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INTRODUCTION 
 

Cancer patients often have a dysfunctional immune 

system, which can be targeted through the use of 

distinct immune checkpoint inhibitors (ICI) [1]. ICI 

treatments have produced remarkable clinical effects 

and significantly extended survival outcomes for many 

cancer types, such as melanoma and non-small cell lung 
cancer (NSCLC) [1]. Although melanoma and NSCLC 

have different pathological and clinical characteristics. 

However, due to the widespread use of ICI treatments in 

these two cancer types and the availability of numerous 

publicly accessible datasets, they are always selected for 

immune-related research. The main objective of ICI 

treatment is to kill cancer cells by reactivating CD8 T 

cell-mediated immune functions [2]. However, despite 

the remarkable clinical treatment efficacy, only a 

smaller proportion of cancer patients are responsive to 

ICI agents, and highly sensitive indicators of response 
to such treatments are not yet utilized to evaluate 

clinical immunotherapeutic benefits [1, 3]. Therefore, 

there is a need to identify new and robust indicators for 
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ABSTRACT 
 

SET binding protein 1 (SETBP1) plays crucial roles in various biological processes; however, its involvement in 
cancer immune checkpoint inhibitor (ICI) treatments has never been studied. In this study, we collected a total 
of 631 melanoma and 109 non-small cell lung cancer (NSCLC) samples treated with ICI agents (i.e., anti-CTLA-4, 
anti-PD-1/PD-L1, or combination therapy). Additionally, we obtained their corresponding somatic mutational 
profiles. We observed that SETBP1 mutated (SETBP1-MUT) melanoma patients exhibited significantly 
prolonged ICI survival outcomes compared to wild-type patients (HR: 0.56, 95% CI: 0.38-0.81, P = 0.002). 
Consistently, an elevated ICI response rate was also noticed in the SETBP1-MUT group (42.9% vs. 29.1%, P = 
0.016). The Association of SETBP1 mutations with favorable immunotherapeutic prognosis and response was 
further supported by an independent NSCLC cohort (both P < 0.05). Additional immunological analyses revealed 
that favorable immune infiltration, tumor immunogenicity, and immune response circuits were enriched in 
SETBP1-MUT patients. Overall, our findings suggest that SETBP1 mutations may serve as a new biomarker for 
stratifying beneficiaries of ICI treatments in melanoma and NSCLC, which provides possible evidence for 
tailoring clinical immunotherapeutic strategies. 
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predicting ICI response and selecting patients who will 

benefit from such treatments. 

 

Previous evidence has demonstrated the critical  

roles that mutations in a single gene can play in  

cancer progression, immune regulation, and immune 

treatment response. For example, Feng et al. curated 

comprehensive somatic mutational profiles and clinical 

immunotherapy information from NSCLC patients and 

found that FAT1 mutations were predictive of favorable 

tumor immune infiltration and, importantly, better ICI 

treatment efficacy [4]. Consistently, the above 

observations were confirmed by a recent study on 

NSCLC patients [5]. Additionally, Zhang et al. observed 

that FAT1 mutations were linked to preferable ICI 

efficacy and immunogenicity in 109 NSCLC patients 

and validated these connections in 631 melanoma and 

1661 pan-cancer patients [6]. Furthermore, mutations in 

MUC16 [7], TP53 [8], COL3A1 [9], HSPG2 [2], POLE 

[10], PTPRT [11], and PPP6C [12] have been shown to 

positively connect with ICI therapeutic efficacy. 

Nevertheless, JAK1/2 [13] and B2M [13] mutations 

were found to be negatively associated with treatment 

response. 

 

SET binding protein 1 (SETBP1) is an important 

transcription factor that plays vital roles in multiple 

biological processes, such as DNA replication. Several 

previous studies have revealed that SETBP1 drives 

potential molecular mechanisms in hematologic 

malignancies. For example, Pacharne et al. reported that 

the upregulation of SETBP1 promoted FLT3-mutated 

acute myeloid leukemia [14]. Mutant SETBP1 

enhanced the activity of the MYC pathway to facilitate 

CSF3R-related myeloproliferative neoplasms [15], and 

the NRAS-driven MAPK signal was activated by 

mutated SETBP1 to accelerate aggressive leukemia 

[16]. In patients with myelodysplastic syndrome, 

SETBP1 mutations were identified as predicting a 

poorer survival outcome [17]. SETBP1 is also involved 

in other cancer types, such as ovarian and gastric 

cancers. For instance, a study showed that the SETBP1 

pathway was regulated by TRIM29 to promote the 

progression of ovarian cancer [18], and SETBP1 

overexpression acted as a poor prognosticator in gastric 

cancer [19]. Recent evidence has shown that SETBP1 

mediates immune regulation and anti-tumor immune 

infiltration [20]. However, to our knowledge, the 

clinical significance of SETBP1 mutations in cancer ICI 

treatments has not been elucidated. 

 

Cancer immunotherapy is commonly used for two cancer 

types of melanoma and NSCLC. In this integrated study, 
we collected genomic mutational data and clinical 

immune treatment information for both tumor types and 

performed multi-dimensional immunological analyses. 

Our findings suggest that SETBP1 mutations could be a 

promising biomarker in clinical cancer immunotherapies. 

 

RESULTS 
 

SETBP1 mutations in melanoma 

 

The detailed work process of this study was shown  

in Figure 1. Among the aggregated 631 melanoma 

samples, C > T substitution was the main mutational 

feature (Supplementary Figure 1). A waterfall plot was 

finished to show the concrete mutational pattern of 

SETBP1 mutations and their association with 

melanoma’s other driver genes and clinical factors 

(Supplementary Figure 1). A total of 84 (13.3%) of 631 

melanoma patients harbored SETBP1 mutations and 

SETBP1 mutation-produced changes in the amino acid 

level were illustrated in Supplementary Figure 2. 

 

SETBP1 mutations determined the sensitivity to ICI 

treatments in melanoma 

 

We first explored the ICI prognostic roles of SETBP1 

mutations in pooled melanoma patients. Kaplan-Meier 

results showed that SETBP1 mutated (SETBP1-MUT) 

melanoma patients exhibited a markedly improved ICI 

survival benefit than wild-type patients (median 

survival time: 49.3 vs. 25.6 months, Log-rank test  

P < 0.001; Figure 2A). A multivariate Cox regression 

model of SETBP1 mutations was conducted with 

several clinical factors adjusted; and the association 

was still significant (HR = 0.56, P = 0.002; Figure 2B). 

We also investigated the ICI prognostic roles of 

SETBP1 mutations in each melanoma cohort and the 

distinct therapeutic types used in this study 

(Supplementary Figures 3, 4, respectively). Further 

analyses revealed that a significant immunotherapeutic 

response advantage was found in the SETBP1-MUT 

subgroup (42.9% vs. 29.1%, Fisher exact test  

P = 0.016; Figure 2C). A multivariate logistic adjusted 

analysis consistently confirmed this result (OR = 0.61, 

P = 0.048; Figure 2D). 

 

Melanoma mutational burden according to SETBP1 

mutational status 

 

Tumor mutational burden (TMB) is recently reported as 

a hopeful indicator for cancer immunotherapies and its 

level is linked with tumor immunogenicity. We thus 

analyzed the connection of SETBP1 mutations with 

TMB in melanoma. Results showed that SETBP1-MUT 

patients harbored a significantly increased TMB than 

other patients (Wilcoxon rank-sum test P < 0.001; 
Figure 3A). Taking into account that tumor mutational 

signatures are deeply associated with the genomic 

mutational burden. We therefore extracted a total of 4 
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mutational signatures from melanoma mutational 

profiles (Supplementary Table 1). Subsequently, in a 

multivariate-adjusted model, we incorporated clinical 

confounders, identified mutational signatures, and 

genome maintenance gene alterations to elucidate the 

actual link between SETBP1 mutations and higher 

TMB. Consistently, the result was still significant (OR: 

7.48, P < 0.001; Figure 3B). Moreover, an increased 

neoantigen burden (NB) was also enriched in the 

SETBP1-MUT group (Wilcoxon rank-sum test P < 

0.001; Figure 3C). To further validate the above 

connections, we employed genomic and clinical data of 

melanoma samples from the Cancer Genome Atlas 

(TCGA). Expectantly, the significantly increased TMB 

and NB were both observed in the SETBP1-MUT 

patients (both P < 0.001; Figure 3D, 3E). 

 

SETBP1 mutations determined the sensitivity to ICI 

treatments in NSCLC 

 

Among the aggregated NSCLC samples, a total of 13 

(11.9%) of 109 had SETBP1 mutations. Kaplan-Meier 

results demonstrated that SETBP1-MUT NSCLC 

patients presented a markedly improved ICI survival 

benefit than wild-type patients (median survival time: 

NA vs. 6.3 months, Log-rank test P = 0.013; Figure 4A). 

A multivariate Cox regression analysis of SETBP1 

mutations was conducted with multiple clinical factors 

adjusted; and the connection still reached the statistical 

significance (HR = 0.32, P = 0.021; Figure 4B). We also 

explored the ICI prognostic roles of SETBP1 mutations 

in each NSCLC cohort and the distinct therapeutic types 

utilized in this study (Supplementary Figure 5). Further 

calculation indicated that an immunotherapeutic 

response advantage was noticed in such SETBP1-MUT 

group (61.5% vs. 31.5%, Fisher exact test P = 0.048; 

Figure 4C). A multivariate logistic adjusted analysis 

consistently validated this association (OR = 0.24,  

P = 0.041; Figure 4D). 

 

Genomic mutational burden analysis showed that 

SETBP1-MUT NSCLC patients harbored a significantly 

increased TMB (Wilcoxon rank-sum test P = 0.009; 

Figure 5A). A total of 3 mutational signatures  

were determined from NSCLC mutational profiles 

(Supplementary Table 2). In a multivariate-adjusted 

 

 
 

Figure 1. The detailed work process of this study. SETBP1 mutations were determined as a potential biomarker for melanoma and 

NSCLC clinical ICI treatments. 



www.aging-us.com 7479 AGING 

analysis, we incorporated clinical confounders, identified 

mutational signatures, and genome maintenance gene 

mutations to investigate the actual connection between 

SETBP1 mutations and elevated TMB. Consistently, the 

connection was still meaningful (OR: 5.75, P = 0.018; 

Figure 5B). Furthermore, an increased NB was also 

noticed in this SETBP1-MUT subgroup (Wilcoxon rank-

sum test P = 0.003; Figure 5C). Based on the genomic 

and clinical data of NSCLC samples from the TCGA, 

SETBP1-MUT patients also exhibited significantly 

enhanced TMB and NB (both P < 0.001; Figure 5D, 5E). 

Immunological properties behind SETBP1 mutations 

 

The aforementioned results have indicated that  

SETBP1 mutations determined the ICI treatment 

efficacy. Therefore, we further explored the potential 

immunological properties of SETBP1 mutations. In 

melanoma, based on the lymphocyte infiltration methods, 

we observed more infiltration of immune-promotion cells 

(e.g., CD8 T cells and M1 macrophages) and less 

infiltration of immune-suppressive cells (e.g., regulatory 

T cells) in the SETBP1-MUT subgroup (all P < 0.05; 

 

 
 

Figure 2. SETBP1 mutations determined the sensitivity to ICI treatments in melanoma. (A) ICI survival differences between 

SETBP1 mutated and wild-type subgroups. (B) A multivariate Cox regression analysis was performed to verify the connection between 
SETBP1 mutations and ICI prognosis. (C) ICI response rate differences of SETBP1 two subgroups. (D) A multivariate logistic regression analysis 
was performed to verify the connection between SETBP1 mutations and ICI response rate. 
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Figure 6A, 6B). Subsequently, a series of tumor 

immunogenicity and immunotherapeutic response-

relevant molecular signatures were presented with  

a heatmap according to SETBP1 mutational status 

(Figure 6C). Results revealed that the T cell-inflamed 

signature and IFNγ signature, which were previously 

reported to be predictive of a favorable anti-PD-1 

therapeutic response [21], were significantly enriched in 

the SETBP1-MUT patients (both P < 0.01). Moreover, 

gene set enrichment analysis showed that pro-

inflammatory related T cell receptor signaling pathway 

(FDR = 0.016; Figure 6D), B cell receptor signaling 

pathway (FDR = 0.014; Figure 6E), and chemokine 

signaling pathway (FDR = 0.007; Figure 6F) were all 

noticed in melanoma patients with SETBP1 mutations 

(Supplementary Figure 6). 

 

We also performed immune infiltration evaluation 

with CIBERSORT and Angelova et al. methods for 

NSCLC patients. Results demonstrated that pro-

inflammatory lymphocytes represented by CD8 T cells 

were significantly enriched in NSCLC patients  

with SETBP1 mutations (all P < 0.05; Supplementary 

Figure 7A, 7B). 

DISCUSSION 
 

SETBP1 acts as a transcription factor in biological 

mechanisms and involves in tumor progression and 

immune regulation. ICI agents have exhibited 

remarkable therapeutic efficacy in tumor clinical 

practice. Nevertheless, most patients could not respond 

to such treatments. Therefore, novel immunotherapeutic 

biomarkers are necessary. In this work, we determined 

that SETBP1 mutations were connected with genomic 

mutational burden, tumor immunogenicity, and 

importantly, ICI treatment sensitivity. The observations 

gleaned from this study may provide a new try for 

selecting cancer ICI biomarkers. 

 

In cancers, familiar biological functions for SETBP1  

are related to DNA replication. Recently, immune 

regulation roles have also been revealed by several 

studies. Carratt et al. reported that mutant SETBP1 

promoted the activity of the MYC pathway [15], which 

is involved in innate immunity [22], antiviral immune 

response [23], and immune escape [24]. Activation of 

the MAPK pathway was demonstrated to associate with 

the cancer immune microenvironment [25], inflammatory 

 

 
 

Figure 3. Melanoma mutational burden according to SETBP1 mutational status. (A) TMB level differences between SETBP1 

mutated and wild-type subgroups. (B) A multivariate logistic regression analysis was performed to confirm the connection between SETBP1 
mutations and TMB. (C) NB level differences of SETBP1 two subgroups. (D) TMB and (E) NB level differences between SETBP1 two subgroups 
based on the data from the TCGA cohort. 
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reprogramming [26], and immune regulation [27]. 

Mutated SETBP1 also enhanced the capacity of the 

MAPK signal to facilitate tumor progression [16]. The 

above observations further confirm the immunological 

implications of SETBP1 mutations and support the 

results derived from our study. 

 

To our knowledge, TMB is a promising determinant for 

cancer immunotherapeutic response [28, 29]. We also 

detected the distinct distribution of TMB in SETBP1 

two groups. Results showed that the SETBP1-MUT 

group exhibited an elevated TMB and this finding 

partially explains why SETBP1-MUT patients harbored 

a preferable ICI efficacy. Furthermore, we conducted an 

evaluation of the TMB distribution in distinct SETBP1 

mutational statuses among melanoma and NSCLC cell 

lines derived from the CCLE project. Our analysis 

encompassed 57 melanoma cell lines and 98 NSCLC 

cell lines. We consistently observed strong associations 

between SETBP1 mutations and increased TMB in  

both tumors (Wilcoxon rank-sum test P = 0.028 and 

0.013 for melanoma and NSCLC, respectively; 

Supplementary Figure 8A, 8B). Despite the powerful 

capacity of TMB, its accurate evaluation needs to 

perform whole-exome sequencing. And uncertain cut-

off values for TMB in distinct cancer types are another 

reason for limiting its wide application [28]. Based on 

the evidence from our study, sequencing only SETBP1 

mutation may be a surrogate for TMB to evaluate 

immunotherapeutic sensitivities. 

 

 
 

Figure 4. SETBP1 mutations determined the sensitivity to ICI treatments in NSCLC. (A) ICI survival differences between SETBP1 

mutated and wild-type subgroups. (B) A multivariate Cox regression analysis was performed to verify the connection between SETBP1 
mutations and ICI prognosis. (C) ICI response rate differences of SETBP1 two subgroups. (D) A multivariate logistic regression analysis was 
performed to verify the connection between SETBP1 mutations and ICI response rate. 
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In order to examine the possible immune infiltration and 

immune signature enrichment associated with SETBP1 

mutations, we utilized two immune infiltration methods 

and collected data on 14 immune-related signatures. 

Our results revealed that patients with SETBP1 

mutations demonstrated significantly elevated levels of 

CD8 T cell infiltration and greater enrichment of IFNγ 

signature. Previous research has indicated a positive 

correlation between CD8 T cells and IFNγ production. 

The favorable tumor immunogenicity of SETBP1 

mutations may explain the enhanced efficacy of ICI 

treatment. 

 

We investigated whether SETBP1 mutations mediate 

immune regulation and ICI treatment efficacy by 

regulating their own expression. Results from the CCLE 

cell lines showed a tendency of decreased SETBP1 

expression in the SETBP1 mutant group in both 

melanoma and NSCLC, although it did not reach 

statistical significance (Wilcoxon rank-sum test P = 

0.068 and 0.153 for melanoma and NSCLC, 

respectively; Supplementary Figure 9A, 9B). Further 

analysis based on samples from the TCGA cohort 

revealed significantly reduced SETBP1 expression in 

the SETBP1 mutant subgroup in both melanoma 

(Wilcoxon rank-sum test P = 0.034; Supplementary 

Figure 9C) and NSCLC (Wilcoxon rank-sum test P = 

0.008; Supplementary Figure 9D). These findings 

suggest that SETBP1 mutations may regulate their own 

expression to modulate immune functions and treatment 

efficacy in the context of ICI therapy. 

 

Previously several studies have revealed that SETBP1 

mutations were associated with poor survival outcomes 

in cancers [15–17]. We further investigated the role of 

SETBP1 mutations in melanoma and NSCLC patients 

who received conventional chemotherapies from the 

TCGA. Survival analysis indicated that there was no 

significant survival difference between SETBP1 two 

groups (multivariate Cox P = 0.143; Supplementary 

Figure 10A) in melanoma; however, a significantly 

preferable prognosis was observed in SETBP1-MUT 

NSCLC patients (multivariate Cox P = 0.043; 

Supplementary Figure 10B). In this work, SETBP1 

mutations were also identified to be linked with 

favorable ICI treatment outcomes in both melanoma 

and NSCLC. The above findings suggest that SETBP1 

mutations may be a predictive biomarker for cancer 

immunotherapies or chemotherapies, rather than a 

prognostic biomarker. 

 

 
 

Figure 5. NSCLC mutational burden according to SETBP1 mutational status. (A) TMB level differences between SETBP1 mutated and 

wild-type subgroups. (B) A multivariate logistic regression analysis was performed to confirmed the connection between SETBP1 mutations 
and TMB. (C) NB level differences of SETBP1 two subgroups. (D) TMB and (E) NB level differences between SETBP1 two subgroups based on 
the data from the TCGA cohort. 
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During oncogenesis, neoplastic cells not only evade  

the body’s regulatory mechanisms but also acquire the 

ability to perturb local and systemic homeostasis. 

Specifically, tumors produce a variety of molecules 

including cytokines, immune mediators, classical 

neurotransmitters, hypothalamic and pituitary hormones, 

biogenic amines, melatonin, and glucocorticoids, as 

demonstrated by human and animal models of cancer 

[30]. Through the release of these neurohormonal and 

immune mediators, tumors can manipulate the major 

neuroendocrine centers such as the hypothalamus, 

pituitary, adrenals, and thyroid, to regulate body 

homeostasis via central regulatory axes [30]. 

 

There are several limitations to our study. First, all 

relevant results were obtained based on the in-silico 

analysis, no in-depth experimental validations were 

performed. Second, the ICI-treated melanoma and 

NSCLC cohorts were integrated from multiple smaller 

datasets, which may bring some data biases. Third, only 

two cancer types were employed in assessing the 

immunotherapeutic efficacy of SETBP1 mutations, no

 

 
 

Figure 6. Immunological implications behind SETBP1 mutations in melanoma. (A) CIBERSORT algorithm revealed the 22 
lymphocyte infiltration differences between SETBP1 mutated and wild-type subgroups. (B) Angelova et al. method revealed the 31 
lymphocyte infiltration differences between SETBP1 two subgroups. (C) Heatmap illustration of enrichment scores of 14 immune-related 
molecular signatures according to SETBP1 mutational status. Signaling pathways of (D) T cell receptor signaling pathway, (E) B cell receptor 
signaling pathway, and (F) chemokine signaling pathway were enriched in SETBP1-MUT melanoma patients. * P < 0.05, ** P < 0.01. 
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additional cancers with both mutational profiles and ICI 

treatment information were acquired. Final, it is well-

established that the melanin pigment pathway plays a 

critical role in melanoma progression and occurrence, 

and can significantly impact tumor behavior, immune 

responses, and therapeutic efficacy [31]. Nevertheless, 

due to the absence of this data in our research, we could 

not perform a more in-depth analysis. Therefore, future 

studies that include relevant data are necessary to gain a 

deeper understanding of this pathway’s role in cancer 

development and treatment. 

 

In summary, by using clinically expanded ICI cohorts, 

we uncovered that SETBP1 mutations were associated 

with favorable tumor immunogenicity and determined 

the sensitivity to cancer immunotherapies, which 

provides a potential biomarker for evaluating cancer ICI 

treatment response. 

 

MATERIALS AND METHODS 
 

Collection of samples 

 

We comprehensively searched previously published 

studies and cancer-related databases to obtain cancer 

patients with both genomic mutational data and 

clinical ICI treatment information. Finally, a total of 

631 melanoma [32–39] and 109 NSCLC samples [40, 

41] reached the inclusion criteria and were employed 

in this study. All included samples were treated with 

ICI agents of anti-PD-1/PD-L1, anti-CTLA-4, or a 

combination. Detailed clinical characteristics for 

melanoma and NSCLC samples were illustrated in 

Supplementary Tables 3, 4, respectively. Taking into 

account that original mutation data were sequenced 

from distinct platforms, we therefore used the 

mutation annotation software of Oncotator to 

uniformly annotate them. For molecular mechanistic 

analysis and specific prognosis validation, we also 

acquired melanoma and NSCLC samples with 

transcriptomic and mutational data from the TCGA 

project (http://xena.ucsc.edu/). 

 

In the cellular level, we obtained a total of 57 cell  

lines for the melanoma and 98 cell lines for the 

NSCLC with both somatic mutational data and 

transcriptomic mRNA expression profiles from the 

Cancer Cell Line Encyclopedia (CCLE) project 

(https://depmap.org/portal/ccle/) to validate the relevant 

connections. 

 

Tumor infiltration lymphocytes 

 
CIBERSORT algorithm [42] was utilized to calculate 

the distinct infiltration abundance of 22 lymphocytes 

between SETBP1 mutated and wild-type subgroups. 

Besides, Angelova et al. evaluated the infiltration 

levels of 31 lymphocyte subtypes [43] by using  

812 feature genes (Supplementary Table 5). In this 

study, the above two methods were used to obtain 

comprehensive results. 

 

Tumor immunogenicity and immunotherapeutic 

response-related signatures 

 

Recently multiple studies have reported the molecular 

signatures associated with tumor immunogenicity and ICI 

treatment sensitivity. We curated a total of 14 signatures 

with detailed feature genes in Supplementary Table 6. 

 

Enrichment of dysregulated signaling pathways 

 

According to the SETBP1 mutational status, we 

partitioned included melanoma or NSCLC samples into 

two groups. Subsequently, transcriptomic differential 

analyses of the whole genome of divided two groups 

were performed by employing the DESeq2 R package 

[44]. All t values obtained from the differential analysis 

result were used to conduct gene set enrichment analysis 

(GSEA). Signaling pathways stored in the KEGG 

database were regarded as the background reference. In 

addition, to evaluate the detailed enrichment scores of 

collected Angelova et al. lymphocytes and immune-

related signatures, a single sample GSEA (within the R 

GSVA package [45]) was used based on their 

corresponding representative genes. 

 

Statistical analysis 

 

R software (version 4.2.1) was used in this study to 

achieve related analyses and figures. Tumor mutational 

signatures were determined according to a procedure 

reported by Kim et al. [46]. Waterfall plot was utilized 

to show mutational features of driver genes under the 

maftools package [47]. Heatmap illustration of 

molecular signatures in SETBP1 two subgroups was 

achieved using the pheatmap package. Wilcoxon rank-

sum test (Wilcoxon test) and Fisher exact test were 

performed to respectively calculate the connection of 

continuous and categorical variables with SETBP1 

statuses. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Mutational patterns of SETBP1 and common melanoma driver genes illustrated with waterfall plot. 

 

 

 
 

Supplementary Figure 2. Detailed amino acid changes induced by SETBP1 mutations in the integrated melanoma cohort. 
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Supplementary Figure 3. Kaplan-Meier survival analyses of SETBP1 mutations in individual ICI-treated melanoma cohorts. 

 

 

 
 

Supplementary Figure 4. Kaplan-Meier survival analyses of SETBP1 mutations in distinct ICI treatment types in melanoma. 
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Supplementary Figure 5. Kaplan-Meier survival analyses of SETBP1 mutations in individual ICI-treated NSCLC cohorts. 

 

 

 
 

Supplementary Figure 6. Significantly enriched signaling pathways in SETBP1 mutated subgroups in melanoma. Immune 
response pathways were highlighted with green. 
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Supplementary Figure 7. Immune infiltration associated with SETBP1 mutations in NSCLC. (A) Distinct infiltration of 22 
immunocytes of SETBP1 mutated and wild-type groups evaluated with CIBERSORT algorithm. Immunocytes highlighted with green are 
significantly differentially infiltrated. (B) Distinct infiltration of 31 immunocytes of SETBP1 two groups evaluated with Angelova et al. method. 
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Supplementary Figure 8. Associations between SETBP1 mutations and TMB in CCLE-derived cell lines for melanoma and 
NSCLC. (A) Distinct TMB distribution in SETBP1 mutated and wild-type subgroups based on 57 melanoma cell lines. (B) Distinct TMB 
distribution in SETBP1 mutated and wild-type subgroups based on 98 NSCLC cell lines. 
 

 
 

Supplementary Figure 9. Associations between SETBP1 mutations and its own expression. (A) Distinct SETBP1 expression in 

SETBP1 mutated and wild-type subgroups based on 42 melanoma cell lines. (B) Distinct SETBP1 expression in SETBP1 mutated and wild-type 
subgroups based on 92 NSCLC cell lines. (C) Distinct SETBP1 expression in SETBP1 mutated and wild-type subgroups based on TCGA 
melanoma samples. (D) Distinct SETBP1 expression in SETBP1 mutated and wild-type subgroups based on TCGA NSCLC samples. 
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Supplementary Figure 10. Prognostic capacities of SETBP1 mutations in (A) melanoma and (B) NSCLC patients derived from the TCGA 

project. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–6. 

 

Supplementary Table 1. Mutational activities of extracted 4 mutational signatures in the integrated melanoma 
cohort. 

Supplementary Table 2. Mutational activities of extracted 3 mutational signatures in the integrated NSCLC 
cohort. 

Supplementary Table 3. Clinical characteristics and immunotherapy information of 631 integrated melanoma 
samples received ICI treatment. 

Supplementary Table 4. Clinical characteristics and immunotherapy information of 109 integrated NSCLC 
samples received ICI treatment. 

Supplementary Table 5. Detailed genes used for ssGSEA in each infiltrated immune cell subtype. 

Supplementary Table 6. Detailed genes used for ssGSEA in each collected immune-related signature. 


