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INTRODUCTION 
 

Bladder cancer (BC) is the most common malignant 

tumor of the urinary system with high morbidity and 

mortality rates [1]. In 2022, an estimated 81180 new 

cases and 17100 deaths were expected to occur in the 

United States alone [2]. Painless hematuria is the most 

common symptom presented by patients with BC, seen in 

approximately 80% of cases [3]. According to the depth 

of tumor invasion, BC can be classified into two major 

categories, including non-muscle invasive (70-80%) and 

muscle-invasive BC (20-30%) [4–6]. If diagnosed at an 

early stage, the 5-year progression-free survival rate of 

non-muscle-invasive BC is as high as 90 %. However, 

muscle-invasive BC is characterized by a high incidence 

of tumor metastasis and a 5-year survival rate ranging 

from 36% to 48% [7]. Despite the current effective 

treatment strategies, including surgery, cisplatin-based 

chemotherapy, and immunotherapy, clinical outcomes 

are still not satisfactory due to the heterogeneity of its 

clinical and biologic [8, 9]. The prognosis of BC is much 

improved by early diagnosis and treatment. However, 
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ABSTRACT 
 

Bladder cancer (BC) is a common urologic tumor with a high recurrence rate. Cuproptosis and long noncoding 
RNAs (lncRNAs) have demonstrated essential roles in the tumorigenesis of many malignancies. Nevertheless, 
the prognostic value of cuproptosis-related lncRNA (CRLs) in BC is still unclear. The public data used for this 
study were acquired from the Cancer Genome Atlas database. A comprehensive exploration of the expression 
profile, mutation, co-expression, and enrichment analyses of cuproptosis-related genes was performed. A total 
of 466 CRLs were identified using Pearson’s correlation analysis. 16 prognostic CRLs were then retained by 
univariate Cox regression. Unsupervised clustering divided the patients into two clusters with diverse survival 
outcomes. The signature consists of 7 CRLs was constructed using the least absolute shrinkage and selection 
operator (LASSO) Cox regression analyses. Survival curves and receiver operating characteristics showed the 
prognostic signature possessed good predictive value, which was validated in the testing and entire sets. The 
reliability and stability of our signature were further confirmed by stratified analysis. Additionally, the 
signature-based risk score was confirmed as an independent prognostic factor. Gene set enrichment analysis 
showed molecular alteration in the high-risk group was closely associated with cancer. We then developed the 
clinical nomogram using independent prognostic indicators. Notably, the infiltration of immune cells and 
expression of immune checkpoints were higher in the high-risk group, suggesting that they may benefit more 
from immunotherapy. In summary, the prognostic signature might effectively predict the prognosis and provide 
new insight into the clinical treatment of BC patients. 
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biomarkers to assist this process are still lacking. To 

improve clinical diagnosis and treatment of BC, it is 

imperative to construct an accurate prognostic 

signature. 

 

Copper is a cofactor for many important enzymes 

involved in various biological processes and is an 

essential trace element for nearly all living organisms 

[10]. Under physiological conditions, intracellular copper 

concentration must be tightly limited to extraordinarily 

low levels [11]. Indeed, elevated intracellular copper, 

even at modest concentrations may be toxic, causing 

significant cell death [12]. Cuproptosis is a recently 

recognized form of cell death that is induced by the 

accumulation of copper in cells, which is distinct from all 

other known ones [13]. The physiopathological 

mechanism is that excessive intracellular copper induces 

the aggregation of lipoylated components of the 

mitochondrial tricarboxylic acid (TAC) cycle, followed 

by the loss of iron-sulfur cluster protein, leading to 

proteotoxic stress and finally cell death [13]. Elevated 

copper concentrations have been reported to correlate 

with a wide variety of human cancers [12, 14]. The 

biological functions of cuproptosis and its impact on the 

progression of BC are not explicit. 

 

Emerging studies indicated that lncRNAs may serve a 

significant function in diverse biological functions by 

regulating gene expression [15, 16]. Dysregulation of 

lncRNAs contributes to the initiation and development 

of multiple human cancer and is considered by most to 

be one of the most specific and sensitive markers [17, 

18]. It is confirmed that lncRNA can be utilized to 

predict outcomes and guide clinical treatments in a 

variety of cancers [19]. Given the significance of 

cuproptosis and lncRNAs, some novel methods to 

provide improved prognostication for BC patients may 

be a viable strategy. 

 

Here, we systematically investigated the potential roles 

of cuproptosis-related lncRNA (CRLs) in BC patients 

using genome sequencing technology and a systematic 

bioinformatics approach. We constructed a prognostic 

signature based on 7 CRLs, which could evaluate the 

prognosis and the effects of immunotherapy in patients 

with BC. Taken together, the current data in our study 

may provide a better understanding of the role of CRLs 

in BC and help in the development of personalized 

therapy. 

 

MATERIALS AND METHODS 
 

Databases 

 

The mRNA expression profiles of 433 bladder cases 

were obtained from the Cancer Genome Atlas (TCGA, 

https://portal.gdc.cancer.gov/), which contains 19 normal 

tissues and 414 bladder tumors. Gene transcription levels 

were first normalized as fragments per kilobase  

million (FPKM). The expression level of each transcript 

was transformed using base log2 (FPKM+1) and low-

expression genes with mean expression less than 1 will 

be filtered out using the “limma” package [20]. Patients 

with missing survival data and follow-up times less  

than 30 days were excluded. The related clinical 

characteristics, copy number variation (CNV), and 

somatic mutation information with BC were directly 

acquired from TCGA. According to the human genome 

annotation (GRCh38), protein-coding genes and 

lncRNAs were annotated and classified. 

 

Identification of cuproptosis-related genes (CRGs) 

and enrichment analysis 

 

Seventeen cuproptosis-related genes (CRGs) were 

sourced from a recent article (2022) appearing in Cell 

[13]. The differential expression analysis for CRGs 

between the tumor and normal tissues was completed 

with R package “limma” using the thresholds of 

|log2FC| > 1 and P <0.05. The R package “maftools” 

was used for the aggregation and visualization of the 

mutation landscape [21]. The correlations of CPGs were 

created using the R package “igraph”. GeneMANIA 

(http://genemania.org/) was utilized for constructing a 

weighted functional interaction network, which is a web 

tool that can predict gene interactions and screen other 

potential binding partners [22]. The Gene ontology (GO) 

biological meaning and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway enrichment of the CRGs 

were performed to uncover the function through the R 

package “clusterProfiler” [23]. The corrected P < 0.05 

was considered significantly enriched. 

 

Identification of cuproptosis-related lncRNAs 

(CRLs) and consensus clustering analysis 

 

Cuproptosis-Related lncRNAs (CRLs) were identified by 

using the Pearson correlation index calculation between 

CRGs and lncRNAs. On the premise of correlation 

coefficient > 0.05 and P < 0.05, certain lncRNAs can be 

regarded as CRLs. Univariate Cox regression analysis 

was conducted to identify the prognostic-associated 

CRLs (P < 0.01). The prognostic CRLs were then used 

for unsupervised clustering and classification with the R 

package “consensusClusterPlus” [24]. To produce the 

most stable consensus, we repeated the optimization 

procedure 50 times with 80% item resampling. Kaplan-

Meier analysis was used to assess the differences in 

overall survival (OS) between different subgroups. In 
addition, the comparison of clinicopathological factors 

and the expression of PD-L1 in different clusters was 

performed. 

https://portal.gdc.cancer.gov/
http://genemania.org/
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Construction and validation of CRL prognostic 

signature 

 

The included cases (n = 403) were split in a 1:1 to 

ratio training (n=203) and testing (n=200) sets. We 

then executed the least absolute shrinkage and 

selection operator (LASSO) on the above prognostic 

CRLs to construct the signature in the training set. The 

risk score of each patient was generated by the sum of 

multiplying the expression value of each CRL by its 

regression coefficient. According to the optimal  

cutoff value, patients were classified into low- and 

high-risk groups. Prognostic differences between the 

two groups were revealed using Kaplan-Meier survival 

curves, and receiver operating characteristic (ROC) 

curves were plotted for 5 years to measure the 

predictive ability of this signature. Meanwhile, we 

applied the testing and entire sets to validate the above 

findings. 

 

Stratification survival analyses and clinical 

significance 

 

To investigate the clinical value of the prognostic 

signature, patients were stratified based on different 

clinical variables. In the stratified analysis, prognostic 

differences in different groups were analyzed by means 

of Kaplan-Meier and log-rank test survival analysis. We 

then applied the R package “pheatmap” to plot a heatmap 

to illustrate the distribution of clinical characteristics in 

diverse groups using the Chi-square test. 

 

Gene set enrichment analysis 

 

Gene set enrichment analysis (GSEA) (https://www. 

gsea-msigdb.org/gsea/login.jsp) software was used to 

investigate potential mechanisms [25]. KEGG and 

HALLMARK gene sets were used as references. The 

adjusted P value (false discovery rate) < 0.25 and 

normalized enrichment score > 1 denoted statistical 

significance. 

 

Nomogram construction 

 

The nomogram can predict the probability of a certain 

clinical outcome based on the values of multiple 

variables [26]. We conducted univariate and multi-

variate Cox regression analyses to assess the 

independent prognostic value of prognostic signature 

and clinical parameters (age, gender, grade, and stage). 

Then, variables that could be used as independent 

prognostic indicators were selected to develop a 

nomogram in BC using the R package “RMS” package. 

The predictive performance of the nomogram was then 

validated by calibration curves and decision curve 

analysis (DCA). 

Tumor mutation burden and drug sensitivity 

analysis 

 

Tumor Mutational Burden (TMB) is a somatic biomarker 

proposed to predict response to immunotherapies in 

cancer [27]. TMB was counted and visualized in each 

sample using the R package “maftools” [21]. In addition, 

we compared TMB between two different groups and 

plotted the risk score survival curve for TMB. Moreover, 

half maximal inhibitory concentration (IC50) values of 

different drugs in the low- and high-risk groups of 

bladder cancer samples were calculated with the R 

package “oncoPredict” [28]. 

 

Exploration of immune features and prediction of 

immunotherapy efficacy 

 

To explore the relationship between prognostic signature 

and immunity, the infiltration status and immune function 

were analyzed between two groups. Multiple immune 

data platforms, including TIMER, CIBERSORT, 

CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, 

XCELL, and EPIC algorithms were used to estimate the 

immune infiltration status of patients with bladder cancer. 

The single sample gene set enrichment analysis 

(ssGSEA) was used to calculate the enrichment score of 

29 immune cells, functions, or pathways [29]. The tumor 

microenvironment score of each sample was calculated 

using the R package “Estimate”. Furthermore, the 

expression levels of several common immune targets 

were compared between the two groups. The Tumor 

Immune Dysfunction and Exclusion (TIDE) database 

(http://tide.dfci.harvard.edu/) [30] was used to further 

analyze the difference of TIDE score in the low- and 

high-risk groups of BC samples. 

 

Statistical analysis 

 

All statistical analyses were performed in R statistical 

software (version 4.0.1) and Perl language (version 

5.30.2). Unless otherwise specified, statistical 

significance was considered for two-tailed P < 0.05. 

 

RESULTS 
 

The expression profiles and transcriptional alterations 

of CRGs 

 

To explore the function of cuproptosis in BC, the 

expression profiles of 17 CRGs in BC samples were 

compared with that of normal samples. In total, seven 

CRGs were identified as differentially expressed genes. 

Compared with normal bladder tissues, four genes 

(LIPT2, GCSH, CDKN2A, and SLC31A1) were 

determined to be up-regulated, while three genes (DLST, 

ATP7A, and MTF1) were down-regulated in BC cases 

https://www.gsea-msigdb.org/gsea/login.jsp
https://www.gsea-msigdb.org/gsea/login.jsp
http://tide.dfci.harvard.edu/


www.aging-us.com 8328 AGING 

(Figure 1A, 1B). We then examined the alteration 

frequency and CNVs in 17 CRGs. As can be seen from 

Figure 1C, all genes went through some degree of 

mutations and ATP7B had the highest frequency of 

mutations. Subsequently, we explored the CNVs 

duplicated or deleted in the segments of the genome and 

noticed the alterations were common among CRGs. 

CDKN2A had the highest amplification, while LIPT2 

showed an extensive deletion in CNV (Figure 1D). The 

CNV chromosome location information of 17 CRGs was 

displayed in Figure 1E. The results suggested that these 

CRGs were scattered in different chromosomes. The 

relationship network revealed a highly intricate 

interaction network of these CRGs (Figure 1F). 

Moreover, the regulatory network consisted of 37 genes, 

including 17 CRGs and additional genes spontaneously 

pulled through GeneMANIA. The biological functions 

association and relevant gene networks were visualized 

in Figure 1G. 

 

Biological function of CRGs 

 

GO analysis showed these 37 genes (including 17 

CRGs and additional 20 genes spontaneously pulled 

 

 
 

Figure 1. The multi-omics landscape of the cuproptosis-related genes (CRGs) in BC. (A) Heatmap of the CRGs in BC and normal 
samples. (B) Violin plot showing the differences in the expression of 17 CRGs between BC and normal tissues. (C) Genetic alterations of CRGs 
in BC. (D) CNV mutation frequency of CRGs in BC. (E) Location of CNV alterations in BC. (F) The relationship network of the CRLs. Red and Blue 
lines indicate positive and negative correlations, respectively. (G) The regulatory network of 17 CRGs and additional 20 genes spontaneously 
pulled through GeneMANIA. -, no significant, * P < 0.05, ** P < 0.01. 
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from GeneMANIA) were enriched in the coenzyme 

metabolic process, tricarboxylic acid cycle, and  

acetyl-CoA metabolic process in biological processes 

(BP) (Figure 2A, 2B). The top three significantly 

enriched cellular component (CC) were mitochondrial 

matrix, oxidoreductase complex, and dihydrolipoyl 

dehydrogenase complex (Figure 2C, 2D). As for 

molecular function (MF), oxidoreductase activity and 

transferase activity-transferring acyl groups were most 

significantly enriched (Figure 2E, 2F). In parallel, 

KEGG analysis revealed these genes were involved in 

carbon metabolism, citrate cycle, and pyruvate 

metabolism (Figure 2G, 2H). 

 

Identification of CRLs and construction of co-

expression network 

 

We performed a Pearson’s correlation analysis between 

all lncRNAs and 17 CRGs based on both expression 

profiles in BC tissues. A total of 466 CRLs were 

screened out with the filtering criteria. The results of the 

co-expression network between 12 CRGs and 466 

lncRNAs were presented in Figure 3A. We then 

conducted a univariate Cox regression analysis on these 

screened CRLs and discovered that 16 CRLs were 

significantly related to OS (P< 0.01), including 5 risk 

(HR > 1) and 11 protective (HR < 1) lncRNAs in BC 

patients (Figure 3B). The Sankey diagram presented the 

correspondence between CRGs and CRLs (Figure 3C). 

 

Determine the cuproptosis subtypes based on the 

prognostic CRLs 

 

To better understand the molecular heterogeneity of BC 

based on the 16 prognostic CRLs, unsupervised 

consensus clustering was conducted to group BC 

samples. According to the consensus matrixes (Figure 

4A) and cumulative distribution function (CDF) curves 

(Figure 4B), k = 2 was the most optimal value to divide 

the BC cases into two subtypes (cluster1, n = 134; 

cluster2, n = 269). Kaplan-Meier analysis demonstrated 

a considerable difference in OS between two clusters, 

with cluster2 having a significant survival advantage 

(Figure 4C). The PCA reconfirmed the difference in 

distribution between the two clusters (Figure 4D). The 

distribution of clinical variables and expression of 16 

CRLs between two clusters were intuitively shown in a 

heatmap (Figure 4E). Patients in cluster2 were more 

related to the high-grade relative to cluster1. 

 

To examine the involvement of PD-L1 with CRLs, we 

analyzed the expression of PD-L1 between two 

subtypes. It was observed that expression levels of PD-
L1 in BC tissues were not significantly different from 

that in normal tissues (Figure 4G). Notably, cluster1 had 

a statistically distinctly higher PD-L1 level than cluster2 

(P < 0.001) (Figure 4G). Next, we plot a heatmap to 

study the correlation between the PD-L1 and 16 CRLs 

and found weak but significant negative relations 

between the CRGs and most CRLs (Figure 4H). 

 

Construction and validation of the prognostic 

signature 

 

In the training set, we performed LASSO Cox regression 

analysis on 16 prognostic CRLs to establish a prognostic 

signature. The optimal signature was constructed using 7 

CRLs when the log (lambda) was the least deviation 

possibility (Figure 5A, 5B). We calculated the risk score 

of each patient and the formula was generated as follow: 

risk score = (-0.236 × expression of AC073534.2) + 

(0.141 × expression of RAP2C-AS1) + (-0.238 × 

expression of AC021321.1) + (0.463 × expression of 

AC087286.2) + (0.005 × expression of AC099850.4) + 

(-1.239 × expression of AC006160.1) + (0.358 × 

expression of AC010328.1). In the training set, patients 

were separated into a low-risk group (n = 102) or a high-

risk group (n = 101) with the optimal cutoff value 

(Figure 5C). Moreover, as the risk score increased, so 

did the mortality rate (Figure 5D). Heatmap representing 

the expression levels of the 4 risk lncRNAs (RAP2C-

AS1, AC087286.2, AC099850.4, and AC010328.1) 

were much higher in the high-risk groups relative to 

controls. As expected, the other 3 protective lncRNAs 

(AC073534.2, AC021321.1, and AC006160.1) showed 

opposite expression trends (Figure 5E). Similar findings 

can be also found using the same method on the testing 

set (Figure 5F–5H) and the entire set (Figure 5I–5K). 
 

To compare prognosis between two groups, the Kaplan-

Meier curve was performed with the log-rank test. The 

OS of the low-risk group was remarkably longer than 

that of the high-risk group in the training (P < 0.001), 

the testing (P = 0.042), and the entire sets (P < 0.001) 

(Figure 6A–6C). Furthermore, we constructed the ROC 

curves and calculated the area under the ROC curve 

(AUC) to evaluate the accuracy of diagnoses. The AUC 

values of the signature for predicting 5-year survival 

rates were 0.730, 0.695, and 0.687 in the training, the 

testing, and the entire sets, respectively (Figure 6D–6F). 

 

Clinical application of the prognostic signature 

 

Stratification survival analyses were employed to 

evaluate the prediction power of the constructed 

signature in diverse subgroups of clinical parameters. 

As shown in Figurer 7, patients in the high-risk group 

suffered a poorer outcome than patients in the high-risk 

group for all subgroups other than cases with low-grade, 
or with T1-2 stage, or with N1-3 stage, or with M1 

stage. These results indicated this signature had good 

predictive power. 
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Figure 2. Functional enrichment analysis of cuproptosis-related genes (CRGs) in BC. The bar plot and circle plot of enriched GO BP 

(A, B), CC (C, D), MF (E, F), and KEGG (G, H) of CRGs in BC. 
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Figure 3. Identification of cuproptosis-related lncRNA (CRLs) in BC. (A) The co-expressed network between 17 cuproptosis-related 
genes and 466 lncRNAs. (B) The forest plot shows 16 prognostic CRLs in univariate Cox regression analysis. (C) Sankey graph of the co-
expression network. 
 

 
 

Figure 4. Unsupervised consensus clustering of 16 prognostic cuproptosis-related lncRNA (CRLs) in BC. (A) Consensus matrix 

that divides BC cases into two clusters (k=2). (B) Cumulative distribution function (CDF) curves for k = 2–9. (C) Kaplan Meier analysis for BC 
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patients in two clusters. (D) PCA showed the difference in distribution between the two clusters. (E) The distribution of clinical features and 
expression of 16 CRLs between two clusters. (F) No differential expression was observed for PD-L1 between BC and normal tissues. (G) PD-L1 
upregulation in cluster1. (H) The correlation of PD-L1 with CRLs. * P<0.05, ** P<0.01, ns: no significant. 

 

The association between clinical features and risk score 

was further investigated. Significant differences were 

observed for various clinical features in terms of cluster 

(P < 0.001), AJCC stage (P < 0.001), T stage (P < 0.01), 

and N stage (P < 0.01) between the high- and low-risk 

groups (Figure 8A). We also explored the relationship 

between risk score, and subtype, AJCC stage, T stage 

and N stage. Patients in cluster1 had significantly higher 

risk scores than those in cluster2 (Figure 8B). In 

addition, the risk score increased along with the AJCC 

stage, T stage, and N stage increased (Figure 8C–8E). 

 

To further explore the potential biological functions and 

pathways between low- and high-risk groups, GSEA 

was conducted. As anticipated, the cancer-related 

pathways were obviously associated with the high-risk 

group, such as focal adhesion (Figure 8F) and 

epithelial-mesenchymal transition (Figure 8G). 

 

 
 

Figure 5. Construction and validation of the prognostic signature. (A) The 10-fold cross-validation for the optimal parameter selection 
in the LASSO regression. (B) The profile of the LASSO coefficient. (C) The distribution plots of the risk score in the training set.  
(D) The survival status of BC patients in the training set. (E) The heatmap of 7 CRLs in the training set. (F) The distribution plots of the risk score 
in the testing set. (G) The survival status of BC patients in the testing set. (H) The heatmap of 7 CRLs in the testing set. (I) The distribution plots 
of the risk score in the entire set. (J) The survival status of BC patients in the entire set. (K) The heatmap of 7 CRLs in the entire set. 
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Development of the nomograph 

 

Subsequently, we conducted Cox regression analyses to 

determine the independent prognostic parameters for 

BC patients. In the training set, the univariate Cox 

analysis indicated age (P < 0.001), AJCC stage (P < 

0.001), and risk score (P < 0.001) were significantly 

associated with the OS. Further multivariate Cox 

analysis suggested that age, AJCC stage and risk score 

remained significant (Figure 9A). A similar result was 

acquired with the same technique from the testing set 

(Figure 9B). The above results demonstrated that 

prognostic signature was an independent prognostic 

predictor for OS in patients with BC. 
 

Based on the Cox regression analyses, the clinical 

nomogram was developed using three independent 

prognostic factors as parameters in the training (Figure 

9C) and the testing sets (Figure 9D). Each factor was 

assigned a score in proportion to its risk contribution to 

survival, and the total score could be accordingly 

calculated. The calibration chart of the nomogram 

showed fairly consistent in predicting OS of the 

nomogram with the observing 1-, 3- and 5-year results 

in both sets (Figure 9E, 9F). In addition, the result of 

DCA demonstrated this clinical nomogram owned good 

net benefits in predicting the prognosis in both sets 

(Figure 9G, 9H). 

TMB and drug analysis 

 

We also explored the differences in TMB levels between 

the low- and high-risk groups. We found that the 5 most 

highly mutated genes were TP53, TTN, KMT2D, 

MUC16, and ARID1A in the high-risk group, which 

TP53, TTN, KMT2D, KDM6A, MUC16, and ARID1A 

in the low-risk group (Figure 10A, 10B). This difference 

was not statistically significant (P = 0.077), although 

considerably high levels of TMB were observed in the 

high-risk group (Figure 10C). Importantly, we noticed a 

remarkable difference in the survival analysis of TMB 

between the low- and high-risk groups (Figure 10D). 

High TMB had a longer survival time than low TMB (P 

= 0.004). Meanwhile, there was a statistically significant 

difference in the combined analysis of TMB and patient 

risk (Figure 10E, P < 0.001). 
 

Subsequently, potential anti-tumor drugs were screened 

through the algorithm from the “oncoPredict” R 

package. We calculated the IC50 of common agents in 

the low- and high-risk groups and found that patients in 

the high-risk group were significantly more sensitive to 

gemcitabine, KRAS (G12C) inhibitor-12, linsitinib, 

navitoclax, nilotinib, palbociclib, rapamycin, sorafenib, 

and temsirolimus (Figure 11A), while AZD8186, 

cisplatin, dasatinib, erlotinib, KU-55933, luminespib, 

sapitinib, and trametinib had higher IC50 values in the 

 

 
 

Figure 6. Prognosis value of the prognostic signature. (A–C) Kaplan–Meier survival curves of BC patients in the training, testing, and 
entire sets. (D–F) ROC analyses in the training, testing, and entire sets. 
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low-risk group (Figure 11B). These findings showed 

that low- and high-risk group had the corresponding 

drug susceptibility patterns, suggesting that the risk 

score might distinguish more suitable patients to receive 

appropriate chemotherapies. 

 

Exploration of immunological features and 

immunotherapy response 

 

To investigate the profile of immune infiltration in BC, 

the relationship between risk score and immune cell 

infiltration was estimated using 7 algorithms. The 

heatmap showed that a considerable number of immune 

cells had elevated expression in the high-risk group than 

in the low-risk group (Figure 12A) We quantified the 

enrichment level of 13 immune cells and 16 immune 

functions for each patient using a ssGSEA algorithm 

(Figure 12B–12D). Significant differences in all 29 

immune infiltrating signatures were found between the 

two groups, and the higher expression occurred in the 

high-risk group. Consistently, the high-risk group also 

represented a higher immune score, stromal score, and 

ESTIMATE score and lower tumor purity (Figure 12E–

12H). Taken together, these results suggested the 

prognostic signature might be related to the tumor 

immune microenvironment. Given the important clinical 

advances of immune checkpoint inhibitor (ICI) therapy in 

various tumors, an assessment was done to evaluate the 

 

 
 

Figure 7. Kaplan–Meier survival curves of the low- and high-risk groups in different subgroups of clinical parameters. (A) age, 

(B) gender, (C) grade, (D) AJCC stage, (E) T stage, (F) N stage, (G) M stage. 
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distribution of 47 ICI–relevant genes between two 

groups. The expression levels of many ICIs were 

markedly up-regulated in the high-risk group than  

those in the low-risk group (Figure 12I). In addition, BC 

patients with a low-risk score had a higher TIDE  

score than those with a high-risk score (Figure 12J,  

P = 0.0011). A higher TIDE score represents higher 

possibility of immune escape, indicating less benefit from 

 

 
 

Figure 8. Heatmap of the clinical relevance and GSEA. (A) Heatmap of the distribution of clinical features and expression of 7 CRLs 

between two groups. (B–E) Differential expression analysis of risk score in patients with different clusters, AJCC stage, T stage, and N stage. 
(F) GSEA showed the significantly enriched KEGG gene sets in the high-risk group. (G) GSEA showed the significantly enriched Hallmark gene 
sets in the high-risk score. ** P<0.01,*** P<0.001. 
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immunotherapy. Taken together, these findings revealed 

that ICI therapy might be a potentially effective 

therapeutic modality for the high-risk group. 

 

DISCUSSION 
 

BC is one of the most common cancers worldwide, 

whose morbidity and mortality are increasing in recent 

years [5]. The issues of tumor recurrence, malignant 

behavior, and drug resistance continue to be a challenge 

in the therapeutic and prognostic management of  

BC [31]. There is considerable urgency to construct 

precise predictive methods to promote the prognosis 

and treatment of BC. 

A recent study reported that in addition to directly 

targeted cytotoxicity caused by the dysregulation of 

copper homeostasis, alteration in intracellular copper 

levels may contribute to cancer initiation and progression 

[32]. Cuproptosis is an emerging programming form of 

cell death that differs from other known death modes, 

which has been proven to be involved in mitochondrial 

respiration and the TCA cycle [13]. Growing evidence 

supports this notion that dysregulated copper homeostasis 

could influence tumor growth and progression [12],  

and copper exhibits an essential characteristic in tumor 

immune response and antitumor therapy [33, 34]. 

LncRNA expression is the most pervasive transcriptional 

alteration in cancer to a recent survey of transcriptome 

 

 
 

Figure 9. Development of a nomogram for predicting the prognosis of BC patients. (A, B) Uni- and multi-variate Cox regression 
analysis of the clinical parameters in the training and testing sets. (C, D) Nomogram for predicting the 1-, 3-, and 5-year OS of BC patients in 
the training and testing sets. (E, F) Calibration curves of nomogram in the training and testing sets. (G, H) DCA of nomogram in the training 
and testing sets. 
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studies of human cancers [35]. LncRNAs have been 

found to serve significant roles in tumorigenesis [17]. 

However, until now little is known about the role of 

CRLs in BC. 

 

To our knowledge, no previous data on the correlation 

between CRLs and biological and clinical features in 

BC have been reported. In this study, we first described 

the expression pattern, mutation landscape, and 

functional annotation of CRGs in BC. In agreement 

with prior studies, most of the CRGs were altered in 

BC, including ATP7B [36]. Meanwhile, the functional 

annotation revealed that these genes were significantly 

associated with coenzyme metabolic process, 

mitochondrial matrix, citrate cycle (TCA cycle), and so 

on [13, 37, 38]. 

 

We then identified 466 CRLs according to the co-

expression analysis. 17 CRLs related to the prognosis of 

BC patients were retained for subsequent analysis. Two 

distinct subtypes, that is, cluster1 and cluster2, were 

determined based on 7 prognostic CRLs in BC via 

consensus clustering. The cluster subtype affected the 

prognosis and tumor grade and was associated with PD-

L1. Among them, cluster1 exhibited a poorer prognosis 

and higher expression of PD-L1, suggesting those 

patients acquire much more benefit. 

 

Increasingly, researchers have developed multiple-

marker models to assess outcomes of patients with 

tumors. Meanwhile, the predictive signature based on 

CRLs has become a hotspot for recent research. Mo  

et al. [39] developed a signature that may serve as a 

marker for prognosis prediction for lung cancer, and the 

cuproptosis-related ceRNA regulatory axis might 

contribute to gene therapy. Xu et al. [40] have 

developed a signature containing 10 CRLs to help 

evaluate the prognosis and molecular profile of clear 

cell renal cell carcinoma. However, the prognostic value 

of CRLs in BC remains to be studied. 

 

To evaluate the outcome more accurately and promote 

treatment decisions for BC patients, we constructed the 

prognostic signatures based on 7 CRLs using LASSO 

regression analysis. Among them, there is evidence that 

the expression pattern of AC073534.2 may indicate its 

role in acute myeloid leukemia and was associated with 

a favorable prognosis [41]. RAP2C-AS1 has been 

reported to be highly expressed in esophageal cancer 

and associated with an unfavorable prognosis [42]. 

 

 
 

Figure 10. The relationship between the signature and TMB. Top 20 mutation genes of BC for the low-risk (A) and high-risk (B) groups 

in waterfall plot. (C) TMB comparison between low- and high-risk groups. (D) Kaplan-Meier curves for high- and low-TMB groups. (E) Kaplan-
Meier curves for the patients stratified by TMB and risk scores. 
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A study revealed that AC087286.2 was determined as a 

risk factor with HR > 1 for gastric cancer [43]. In 

addition, AC099850.4 has also been reported in 

hepatocellular carcinoma and high-grade ovarian cancer 

[44, 45]. Liu et al. found AC006160.1 overexpression 

inhibited BC cell proliferation and invasive abilities, 

serving as a protective lncRNA for the progression of 

BC [46]. However, there were few reported cases in the 

literature regarding AC021321.1 and AC010328.1. 

 

Not only did we obtain the most accurate model, but 

also calculate the optimal cutoff values to distinguish 

the low- or high-risk group among BC patients. We 

further demonstrated a significant difference in survival 

time between the low-and high-risk groups. Obviously, 

patients in the high-risk group had a significantly poor 

prognosis. The ROC curves validated the performance 

of the prognostic signature. The stability and 

effectiveness of the signature were verified using 

stratification survival analyses. Surprisingly, we noticed 

that the risk score was closely linked with the cluster 

subtype. The risk score significantly varied between BC 

patients with different AJCC, T, and N stages, revealing 

risk score was positively linked with tumor progression. 

More specifically, the risk score increased as the disease 

progressed. GSEA results revealed the cancer-related

 

 
 

Figure 11. Drug sensitivity analysis. (A) BC patients with a high-risk score had a higher IC50 value of eight therapeutic drugs compared 
with patients with a low-risk score. (B) BC patients with a high-risk score had a lower IC50 value of many therapeutic drugs compared with 
patients with a low-risk score. 
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Figure 12. Analyses of immunological features and immunotherapy response. (A) Heatmap showed the expression of immune cells 
between low- and high-risk groups. (B) Enrichment levels of immune-related cells and types between the low- and high-risk groups in the 
heatmap. (C) Differences in immune cells between two groups. (D) Differences in immune function between two groups. (E–H) Comparison 
of immune score, stromal score, ESTIMATE score, and tumor purity between two groups. (I) Differences in immune checkpoint expression 
between two groups. (J) TIDE comparison between low- and high-risk groups. * P<0.05, ** P<0.01, *** P<0.001. 
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pathways were highly associated with the high-risk 

group, implying that cuproptosis participated in the 

development of BC. 

 

The results of the current study also demonstrated that 

signature-based risk score as well as age and AJCC 

stage were independent prognostic parameters for BC 

patients. Nomograms are effective tools for predicting 

tumor prognosis via a simple visualization format [47]. 

In clinical practice, an accurate prognostic nomogram 

can contribute physicians to make clinical reliable 

decisions or guide adjuvant therapy, especially  

in vulnerable patients with a high risk of death [48]. 

Next, we developed a nomogram using the various 

independent clinical factors (including risk score, age, 

and stage) to calculate the probability of OS in BC 

patients. Calibration curves and DCA showed good 

discriminative ability and potential clinical net benefit 

of this nomogram. These results strongly suggest the 

applicability of our nomogram. 

 

The immune response exerts a dominant role in cancer 

progression and could serve as a tumor therapeutic 

target [49]. TMB is a somatic biomarker proposed to 

predict response to immunotherapies in cancer [27]. 

This difference was not statistically significant (P = 

0.077), although considerably high levels of TMB were 

observed in the high-risk group. Importantly, we 

noticed a remarkable difference in the survival analysis 

of TMB between the low- and high-risk groups. These 

finding indicated that a high TMB is related to better 

outcome of immunotherapy, which was consistent with 

the precious studies [50]. We then analyzed the 

landscape of immune cell infiltration and found that 

high-risk patients possessed higher levels of M2 

macrophages, which was consistent with previous 

findings whereby high infiltration of M2 macrophages 

was associated with a worse prognosis in BC [51]. 

Interestingly, the infiltration of CD8+ T cells exhibited 

a positive correlation with a risk score, which conflicted 

with the antitumor effect of these components [52]. 

Checkpoint blockade immunotherapies have become an 

essential therapeutic strategy in various malignant 

tumors [53]. Our results showed that the high-risk group 

expressed higher levels of many immune checkpoint 

molecules, from which these patients may produce more 

clinical responses. In addition, we also noticed that  

BC patients with a low-risk score had a higher TIDE 

score than those with a high-risk score, indicating  

less benefit from immunotherapy. The above results 

suggest that cuproptosis was related to the immune 

status, and this signature may help predict the response 

to immunotherapy in BC. 
 

Urinary bladder instillation chemotherapy is one of the 

main treatments for bladder cancer [54]. We calculated 

the IC50 of common agents in the low- and high-risk 

groups and found that patients in the high-risk group 

were significantly more sensitive to gemcitabine, 

while cisplatin had higher IC50 values in the low-risk 

group. These findings are partially consistent with 

previous studies showing that gemcitabine-cisplatin 

chemotherapy is the standard first-line treatment for 

advanced bladder cancer [55]. Therefore, the risk score 

might distinguish more suitable patients to receive 

appropriate chemotherapies. 

 

Limitations exist for this study. First, this was a 

retrospective study, which harbors inherent limitations. 

Second, this prognostic signature was constructed and 

validated using the public database, multicenter large-

scale prospective research is required to evaluate its 

clinical practicality. Finally, further experiments were 

required to reveal the biological functions and concrete 

mechanisms of the CRLs. 

 

In summary, we constructed and validated a prognostic 

signature composed of 7 CRLs through a series of 

bioinformatics, demonstrating good accuracy in 

predicting the survival outcomes of BC patients. 

Importantly, this prognostic signature might contribute 

to characterizing the immune status of BC patients and 

predicting the effect of immunotherapy. Consequently, 

a comprehensive assessment of CRLs is of great 

clinical, implications and may provide a significant 

basis for future studies in BC patients. 
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