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INTRODUCTION 
 

According to the data on the global burden of cancer, 

breast cancer has emerged as the prevailing form of 

malignancy [1]. Breast cancer ranks among the most 

perilous forms of cancer in females [2]. The prognosis 

for patients with breast cancer has greatly improved due 

to the implementation and advancement of diverse 
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ABSTRACT 
 

Both angiogenesis and lncRNAs play crucial roles in the development and progression of breast cancer. Considering 
the unknown association of angiogenesis and lncRNAs in breast cancer, we aim to identify angiogenesis-related 
lncRNAs (ARLs) and explore their prognostic value. Here, based on analysis of The Cancer Genome Atlas database, 
the correlation between ARL and the prognosis and immune infiltration landscape of breast cancer were 
investigated. Eight ARLs (MAFG−DT, AC097478.1, AL357054.4, AL118556.1, SNHG10, MED14OS, OTUD6B−AS1, and 
CYTOR) were selected to construct the risk model as a prognostic signature. The survival rate of the patients in the 
high-risk group was lower than that in the low-risk group. The ARL signature was an independent prognostic 
predictor, and areas under the curve of 1-, 3-, and 5-year survival were 0.745, 0.695, and 0.699, respectively. The 
prognostic ARLs were associated with the immune infiltration landscape and could indicate the immune status, 
immune response, tumor mutational burden, and drug sensitivity of patients with breast cancer. Furthermore, 
qRT-PCR of clinical samples revealed that OTUD6B−AS1 was correlated with prognostic pathological parameters. 
OTUD6B−AS1 promoted breast cancer cell proliferation, wound healing, migration, invasion, and human umbilical 
vein endothelial cells tube formation. Mechanistically, OTUD6B−AS1 regulated EMT- and angiogenesis-related 
molecules. Taken together, we constructed and verified a robust signature of eight ARLs for the prediction of 
survival in patients with breast cancer, and the characterization of the immune infiltration landscape. Our findings 
suggest that OTUD6B−AS1 could be a therapeutic target for patients with breast cancer. 
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treatment approaches, including chemotherapy, 

radiation therapy, immunotherapy, and hormonal 

therapy. However, many patients with breast cancer still 

suffer relapse, metastasis, and resistance to therapy [3, 

4]. Therefore, the search for efficient early indicators or 

targets with possible clinical application will have a 

vital impact on the patients’ outcomes. 

 

Angiogenesis is necessary for the growth and 

metastasis of invasive tumors [5]. Development and 

metastasis of breast cancer heavily rely on angio-

genesis, which is not initiated during the early stages of 

tumor formation [6]. The angiogenesis state enables 

tumors to recruit new capillaries, which in turn supply 

oxygen and nutrients to neighboring cells, leading to 

rapid tumor growth [7]. In breast cancer, the level of 

angiogenesis is one of the prognostic markers [8]. 

Increased levels of growth factors involved in 

angiogenic process are associated with breast cancer 

aggressiveness [9, 10]. Furthermore, presence of micro-

vessels in invasive breast cancer could potentially act 

as an indicator for metastasis or recurrence [11]. 

Hence, it holds immense importance to further reveal 

the mechanism and clinical possibilities of angio-

genesis in breast cancer. 

 

LncRNAs (long noncoding RNAs) participate in many 

biological processes by regulating gene expressions, 

via transcriptional regulation, posttranscriptional 

regulation and epigenetic regulation of chromatin 

modification [12]. LncRNAs are involved in breast 

cancer carcinogenesis by regulating cell proliferation, 

invasion, migration, apoptosis, drug resistance and 

epithelial–mesenchymal transformation (EMT) [13]. 

Extensive research and clinical application of lncRNAs 

in breast cancer have revealed  that numerous lncRNAs 

show promise as biomarkers and targets, highlighting 

their significant potential [13]. Recently, the impact of 

lncRNA on tumor angiogenesis has drawn increasing 

attention [14]. It has been reported that lncRNAs affect 

angiogenesis in tumor development through different 

ways, including competing endogenous RNAs, 

signaling pathway regulation, expression-level regula-

tion of angiogenic factors and their receptors, 

recruitment of RNA polymerase, and gene transcription 

[15]. Certainly, the lncRNA SNHG1 has demonstrated 

its role as a regulator of M2 macrophage polarization 

by inhibiting STAT6 phosphorylation and controlling 

the growth of tumors and angiogenesis in breast cancer 

[16]. However, the impact of ARL (angiogenesis-

related lncRNA) signature on prognosis of breast 

cancer and immune microenvironment is not yet clearly 

clarified.  
 

Here, based on The Cancer Genome Atlas (TCGA) 

database, the correlation between ARL and prognosis of 

breast cancer was investigated. Afterwards, a risk model 

was developed based on eight ARLs to predict the 

prognosis of patients with breast cancer. The correlation 

of the risk score with immune infiltration landscape was 

analyzed. Potential molecular signaling pathways were 

also predicted. Exploration was conducted on the 

expression of OTUD6B–AS1 in breast cancer tissues, as 

well as its impact on cellular behaviors and regulation 

of signaling pathways associated with EMT and 

angiogenesis. 

 

RESULTS 
 

Identification of prognostic ARLs 

 

A grand total of 14,142 long non-coding RNAs were 

discovered from the breast cancer RNA-Seq matrix in 

FPKM format. Based on the “limma” script, the RNA-

Seq matrix of each breast cancer sample from the 

TCGA database was transformed from FPKM into 

TPM. To screen lncRNAs related to angiogenesis, 36 

angiogenesis genes were found and a Pearson 

correlation was conducted to screen the ARLs. In the 

end, a total of 464 lncRNAs linked to the process of 

angiogenesis were discovered (Figure 1A and 

Supplementary Table 1). Figure 1B demonstrated that 

there were 23 ARLs associated with overall survival 

(OS) through the analysis of univariate Cox 

regression. Then according to LASSO analysis, 20 

prognostic ARLs were chosen for further analysis 

(Figure 1C, 1D). 

 

Developing a risk model utilizing an ARL prognostic 

signature 

 

A new risk model was developed to assess the 

significance of the ARL signature in patients with breast 

cancer. The prognostic risk model was established by 

selecting eight ARLs through multivariate Cox 

regression. Based on the median value of risk scores, 

the patients were classified into high-risk group and 

low-risk group. The scatter plot demonstrated an inverse 

relationship between risk scores and survival time 

(Figure 2A). Overall survival (OS), progress free 

interval (PFI) and disease specific survival (DSS) time 

of patients with high-risk scores were shorter than low-

risk score patients (P < 0.001, Figure 2B and 

Supplementary Figure 1). Principal component analysis 

(PCA) showed a separation between high-risk group 

and low-risk group (Figure 2C). Heatmap visualization 

results demonstrated a significant different expression 

level of eight ARLs between the two groups. The low-

risk group revealed higher expression of MAFG–DT, 

AC097478.1, AL357054.4, AL118556.1, SNHG10, and 

MED14OS, but lower expression of OTUD6B–AS1 and 

CYTOR (Figure 2D).  
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Performance of the risk model in the training and 

validation cohorts 

 

To confirm the efficacy of the model, breast cancer 

patients were divided into training and validation 

cohorts at a ratio of 7 to 3. In the training cohort, the 

scatter diagram indicated a negative correlation between 

the patients’ survival time and the risk score (Figure 

3A). Kaplan-Meier analysis indicated that patients with 

high risk scores had a significantly lower overall 

survival rate compared to those with low risk scores (P 

< 0.001, Figure 3B). Similar trends were observed in the 

validation cohort as evidenced by scatter plot and 

Kaplan-Meier analysis (Figure 3C, 3D). The OS rate in 

high-risk group was notably lower compared to that in 

low-risk group (P = 0.025, Figure 3D).  

The ARL prognostic signature as an independent 

prognostic factor 

 

Cox regression analyses were performed to investigate 

whether the ARL prognostic model is an independent 

prognostic predictor of breast cancer. Univariate analysis 

showed that Age (hazard ratio [HR] = 1.033, P < 0.001), 

stage (HR = 2.104, P < 0.001), stage T (HR = 1.519, P < 

0.001), stage N (HR = 1.642, P < 0.001) and risk score 

(HR = 1.248, P < 0.001) were significantly related with 

OS of breast cancer (Figure 4A). Multivariate analysis 

showed that age (HR = 1.033, P < 0.001), stage (HR = 

1.900, P = 0.004), and risk score (HR = 1.220, P < 0.001) 

were independent prognostic predictors (Figure 4B). The 

ROC curve results showed that the AUC for risk score 

was 0.745 (Figure 4C). 

 

 
 

Figure 1. Identification of prognostic ARLs in breast cancer. (A) Sankey diagram showing the correlation between angiogenesis genes 

and lncRNAs. (B) Univariate Cox regression analyses suggest that 23 ARLs were significantly correlated with the overall survival (OS) of 
patients with breast cancer. (C, D) LASSO analyses showing the minimum lambda and coefficient of the prognostic ARLs. 
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Additionally, we constructed a new nomogram model 

integrating risk score and clinicopathological features 

(Figure 4D, 4E). The consistency index (C-index) of the 

nomogram was 0.737. The ROC curve showed AUC of 

0.745, 0.695, and 0.699 for 1-year, 3-year, and 5-year 

survival, respectively (Figure 4D, 4E). Calibration 

curves demonstrated that the survival rates predicted by 

the nomogram were consistent with actual survival time 

of breast cancer patients (Figure 4F).  

 

Subgroup analysis of the ARL risk model based on 

clinicopathological characteristics 

 

The patients were categorized into different subgroups 

according to age (< 65 vs. ≥ 65 years), N stage (N 0–1 and 

N 2–3), stage (stage I–II and stage III–IV), and T stage (T 

I–II and T III–IV). The Kaplan–Meier survival curve 

indicated that the high-risk patients group had a decreased 

overall survival rate in all the subgroups (Figure 5A–5H).  

 

Analysis of the landscape of immune cell infiltration 

(ICI) and evaluation of immune response 

 

The CIBERSORT algorithm was used to calculate the 

proportions of 22 immune cells based on risk 

stratification (Figure 6A) and it was shown that the 

fractions of naïve B cells, plasma cells, CD8+ T cells, 

CD4+ resting memory T cells, activated NK cells, 

resting mast cells, and monocytes were significantly 

higher in the low-risk group, whereas CD4 activated 

memory T cells, resting NK cells, follicular helper T 

cells, M0 and M1 macrophages were lower in the low- 

 

 
 

Figure 2. Risk model construction of the prognostic ARLs. (A) Distribution of risk score and scatter dot plot showing the correlation of 

survival time and risk score. (B) Kaplan–Meier survival curve suggests that the OS of patients in the high-risk group is significantly shorter than 
that in the low-risk group. (C) Principal component analysis (PCA) illustrates a significant difference between the low-risk group and high-risk 
group based on the ARL prognostic signature. (D) Heatmap showing the expression of the eight prognostic ARLs in the low- and high-risk 
groups. 



www.aging-us.com 7620 AGING 

risk group. According to the ssGSEA algorithm, the 

low-risk group exhibited significantly higher pro-

portions of immune cells (Figure 6B). To explore 

possible connections between predictive ARLs and 

immune cells, Pearson correlation analyses were 

employed. As displayed in Figure 6C, a clear 

correlation was observed between the eight prognostic 

ARLs and 22 immune cells, as the CIBERSORT 

 

 
 

Figure 3. Construction of the risk model in the training and validation cohorts. (A) The distribution of risk score and scatter dot plot 
shows the correlation of risk score and OS in the training cohort. (B) Kaplan–Meier survival curve suggests that the OS of patients with high-
risk score is significantly lower than those with low-risk score in the training cohort. (C) The distribution of risk scores and scatter dot plot of 
patients with breast cancer based on the ARL prognostic signature in the validation cohort. (D) Kaplan–Meier survival curve suggests that the 
OS of patients with high-risk score is significantly lower than those with low-risk score in the validation cohort. 
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Figure 4. Independent prognostic analysis of ARL. (A) Univariate Cox regression analysis shows the correlation between OS rate and 
clinicopathological parameters, including age, stage, T stage, N stage, and the ARL prognostic signature risk score. (B) Multivariate Cox 
regression analysis shows that age, stage, and risk score are independent prognostic predictors of patients with breast cancer. (C) Receiver 
operating characteristic curve (ROC) shows the areas under the curve (AUC) of the prognostic signature and clinical characteristics.  
(D, E) Nomogram construction of the prognostic signature and clinicopathological parameters to predict the 1-, 3- and 5-year survival rates of 
patients with breast cancer. Time-dependent ROC curve shows the 1-, 3-, and 5-year AUC. (F) Calibration curve reveals the accuracy between 
predictive power and actual survival of 1-, 3-, and 5-year survival. 

 

 
 

Figure 5. Kaplan–Meier survival curve of patients with breast cancer stratified by different clinicopathological 
characteristics. Kaplan–Meier survival curve analysis shows the OS rates of low- and high-risk patients with breast cancer stratified by (A, B) 

age < 65 vs. ≥ 65, (C, D) Stage I–II vs. Stage III–IV, (E, F) N 0–1 vs. N 2–3, (G, H) T I–II vs. T III–IV. 
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Figure 6. Immune infiltration landscape and immune response analysis of patients with breast cancer. The fraction of immune 
cells calculated by (A) CIBERSORT and (B) ssGSEA algorithms. (C) Correlation analysis of prognostic ARL and 22 types of immune cells.  
(D) Correlation analysis of prognostic ARL and 23 types of immune cells. (E) Immunophenoscore (IPS) analysis. (F) Tumor immune dysfunction 
and exclusion (TIDE) analysis. (G) Immune function score of patients in low-risk group and high-risk group. 
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algorithm determined. By the ssGSEA algorithm, we 

found that AC097478.1, SNHG10, and MED14OS were 

positively correlated with most immune cell subtypes 

(Figure 6D). Patients with breast cancer were further 

evaluated for their responses to anti-CTLA-4 immuno-

therapy and anti-PD-1 immunotherapy, taking into 

account the variations in the ICI landscape based on risk 

stratification. Promising response to anti-CTLA-4  

was observed in the low-risk category based on  

the immunophenoscore (IPS) findings (Figure 6E). 

Furthermore, TIDE analysis demonstrated that  

patients with breast carcinoma in the high-risk category 

exhibited a more favorable reaction to immuno-

therapeutic treatment (Figure 6F). Immune function 

analysis revealed low-risk patients were associated with 

higher immune scores in several terms, such as antigen-

presenting cell (APC) and CC chemokine receptor 

(CCR) (Figure 6G).  

 

Tumor mutational burden (TMB) analysis 

 

The TMB in high-risk patients exceeded that of the 

low-risk group (Figure 7A). Patients with high TMB 

were associated with worse OS (Figure 7B). The top 15 

mutation frequency genes in both groups were further 

investigated, and the mutation frequencies of PIK3CA, 

TP53, TTN, and CDH1 in the high-risk group were 

32%, 43%, 21%, and 7%, respectively (Figure 7C). 

Meanwhile, the mutation frequencies of PIK3CA 

(35%) and CDH1 (18%) were higher and those of TP53 

(20%) and TTN (13%) were lower in low-risk patients 

(Figure 7D). 

 

 
 

Figure 7. Tumor mutational burden (TMB) analysis of patients with breast cancer. (A) TMB analysis of patients in high-risk group 

and low-risk group. (B) Kaplan–Meier survival curve shows that the OS of patients with low TMB (L-TMB) is longer than that of patients with 
high TMB (H-TMB). (C, D) Mutational burden landscape of patients in high-risk group and low-risk group. 
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Drug sensitivity analysis 

 

The impact of risk stratification on antineoplastic drug 

sensitivities was further investigated. Patients with low-

risk stratification exhibited higher IC50s for the AKT 

inhibitor VIII, imatinib, paclitaxel, and pyrimethamine. 

Conversely, high-risk patients displayed higher IC50s 

for linsitinib and phenformin (Figure 8A–8F). The risk 

 

 
 

Figure 8. Drug sensitivity analysis of patients with breast cancer in low-risk group and high-risk group. The distribution of IC50 

values shows a significant difference between patients in the low-group and high-risk group among (A) AKT inhibitor VIII, (B) imatinib,  
(C) linsitinib, (D) paclitaxel, (E) phenformin, and (F) pyrimethamine. (G–L) Correlation analysis of risk score and drug sensitivity. 
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score showed significant negative correlations with 

AKT inhibitor VIII (r = –0.2, P = 5.2e-11), imatinib  

(r = –0.14, P = 7.1e-06), paclitaxel (r = –0.14, P = 2.7e-

06), and pyrimethamine (r = –0.17, P = 9.7e-09). 

However, it exhibited positive correlations with 

linsitinib (r = 0.22, P = 5.4e-13) and phenformin  

(r = 0.14, P = 7.3e-06) (Figure 8G–8L). 

 

Analysis of functional enrichment  

 

To investigate the mechanism of dysregulated genes in 

patients by risk stratification, functional enrichment 

analysis was performed. A volcano diagram showed the 

differentially expressed genes (DEGs) in the low-risk 

group and high-risk group (Figure 9A). The DEGs were 

enriched in the regulation of hormone levels (Figure 

9B). The result of KEGG enrichment indicated that the 

DEGs were enriched in the PPAR pathway, metabolism 

of xenobiotics by cytochrome P450, IL-17 pathway and 

etc. (Figure 9C). According to the GO enrichment 

analysis, it was observed that the DEGs played a role in 

the antimicrobial humoral response, hormone transport, 

and hormone secretion (Figure 9D). 

 

Association of OTUD6B−AS1 with invasive 

pathological parameters 

 

Among the eight prognosis-related lncRNAs, 

OTUD6B−AS1 was selected for further qRT–PCR 

validation because it showed the largest HR in the 

univariate Cox regression analysis and the largest 

coefficient in the formula of multivariate analysis. The 

 

 
 

Figure 9. Functional enrichment analysis of differentially expressed genes (DEGs) in low-risk group and high-risk group.  
(A) Volcano diagram shows the DEGs in low-risk group and high-risk group with the threshold setting at |log2FC| ≥ 0.5 and P-value < 0.05.  
(B) Enrichment analysis of DEGs. (C) The top 15 KEGG enrichment analysis and (D) top 10 GO enrichment analysis of DEGs. 
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expression level of OTUD6B−AS1 was even higher in 

breast cancer tissues with axillary lymph node 

metastasis (ALNM) than those without ALNM (Figure 

10A and Table 1). Moreover, higher expression of 

OTUD6B−AS1 was observed in breast cancer tissues 

with larger tumor size (T stage) (Figure 10B), and high 

expression of OTUD6B−AS1 was positively related 

with advanced tumor stage (Figure 10C and Table 1). 

OTUD6B−AS1 was upregulated to a greater extent in 

breast cancer tissues with high (≥ 30%) Ki-67 

expression compared with those with low (< 30%) Ki-

67 expression [17, 18] (Figure 10D). Interestingly, 

 

 
 

Figure 10. OTUD6B−AS1 was associated with aggressive pathological parameters and promoted breast cancer progression. 
Expression of OTUD6B−AS1 was positively correlated with axillary lymph node metastasis (A), larger tumor size (B), advanced tumor stage  
(C, one way ANOVA, P = 0.0096; stage I vs. II, P = 0.0050; stage I vs. III, P = 0.0162; stage II vs. III, not significant), and high Ki-67 expression (D). 
The OTUD6B−AS1 overexpression plasmid significantly upregulated OTUD6B−AS1 expression in breast cancer BT474 cells  
(E). OTUD6B−AS1 promoted breast cancer cell proliferation (F), wound healing (G, 40× magnification), migration, and invasion (H, I, 200× 
magnification). OTUD6B−AS1 increased the tube formation ability of HUVEC (J, 40× magnification). OTUD6B−AS1 decreased E-cadherin 
expression and increased the expression of HIF-1α, MMP1, SMAD5, Snail, Twist1, and VEGFA (K, cropped gels blots are used). 



www.aging-us.com 7627 AGING 

Table 1. Association between OTUD6B−AS1 expression and 
clinicopathological parameters in breast cancer. 

Variables n 
OTUD6B−AS1  

P value 
Low High 

Age (y)     

  ≤50 16 10 6  

  >50 20 8 12 0.315  

Tumor grade     

  1 2 1 1  

  2 18 10 8  

  3 16 7 9 0.790  

Tumor size (T stage)     

  T1 (≤2cm) 22 13 9  

  T2 (2<cmT≤5cm) 14 5 9 0.305  

Axillary lymph node metastasis     

  Negative 15 11 4  

  Positive 21 7 14 0.041  

N stage     

  N0 15 11 4  

  N1 17 6 11  

  N2 3 1 2  

  N3 1 0 1 0.108  

Tumor stage     

  I 8 8 0  

  II 24 9 15  

  III 4 1 3 0.005  

ER (estrogen receptor)     

  Negative 14 9 5  

  Positive 22 9 13 0.305  

PR (progesterone receptor)     

  Negative 15 9 6  

  Positive 21 9 12 0.500  

HER2     

  Negative 26 11 15  

  Positive 10 7 3 0.264  

Ki-67     

  Low (<30%) 17 10 7  

  High (≥30%) 19 8 11 0.505  

Molecular subtypes     

  Luminal A 5 4 1  

  Luminal B 14 3 11  

  HER2-enriched 10 7 3  

  Triple-negative 7 4 3 0.044  
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OTUD6B−AS1 expression was also correlated with 

molecular subtypes (Table 1). These results suggested 

that OTUD6B−AS1 is correlated with aggressive 

pathological parameters, which are associated with a 

poor prognosis. 

 

OTUD6B−AS1 promoted breast cancer progression 

and involved in EMT- and angiogenesis-related 

signaling 

 

To investigate the function of OTUD6B−AS1, the 

BT474 breast cancer cell line was transfected with 

OTUD6B−AS1 overexpression or empty plasmids. 

Confirmation of transfection efficiency was achieved 

through qRT-PCR analysis (Figure 10E). Over-

expression of OTUD6B−AS1 endowed breast cancer 

cells with increased proliferation (Figure 10F), wound 

healing (Figure 10G), and migratory and invasion 

(Figure 10H, 10I) abilities. HUVEC were cultured using 

the conditioned medium obtained from transfected 

BT474 cells. Subsequently, the tube formation assay 

was conducted. Figure 10J demonstrated that 

OTUD6B−AS1 enhanced the tube formation capacity of 

HUVEC. The expression of E-cadherin was reduced by 

OTUD6B−AS1, while the expressions of HIF-1α, 

MMP1, SMAD5, Snail, Twist1, and VEGFA were 

increased (Figure 10K). This indicates that 

OTUD6B−AS1 plays a role in controlling EMT and 

angiogenesis. 

 

DISCUSSION 
 

Despite the considerable enhancement in the survival 

rate of patients with breast cancer, the current outcome 

is still deemed inadequate [19]. Hence, it is highly 

important to identify potential biomarkers for the 

diagnosis and treatment purposes. Here we established 

and validated an eight-lncRNA signature that could 

forecast the prognosis of patients with breast cancer. 

Wang et al. reported a mitochondrial function-related 

lncRNA signature predicting survival in breast cancer, 

with AUC for 1-, 3-, and 5-year survival of 0.769, 

0.693, and 0.659, respectively [20]. Moreover, Yang et 

al. developed a lncRNA signature that predicts survival 

in breast cancer by considering endocrine resistance 

and immune factors, achieving AUC values of 0.710, 

0.649, and 0.672 at 1, 3, and 5 years, respectively [21]. 

Chen et al. developed a predictive lncRNA signature 

associated with necroptosis in breast cancer, achieving 

AUC values of 0.731, 0.643, and 0.641 for 1, 3, and 5 

years, respectively [22]. We believe that the 

performance of the current model is comparable or 

even better than the existing signatures. However, we 

could not exclude the possibility that the difference 

between the current model and existing signatures may 

be due to different study cohorts and/or algorithms. 

Comparison of the model with existing signatures in 

the same cohort may better address this issue, and more 

studies are needed in the future. 

 

Studies have demonstrated the participation of lncRNAs 

in the development of the tumor immune micro-

environment (TIME) in breast cancer [23]. Here, the 

risk model established based on ARL also reflected the 

TIME. Differences in the ICI landscape were observed 

in breast cancer patients by risk stratification. LncRNAs 

play a critical role in modulating the TIME and 

reshaping the immune landscape [24]. During tumor 

growth, the emergence of fresh blood vessels is 

triggered by factors like hypoxia-induced TIME 

induction, enabling the acquisition of necessary blood 

supply [25]. The crosstalk between abnormal tumor 

blood vessels and various immune cells determines the 

immune state in TIME [25]. Consequently, ARLs are 

worthy of further investigation in terms of regulating 

the TIME and breast cancer progression. Exploring the 

potential of lncRNAs could be a hopeful approach for 

treating breast cancer, given the growing significance of 

anti-angiogenic therapy. 

 

We also noticed enrichment of ARLs in PI3K-AKT, 

PPAR, and IL-17 pathways in breast cancer. Mutation 

of the PIK3CA gene leads to the activation of the PI3K 

pathway and chemoresistance [26]. Targeting the PI3K-

AKT pathway has shown promising preclinical activity 

in breast cancer [27]. PPAR has a significant impact on 

cellular differentiation, inflammation, metabolism of 

glycolipids, regulation of the immune system, and the 

development of tumors [28, 29]. There have been 

reports suggesting a strong correlation between PPAR 

and breast cancer at a biological level, however, the 

specific involvement of PPAR in breast cancer remains 

largely unexplored [30–32]. IL-17 also has a direct 

effect on tumor cells to alter gene profiles, making the 

cells more aggressive and favoring tumor growth in vivo 

[33]. Furthermore, in breast cancer, breast tumor cells 

induce γδ T cells to produce IL-17, which enables the 

formation of the CD8 + T cell-suppressive phenotype 

and creates an environment conducive to disease 

progression, in turn, leading to distant metastasis [34]. 

 

The newly developed eight-lncRNA signature contained 

several lncRNAs that have been reported to be related 

with breast cancer. CYTOR, also known as 

LINC00152, was upregulated in breast cancer [35] and 

related with advanced stage, lymphatic invasion, and 

shorter OS of patients [36]. CYTOR could facilitate 

breast cancer growth and tamoxifen resistance by 

targeting KLF5 and miR‑125a‑5p [37, 38]. Moreover, 

the lncRNA SNHG10 was revealed to suppress 

doxorubicin resistance in triple-negative breast cancer 

[39]. Additionally, MAFG−DT has emerged as a newly 
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identified biomarker that indicates the risk prognosis  

in breast cancer [40]. In line with our discoveries,  

the lncRNA OTUD6B−AS1 was found to enhance 

resistance to paclitaxel in breast cancer [41], as well as 

being associated with an unfavorable prognosis [42]. 

Among the eight prognosis-related lncRNAs in this 

study, OTUD6B−AS1 was selected for further research 

because it showed the largest HR value in the univariate 

and multivariate analyses. Our results proved that 

higher expression of OTUD6B−AS1 was positively 

related with larger tumor size, positive lymph node 

metastasis, more advanced tumor stage, and higher Ki-

67 expression in breast cancer, indicating poor survival 

of patients with breast cancer. OTUD6B−AS1 also 

promoted breast cancer cell proliferation, wound 

healing, migration, invasion, and HUVEC tube 

formation, and mechanistically regulated EMT- and 

angiogenesis-related molecules. However, the 

remaining lncRNAs identified in our prognostic 

signature have been poorly investigated. More 

comprehensive studies on functional relevance and 

molecular mechanisms remain to be performed in the 

future. Moreover, multicenter and large-scale studies 

should be conducted in order to validate the prognostic 

value of the eight–lncRNA signature. 

 

To sum up, we evaluated eight ARLs as a risk 

assessment tool for forecasting the prognosis and 

assessing the impact of immunotherapy in breast cancer. 

OTUD6B−AS1 potentially facilitated the advancement 

of breast cancer by regulating molecules associated with 

EMT and angiogenesis, indicating a potential target for 

therapeutic intervention in breast cancer. 

 

MATERIALS AND METHODS 
 

Transcriptome matrix and clinical data collection 

 

The TCGA database provided the clinical information 

and transcriptome matrix of breast cancer samples. To 

be considered eligible for sample screening, the samples 

needed to have both transcriptome expression data and 

prognostic information. Exclusion occurred for patients 

whose survival times were not available. For further 

analysis, a grand total of 1069 samples of breast cancer 

were incorporated. The gene matrix of each sample was 

extracted and merged using Perl scripts. 

 

Identification of ARLs 

 

The angiogenesis genes were collected from the 

hallmark gene sets (http://www.gsea-msigdb.org/). Perl 

scripts and the R package “limma” were used to extract 

the expression of angiogenesis-related genes. The ARLs 

were screened through Pearson correlation analysis. 

With the threshold of |correlation coefficient| > 0.3 and 

P < 0.001, 464 ARLs were subjected to subsequent 

analysis (Supplementary Table 1). 

 

Risk model construction of ARLs 

 

Univariate Cox regression was used to screen the 

prognostic ARLs using the R package “survival.” The 

LASSO algorithm was further employed to identify 

prognostic ARLs for breast cancer using the R package 

“glmnet”. Utilizing multivariate Cox regression, the 

prognostic ARLs were selected and a risk model was 

constructed. The risk score of each sample was computed 

using the formula: = (–3.605 × AL118556.1 expression) 

+ (–0.726 ×SNHG10 expression) + (–0.442 × MAFG−DT 

expression) + (–0.887 × AC097478.1 expression) + 

(0.665 ×OTUD6B−AS1 expression) + (0.388 × CYTOR 

expression) + (–0.469 × AL357054.4 expression) +  

(–1.38 × MED14OS expression). The coefficient in this 

formula represented the corresponding HR (hazard ratio) 

value of each lncRNA in the multivariate Cox regression. 

Kaplan–Meier survival curve was used to estimate the 

OS, PFI and DSS rate of patients in the low-risk and 

high-risk groups using the R package “survival”. 

Principal component analysis (PCA) was utilized to 

observe the separation pattern of patients in the two 

groups using the R package “ggplot2”. The breast cancer 

samples were randomly classified into training cohort 

and validation cohort at a ratio of 7:3 through the “caret” 

R script. 

 

Independence evaluation of the risk model 

 

Cox regression analyses were employed to investigate 

the independence of the risk model using the R package 

“survival”. A nomogram was constructed to estimate 

the 1-, 3- and 5-year survival using the R package 

“rms”. The prognostic performance of the risk model 

was validated through time-dependent ROC analysis 

using the R package “timeROC”. 

 

Immune cell infiltration landscape  

 

Using the “estimate” R package, we calculated the 

immune function score of breast cancer samples. The 

CIBERSORT algorithm was used to investigate the 

components of the immune infiltration landscape. Using 

“CIBERSORT R script v1.03”, 22-types immune cells 

were calculated. An ssGSEA algorithm was utilized to 

assess the components immune cells via the “GSVA” R 

package.  

 

Tumor mutational burden 

 

The TCGA database provided the tumor mutation data 

of breast cancer samples in “maf” format. The mutation 

data was obtained from the raw data using Perl scripts, 

http://www.gsea-msigdb.org/
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and a waterfall diagram was created using the R 

software package called “Maftools”. 

 

Immune response and drug sensitivity 

 

The TCIA database provided the immunophenoscore 

(IPS) outcome. The TIDE database was used to analyze 

Tumor Immune Dysfunction and Exclusion (TIDE). 

Drug sensitivity (IC50) was obtained via the Genomics 

of Drug Sensitivity in Cancer (GDSC) database, via the 

R package “pRRophetic”.  

 

Functional enrichment 

 

The R package “limma” was utilized in order to identify 

differentially expressed genes (DEGs) (|Fold Change| ≥ 

1.4 and P-value < 0.05) in the low-risk group and high-

risk group. Metascape database was used to enrich the 

mechanism of DEGs, and KEGG analysis was used to 

reveal the potential pathways using the “clusterProfiler” 

R package [43]. 

 

Tissue specimens 

 

Thirty-six breast cancer fresh tissues were collected at 

Qilu Hospital of Shandong University from February 

2022 to November 2022. All patients signed informed 

consent. This work was approved by the Ethics 

Committee of Qilu Hospital of Shandong University 

(KYLL-202111-021-1).  

 

RNA extraction and quantitative real-time PCR 

(qRT-PCR) 

 

RNAiso Plus (Takara, Code No 9109) was used to 

extract RNA in breast cancer tissues and cells. cDNA 

was synthesized with the Geneseed® II First Strand 

cDNA Synthesis Kit (Geneseed, GS0201-2). 

Geneseed® qPCR SYBR® Green Master Mix 

(Geneseed, GS0201-3) was used for qRT–PCR on an 

ABI 7500 Real-time PCR system, with GAPDH as a 

control. The expression of OTUD6B−AS1 was 

calculated using the 2-ΔΔCt method. The primer 

sequences are OTUD6B−AS1-F: 5′-AATTGGCTAG 

AGCGCCAGA-3′, OTUD6B−AS1-R: 5′-GGGGCGG 

TATTACGACCTTTT-3′; GAPDH-F: 5′-AGAAGGCT 

GGGGCTCATTTG-3′, GAPDH-R: 5′-GCAGGAGGC 

ATTGCTGATGAT-3′. 

 

Cell culture and transfection 

 

The BT474 cells (Cell Bank of the Chinese Academy of 

Sciences, Shanghai, China), were cultured in RPMI-
1640 (Gibco, Carlsbad, CA, USA). Human umbilical 

vein endothelial cells (HUVEC) were grown in 

Dulbecco’s Modified Eagle’s Medium (Gibco, Waltham 

MA, USA). All cells were incubated in 5% CO2 

incubators at 37° C. The OTUD6B−AS1 overexpression 

plasmid (pcDNA3.1-OTUD6B−AS1) synthesized by 

GENERAL BIOL (Anhui, China) was transfected using 

TurboFect (Thermo Fisher Scientific, Waltham, MA, 

USA). 

 

Cell counting kit-8 (CCK-8) assay 

 

Transfected cells were inoculated into 96-well plates at 

5,000 cells per well. The wells were then treated with 

10 μL CCK-8 reagent (Bestbio, Shanghai, China) at 24, 

48, 72, and 96 h and incubated at 37° C for 2 h prior to 

measurement. 

 

Wound healing and cell migration and invasion 

assays 

 

Using a 10-μL pipette tip, a layer of transfected cells on 

6-well plates was scratched. Photographs capturing the 

process of wound healing were taken at both 0 and 24 

hours. 

 

Cell migration and invasion were detected using 

Transwell inserts. The number of cells stained with 

crystal violet was counted under × 200 magnification. 

 

Tube formation assay 

 

HUVEC were placed in 96-well plates that had been 

previously coated with 50 μL of Matrigel. Sub-

sequently, 200 μL of conditioned medium from 

transfected BT474 cells was added. Tube formations 

were captured under a 40-fold magnification after a 

duration of 12 hours. 

 

Western blot 

 

For the western blot analysis, the antibodies used were 

as follows: E-cadherin (AF0131, 1:1000, Affinity), 

VEGFA (sc-57496, 1:200, Santa Cruz), SMAD5 

(ab40771, 1:5000, Abcam), MMP1 (A0568, 1:1000, 

Boster), HIF1α (sc-13515, 1:200, Santa Cruz), Snail 

(3099-1-AP, 1:1000, Proteintech), and Twist1 (5465-1-

AP, 1:1000, Proteintech), with GAPDH (AB0037, 

1:5000, Abways) used as an internal control.  

 

Statistical analysis 

 

Analysis was performed using R software (version 

4.1.0), Perl scripts, SPSS 20.0, and GraphPad Prism 5.0. 

Differences were analyzed using the Wilcoxon rank-

sum test between the two groups, or one-way analysis 
of variance (ANOVA) among three groups. 

Correlations between OTUD6B−AS1 expression and 

the clinicopathological features were explored using 
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chi-square test or Fisher’s exact test. P < 0.05 was 

considered as statistically significant. 

 

Availability of data and materials 

 

Data and clinical information involved in this paper 

were obtained from a public database (https://portal. 

gdc.cancer.gov/). We have provided a detailed GitHub 

project with the link: https://github.com/MarkPinky/ 

breast-cancer.git. The datasets used and/or analyzed 

during the current study are available from the 

corresponding author on reasonable request. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. Kaplan-Meier survival curve analysis suggested that the Progress Free Interval (PFI, A) and Disease Specific 

Survival (DSS, B) time of patients with high-risk score were shorter than those with low-risk score (P < 0.001). 
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Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Identified lncRNAs associated with angiogenesis. 

 


