G). 

The expression of FLT1 was positively correlated with 

NK cells resting and B cells naive and negatively 

correlated with NK cells activated and B cells memory, 

while the expression level of L3MBTL3 was positively 

correlated with B cells naïve and Tregs and negatively 

correlated with Neutrophils and Plasma cells (Figure 

6C, 6D). Similarly, NRP1 and THY1 were positively 

related to Macrophages M2 and Macrophages M1, 

whereas inversely related to B cells memory and Plasma 

cells (Figure 6J, 6K). Of interest, EFNA3, MLEC, 

NCLN together with UHRF1 all exhibited the highest 

positive correlation with Macrophages M0, and the 

most significant negative correlation with Mast cells 

resting (Figure 6B, 6F, 6I, 6L). Besides that, the 

expression levels of both MAPK10 and MYL9 were 

 

 
 

Figure 4. Construction of the diagnostic nomogram on the basis of the twelve hub genes. (A) Venn diagram taking the 
intersection of the results of two ML strategies. (B) ROC curves measuring the diagnostic efficacy of the twelve HP-related hub genes.  
(C) Decision curve of nomogram graph. (D) Nomogram for the diagnosis of gastric cancer (GC). (E) Calibration curve demonstrating the 
diagnostic performance of the nomogram. (F) Clinical impact curve. 
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positively correlated with Mast cells resting, 

Monocytes, and B cells naive, but negatively correlated 

with T cells CD4 memory activated as well as 

Macrophages M0 (Figure 6E, 6H). Taken together, the 

hub genes could reshape the immune microenvironment 

to facilitate the initiation and progression of GC by 

altering the degree of various immune cell infiltration. 

 

Mutational characteristic of the hub genes 

 

As it is well-known, tumor mutation burden (TMB) has 

been increasingly recognized as being significantly 

associated with patient prognosis and immunotherapy 

response [33–35]. By exploiting the genomic alteration 

data from the TCGA database, the copy number variant 

(CNV) and single-nucleotide variant (SNV) events of 

the twelve hub genes were investigated to explore the 

relationship between expression and genetic mutation. 

EFNA3 exhibited the highest frequency of CNV, 

observed in exceeding 10% of TCGA-STAD samples, 

with CNV Gain being the more prevalent type 

compared to CNV Loss (Figure 7A). At the same time, 

the CNV frequencies over 3% for all hub genes were 

also found (Figure 7A). As displayed in Figure 7B, the 

chromosomal region and CNV state of all twelve genes 

were carefully marked on the schematic diagram. 

Further analysis suggested that the mRNA expression 

levels of MLEC, MYB, NCLN, EFNA3, and UHRF1 

were positively related to their CNV frequencies 

(Figure 7C). Of the 439 GC samples, 52 (11.85%) 

occurred the alteration of hub genes, and FLT1 

presented the highest SNV frequency (3.6%), followed 

by NRP1 (3.4%), NCLN (1.8%) (Figure 7D). Alongside 

this, subsequent results indicated that missense mutation 

(>60%), single-nucleotide polymorphism (SNP) 

(>60%), as well as C > T (34) were the most frequent 

classifications of SNV (Figure 7E).  

 

In summary, among these 12 hub genes, the abnormal 

expression of EFNA3 and UHRF1 in GC compared 

 

 
 

Figure 5. Kaplan-Meier (K-M) survival curves of the hub genes. (A) EFNA3. (B) FLT1. (C) L3MBTL3. (D) MAPK10. (E) MLEC. (F) MYB. (G) 
NRP1. (H) UHRF1. Univariate Cox regression analysis of the twelve hub genes. (I) Forest plot showing the prognostic values of hub genes. 
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with normal gastric tissues might be impacted by the 

regulation of CNV, whereas SNV was likely to affect 

the expression levels of FLT1, NRP1, CTLA4, 

L3MBTL3, MAPK10, MLEC, MYL9, as well as 

THY1, and MYB along with NCLN were perhaps 

subject to the joint effects of CNV and SNV. 

 

Assessment of drug sensitivity or resistance targeting 

the hub genes 

 

Chemotherapy and targeted therapy are still as 

important as surgery in the treatment of GC. Based on 

the GSCA database, we evaluated the association 

between the expression levels of hub genes and GDSC 

drug susceptibility or resistance. Subsequent results 

revealed that the sensitivity of several GDSC agents 

was positively and negatively correlated with the 

expression of multiple hub genes, including AZD8055, 

CI-1040, PLX4720, TPCA-1, Vorinostat, CEP-701, 

THZ-2-102-1, UNC0638, IPA-3, KIN001-260, 

SB590885, and KIN001-270 (Figure 8A). Moreover, 

the chemical and molecular structural formulas of the 

abovementioned twelve drugs were acquired by 

querying the MedChemExpress online website.  

The chemical formulas of AZD8055, CI-1040, 

PLX4720, TPCA-1, Vorinostat, CEP-701, THZ-2-102-

1, UNC0638, IPA-3, KIN001-260, SB590885,  

and KIN001-270 corresponded to C25H31N5O4, 

C17H14CIF2IN2O2, C17H14CIF2N3O3S, C12H10FN3O2S, 

C14H20N2O3, C26H21N3O4, C31H28CIN7O2, C30H47N5O2, 

C20H14O2S2, C21H24N4O2, C27H27N5O2, C26H21N5O4S, 

separately. As shown in Figure 8B, the construct 

formulas of these agents were neatly arranged. 

 

Functional enrichment analysis 

 

The synergy among hub genes was fully reflected in the 

above content. Therefore, to confirm the degree of tight 

junction of these hub genes, a PPI network was 

construed by using the GeneMANIA website (Figure 

9A). To further examine the role of these hub genes in 

the occurrence and development of GC, the GSCALite 

database was utilized to investigate the interaction 

between hub genes and cancer-related pathways. The 

interaction maps uncovered that almost all hub genes 

were involved in the cancer-associated pathways, 

 

 
 

Figure 6. The immune‐infiltrating landscape of GC based on the twelve hub genes. (A–L) Lollipop plots revealing the association 

between the twelve hub genes and the infiltration level of various immune cells. 
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Figure 7. Mutational characteristics of the hub genes. (A) Copy number variation (CNV) frequency of hub genes. (B) Circle diagram of 
CNV with hub genes. (C) Correlation between expression of hub genes and CNV. (D) Cascade of hub gene mutations. (E) Details regarding 
single nucleotide variants (SNV). 

 

 
 

Figure 8. Prediction of drug sensitivity. (A) Correlation between hub gene expression levels and GSDC drug sensitivity via the online 

search tool GSCA. (B) Structural formulas of the sensitive agents (including AZD8055, CI-1040, PLX4720, TPCA-1, Vorinostat, CEP-701, THZ-2-
102-1, UNC0638, IPA-3, KIN001-260, SB590885, and KIN001-270). 
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Figure 9. Functional and pathway enrichment analysis of the hub genes. (A) Construction of a protein-protein interaction (PPI) 

network through using the GeneMANIA database. (B) The hub genes being involved in several key cancer-associated processes, such as 
epithelial-mesenchymal transition (EMT), receptor tyrosine kinase (RTK), cell cycle, apoptosis, etc. (C) The result of predicted miRNAs 
targeting hub genes using the GSCALite website. 
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comprising RAS/MAPK, epithelial–mesenchymal 

transition (EMT), TSC/mTOR, receptor tyrosine 

kinase (RTK) signaling, hormone AR signaling, cell 

cycle, PI3K/AKT, hormone ER signaling, as well as 

apoptosis (Figure 9B).The upstream miRNAs is 

essential for understanding the oncogenic or tumor 

suppressor mechanism of gene, and a miRNA-mRNA 

regulatory network for hub genes was also created by 

using the GSCALite database, indicating that these 

hub genes shared common miRNAs to participate in 

various biological behavior of GC (Figure 9C). 

Furthermore, we again split TCGA-STAD samples 

into two subgroups (high- or low- expression) in 

accordance with the median expression of these  

hub genes for performing the GSEA analysis 

(Supplementary Figure 7). GSEA results showed that 

CTLA4, L3MBTL3, MAPK10, MLEC, MYB, MYL9, 

NCLN, NRP1, THY1, and UHRF1 were mainly 

enriched in pathways correlated with pathways in 

cancer, cell cycle, DNA replication, ECM-receptor 

interaction, cell adhesion molecules (CAMs), bladder 

cancer, renal cell carcinoma, focal adhesion, natural 

killer cell mediated cytotoxicity, T cell receptor 

signaling pathway, spliceosome, calcium signaling 

pathway, base excision repair, purine metabolism, 

pyrimidine metabolism, chemokine signaling 

pathway, mTOR signaling pathway, N-glycan 

biosynthesis, in the high-expression subgroup, 

whereas EFNA3 and FLT1 were involved in the 

calcium signaling pathway, ribosome, oxidative 

phosphorylation, hematopoietic cell lineage, 

Parkinsons disease, and vascular smooth muscle 

contraction in the low-expression subgroup. 

 

Validation of differential expression for hub genes 

 

The qRT-PCR assay was commonly applied to measure 

the mRNA expression level of gene, and we compared 

the mRNA expression of hub genes in normal gastric 

epithelial and multiple GC cells through the qRT-PCR 

experiment in this present study, suggesting that all 

twelve of these genes were obviously different  

(Figure 10). The HPA website is a repository of 

immunohistochemistry-based proteomic data that 

provides us with significant value for protein expression 

analysis [36]. The IHC staining image were retrieved 

and downloaded from the HPA database to validate the 

protein expression of hub genes, indicating that these 

 

 
 

Figure 10. Validating the mRNA expression of the twelve hub genes in normal gastric epithelial and GC cell lines via the 
quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays. 
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genes were differentially expressed between GC and 

adjacent normal tissues, and the trend of up-regulation 

or down-regulation was basically consistent with the 

mRNA expression level (Supplementary Figure 8 and 

Supplementary Table 7). 

 

DISCUSSION 
 

It is well known that HP infection is a premalignant form 

of GC and that it plays a key role in the development and 

spread of the disease [37]. Although eliminating HP can 

greatly lower the frequency of GC, its prevalence is still 

high, particularly in underdeveloped nations [38–40]. 

The relationship between HP infection and GC has been 

the subject of numerous studies, but these studies 

primarily concentrate on the oncogenic effects of HP 

strains’ virulence factors, such as BabA, CagA, oipA, and 

VacA, as well as environmental risk factors like 

increased or decreased gastric fluid pH and nitrosamines 

and their precursors [41–44]. On the molecular  

and genetic levels, nevertheless, there are very few 

investigations on the tumorigenic processes of HP 

infection. It is generally established that dysregulation of 

oncogene and tumor-suppressor genes can contribute to 

the beginning and growth of tumors. Therefore, in this 

investigation, we sought to clarify the therapeutic  

and prognostic effects of HP infection on GC based on 

HP-related genes. 
 

At the beginning of this present study, we conducted 

NMF clustering analysis on the TCGA-STAD, 

GSE15459, GSE84433 cohorts based on 232 

differentially expressed HP-related genes. Subsequent 

results revealed that all different data sets’ samples were 

stratified into two distinct clusters with differing 

prognosis, immune infiltration landscape, and anti-

cancer drug sensitivity, indicating that the HP-related 

genes could exert a significant influence on the clinical 

outcomes, tumor microenvironment, as well as 

therapeutic efficacy of GC. 
 

To determine the most critical HP-related genes, two 

ML methods, SVM‐RFE together with RF, were 

employed to identify the HP-associated hub genes. 

SVM-RFE, a quite well-established ML algorithm for 

classification, can achieve the selection of optimal 

features on the basis of the recursive feature 

elimination [45]. RF is also a supervised non-

parametric ML approach, which can be applied to 

address classification and regression issues, including 

gene screening and disease diagnosis [46]. Twelve 

genes were eventually screened and identified as the 

HP-related hub genes by intersecting of the results of 
two ML strategies, namely, EFNA3, UHRF1, FLT1, 

NRP1, CTLA4, L3MBTL3, MAPK10, MLEC, 

MYL9, THY1, MYB, as well as NCLN, since both 

the SVM-RFE and RF models presented less residuals 

and higher ROC values. 

 

It has previously been demonstrated that multiple hub 

genes are closely implicated in tumorigenesis and 

progression. For instance, EFNA3/EPHA2 axis can 

promote cancer stemness in hypoxic hepatocellular 

carcinoma by modulating metabolic plasticity, and 

EFNA3 is served as a prognostic biomarker for 

hepatocellular cancer [47, 48]. UHRF1 can facilitate the 

occurrence and development of various digestive tract 

tumors, including gastric, colon, and pancreatic cancers, 

etc. [49–51]. FLT1 and its ligands VEGFB together 

with PlGF are promising as key targets for a new 

generation of anti-angiogenic drugs [52]. NRP1 is 

closely associated with the occurrence, progression and 

even metastasis of various tumors, such as bladder, 

colorectal, breast, and lung cancers [53–56]. CTLA-4 

has been generally recognized as the most compelling 

target immunotherapy, and ipilimumab (anti-CTLA4) 

has radically and significantly improved the clinical 

outcomes of patients with advanced cancer [57]. 

Dysregulated miR-27a-3p enhances the proliferation 

and migration capability of nasopharyngeal carcinoma 

cell by regulating the expression level of MAPK10, and 

Circ_0000515 can also drive hepatocellular carcinoma 

progression by targeting MAPK10 [58, 59]. Aberrant 

Expression of MYL9 is correlated with prognosis of 

glioblastoma and esophageal squamous cell cancer, and 

it may act as a novel biomarker [60, 61]. MicroRNA-

140-5p suppresses the growth and progression of GC 

cells by reversely modulating THY1-mediated Notch 

signaling [62]. SNHG3 promotes the proliferation and 

metastatic ability of GC cells by mediating the miR-

139-5p/MYB axis [63]. 

 

To examine the diagnostic performance of the twelve 

hub genes, ROC curves of each hub genes were plotted 

and their AUC values were calculated. All hub genes 

reached high AUC values, with UHRF1 exhibiting the 

highest AUC value of 0.958. To predict the likelihood 

of initiation of GC, a nomogram on the basis of the 

twelve HP-related hub genes was constructed. To 

illustrate the clinical significance of the hub genes, we 

performed survival analysis (K-M and univariate Cox 

regression analyses). Subsequent results suggested that 

the expression levels of the nine hub genes was closely 

to the survival outcomes of patients with GC in both 

TCGA and GEO cohorts. 

 

Immunotherapy has emerged as a promising treatment 

strategy for GC, yet drug sensitivity varies from 

person to person. The composition of immune cell 
infiltration affects the immunotherapy response and is 

served as a significant determinant [64]. In this 

research, expression of CTLA4, MYB, FLT1, 
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L3MBTL3, MAPK10 and MYL9 positively correlated 

with the abundance of antitumor immune cells (e.g., T 

cells CD4, Mast cells, NK cells, B cells, etc.), while 

NRP1 and THY1 presented a negative association 

with the infiltration level of immunosuppressive 

Macrophages M2. TMB is another indicator for 

evaluating the response to immunotherapy [65]. In the 

TCGA-STAD dataset, EFNA3 showed the highest 

frequency of CNV, found in more than 10% of 

patients, with CNV Gain being the more prevalent 

type. At the same time, FLT1 exhibited the highest 

SNV frequency (3.6%), with missense mutation and C 

> T being the main classification. 

 

At final, we also discovered that these hub genes may 

participate in the onset and progression of GC via the 

following cancer-associated pathways, namely, cell 

cycle, EMT, apoptosis, RAS/MAPK, PI3K/AKT, 

TSC/mTOR, hormone AR signaling, hormone ER 

signaling, as well as RTK. Besides that, the twelve 

hub genes’ upstream regulatory miRNAs were 

predicted. 

 

CONCLUSIONS 
 

In this study, we developed a unique HP-related tumor 

classification and performed ML techniques to identify 

twelve hub genes that may be useful for GC molecular 

diagnosis and individualized treatment. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Functional enrichment analysis (A–C) GO analysis (biological process (BP), cellular component (CC), and 
molecular function (MF)) of the differentially expressed HP-related genes. (D) KEGG analysis of the differentially expressed HP-related genes.  
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Supplementary Figure 2. NMF rank survey performed on distinct clusters in multiple datasets. 
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Supplementary Figure 3. Establishment of a NMF subtype according to the differentially expressed HP-related genes in the 
GSE84433 cohort. (A) NMF consensus clustering for k = 2. (B) Kaplan–Meier analysis of overall survival (OS) for Cluster C1 and C2.  
(C) Principal component analysis (PCA). (D, E) Differential analyses of immune and stromal score between Cluster C1 and C2. (F) Violin plot 
showing the immune cell infiltration landscape across different clusters. (G, H) Box plot of estimated IC50 values for Cisplatin and Imatinib in 
Cluster C1 and C2. (I) Box plot visualizing the significant expression differences of immune checkpoints across distinct clusters, including 
PDCD1, CD274, and CTLA4. *:P<0.05 ** :P<0.01 ***:P<0.001. 
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Supplementary Figure 4. Creation of a NMF subtype based on the differentially expressed HP-related genes in the GSE15459 
cohort. (A) NMF consensus clustering for k = 2. (B) Kaplan–Meier analysis of overall survival (OS) for Cluster C1 and C2. (C) Principal 
component analysis (PCA). (D, E) Differential analyses of immune and stromal score between Cluster C1 and C2. (F) Violin plot showing the 
immune cell infiltration landscape across different clusters. (G, H) Box plot of estimated IC50 values for Cisplatin and Imatinib in Cluster C1 
and C2. (I) Box plot visualizing the significant expression differences of immune checkpoints across distinct clusters, including CD274 and PD-
L2. *:P<0.05 ** :P<0.01 ***:P<0.001. 
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Supplementary Figure 5. Six GEO datasets confirming the prognosis value of hub genes (OS).  
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Supplementary Figure 6. Six GEO datasets confirming the prognosis value of hub genes (PFS).  
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Supplementary Figure 7. Gene set enrichment analysis (GSEA) of each hub gene. 
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Supplementary Figure 8. HPA database verifying the protein expression of hub genes (EFNA3, UHRF1, FLT1, NRP1, L3MBTL3, 
MAPK10, MYL9, THY1, MYB, as well as NCLN). 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2, 3, 7. 

 

Supplementary Table 1. Primers sequences in qRT-PCR. 

Primers sequences  Forward sequence Reverse sequence 

GAPDH CCCACTCCTCCACCTTTGAC CCACCACCCTGTTGCTGTAG 

EFNA3 AGTTCTCGGAGAAGTTCCAGCG CAGCAGACGAACACCTTCATCC 

FLT1 CCTGCAAGATTCAGGCACCTATG GTTTCGCAGGAGGTATGGTGCT 

L3MBTL3 TTCGCAGAGAGCACGGAGGAA ACCGCTTTCTCCTCTTCCAGGT 

MAPK10 GCACACACACATGCATACCC TCTCACTGCTCAGACCTTGC 

MLEC GGGCAGGATGGGTATGCTTT CGGTTCTGCTTCCGTGTACT 

MYB GGGAACAGATGGGCAGAAATCG GCTGGCTTTTGAAGACTCCTGC 

MYL9 GGATGTGATTCGCAACGCCTTTG CGGTACATCTCGTCCACTTCCT 

NCLN ACCTCCTGTTCTTTGCGTCTGG CCACATTGTCCTGAAGCAGGCT 

NRP1 AACAACGGCTCGGACTGGAAGA GGTAGATCCTGATGAATCGCGTG 

THY1 CTCCAGCATTCTCAGCCACA CGCTGCTTTCCTGGTCAAAC 

UHRF1 GACAAGCAGCTCATGTGCGATG AGTACCACCTCGCTGGCATCAT 

CTLA4 ACGGGACTCTACATCTGCAAGG GGAGGAAGTCAGAATCTGGGCA 

 

Supplementary Table 2. The list of HP-related gene sets. 

 

Supplementary Table 3. 232 differentially expressed HP-related genes.  

 

Supplementary Table 4. 17 prognostic-associated HP genes. 

Id HR HR.95L HR.95H pvalue 

THY1 1.197780366 1.028640775 1.394731611 0.020150799 

NRP1 1.372799425 1.149153022 1.63997155 0.000478942 

PLXNC1 1.198026544 1.012051655 1.418176228 0.035803952 

NCLN 0.763501882 0.612545701 0.951659808 0.016359488 

EFNA3 0.852098441 0.756579369 0.959676914 0.008328384 

MYL9 1.090867971 1.003169012 1.186233741 0.041955934 

CPT1C 1.193375145 1.026920507 1.386810592 0.021079546 

TMEM176B 1.168858366 1.001461307 1.364236312 0.047874547 

MYB 0.829498517 0.730244348 0.942243225 0.004041507 

L3MBTL3 1.319766027 1.047446338 1.662884582 0.018617422 

CTLA4 0.835480337 0.707075962 0.987202833 0.034751367 

MAPK10 1.260993457 1.032619842 1.53987405 0.02291534 

PDE2A 1.195255496 1.040593573 1.372904597 0.011642923 

MLEC 0.788755252 0.622210985 0.999877633 0.04988191 

FLT1 1.256261141 1.001183574 1.576326355 0.048817849 

ANKRD33 1.247838303 1.04927556 1.483976651 0.012282632 

UHRF1 0.842653628 0.716375984 0.991190593 0.038754336 
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Supplementary Table 5. 
Thirteen candidate 
genes were selected by 
using the random forest 
(RF) method. 

Gene 

UHRF1 

THY1 

CTLA4 

MLEC 

MAPK10 

EFNA3 

MYL9 

NCLN 

MYB 

NRP1 

L3MBTL3 

CPT1C 

FLT1 

 

Supplementary Table 6. 
Thirteen genes were 
screened by establishing the 
support vector machine‐
recursive feature elimination 
(SVM‐RFE) model. 

Gene 

UHRF1 

EFNA3 

MLEC 

THY1 

MYB 

CTLA4 

MAPK10 

NCLN 

MYL9 

FLT1 

NRP1 

L3MBTL3 

PDE2A 

 

Supplementary Table 7. The direct link URLs to the cited images. 


