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INTRODUCTION 
 

Primary liver cancer is one of the most common 

malignancies in the world, ranking sixth in incidence 

among malignancies and third in mortality, causing 

more than 830,000 deaths each year [1]. Hepatocellular 

carcinoma (HCC) is a type of primary liver cancer that 
accounts for the vast majority of primary liver cancers  

[2]. Risk factors for HCC include chronic HBV or HCV 

infection, alcoholic liver disease, metabolic liver disease, 
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ABSTRACT 
 

Hepatocellular carcinoma (HCC) is a malignancy with a very high mortality rate. Because of its high 
heterogeneity, there is an urgent need to find biomarkers that accurately predict prognosis. Epithelial-
mesenchymal transition (EMT) is closely associated with frequent recurrence and high mortality of HCC. 
Therefore, it is necessary to comprehensively analyze the prognostic value and immunological properties of 
EMT gene in HCC. In our study, we performed bioinformatics analysis of the TCGA and ICGC liver cancer 
cohorts and identified the module genes of immune-associated EMTs (iEMT) by Weighted Gene Co-Expression 
Network Analysis (WGCNA). Further we used machine learning (support vector machines-recursive feature 
elimination and Lasso) to identify three central iEMT genes (ARMC9, ADAM15 and STC2) and construct 
iEMT_score. Subsequently, in the training and validation cohorts, it was demonstrated that the overall 
survival (OS) of patients in the high iEMT_score group was worse than that of patients in the low iEMT_score 
group. Based on this, we have constructed a nomogram that is easy for clinicians to use. In addition, our study 
explored differences in pathway enrichment, immunological properties, and sensitivity to common 
chemotherapy and targeted drugs in different subgroups of iEMT_score. Finally, we showed through in vitro 
experiments that knockdown of ARMC9 could significantly inhibit the proliferation, migration and invasion of 
HCC cells BEL7402. Taken together, our findings suggest that iEMT_score is an excellent biomarker for 
predicting prognosis and provide some new insights for personalized treatment of HCC patients. 
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and long-term exposure to aflatoxin and aristolochic acid 

[3]. In the early stages of HCC, treatment with therapeutic 

options such as surgical excision, local ablation, or liver 

transplantation may be available [3]. Unfortunately, most 

patients with HCC are found to be in advanced stages of 

the disease and treatment is limited. Even in developed 

countries, its 5-year survival rate is only 18% [4]. It is 

well known that HCC is a highly heterogeneous disease, 

and accurately predicting the prognosis of patients with 

HCC is still extremely challenging. Therefore, there is still 

an urgent need to find biomarkers that can accurately  

and individually assess and improve the survival time of 

patients with HCC. 

 
EMT is the process by which epithelial cells are converted 

into interstitial cells, resulting in high metastatic 

potential for epithelial cells. Current research suggests 

that EMT plays a vital role in tumorigenesis, metastasis, 

immune evasion, and treatment resistance [5, 6]. It has 

been reported that frequent recurrence and mortality of 

HCC are closely related to metastasis, and EMT is 

considered to be the key to metastasis [7]. Previous 

studies have shown that EMT-related genes are strongly 

associated with HCC. For example, CAPZA1 can inhibit 

EMT by remodeling the cytoskeleton, thereby reducing 

the transfer capacity of HCC cells [8]. NCSTN induces 

EMT by upregulating ZEB1, thereby facilitating the 

transfer capacity of HCC cells in vivo and in vitro [9]. 

Therefore, it is necessary to comprehensively analyze 

the EMT gene and construct new biomarkers to accurately 

predict the prognosis of HCC patients and guide clinical 

personalized treatment. 

 
The tumor microenvironment (TME) is often defined as 

a complex and rich multicellular environment that 

contains immune cells, stromal cells, extracellular 

matrix, and other secretory factors. Current studies have 

shown that TME plays a key role in tumor progression 

and modulating the efficacy of cancer treatment, and 

immunotherapies targeting TME have been widely used 

[10]. However, there is a lack of means to determine  

the composition of TME. The ESTIMATE algorithm  

is a bioinformatics method to infer TME, so as to obtain 

immune score and matrix score, thus solving the difficult 

problem of assessing TME status [11].  

 
In this study, we constructed a weighted gene co-

expression network between EMT genes and 

Immunescore using the WGCNA algorithm to obtain 

the modules most relevant to Immunescore, and then 

performed differential expression analysis of EMT 

genes using limma packets, and combined key module 
genes and differentially expressed genes to obtain  

EMT immune-related genes (iEMT). Machine learning 

SVM-REF was used to eliminate the features of IEMT, 

followed by LASSO regression analysis to narrow 

down key iEMT again and construct iEMT_score. 

 

So far, this is the first time that WGCNA and machine 

learning have systematically evaluated 1872 EMT genes 

and constructed a new iEMT_score. The model has 

excellent performance for predicting overall survival 

(OS) of HCC patients and was validated in TCGA  

and ICGA cohorts. More importantly, we constructed  

a nomogram based on iEMT_score, which can be  

used more easily by clinicians to predict the prognosis 

of HCC patients. Furthermore, we comprehensively 

analyzed the relationship between iEMT_score and 

immune microenvironment. Finally, we identified the 

oncogenic role of the key model gene ARMC9 in HCC. 

Taken together, our findings suggest that iEMT_score  

is an excellent biomarker for predicting OS in HCC 

patients and has the potential to guide personalized 

therapy. ARMC9 may be a therapeutic target for HCC. 
 

MATERIALS AND METHODS 
 

Data collection 

 

mRNA expression data and clinical data of HCC 

|tissues were downloaded from the TCGA database 

(https://portal.gdc.cancer.gov/repository). In addition, 

transcriptomic data and clinical data of HCC patients 

were downloaded from the ICGC database (https://dcc. 

icgc.org/projects/LIRI-JP). We excluded patients with 

missing data. Ultimately, the TCGA cohort included 

data from 50 paracancerous tissues and 374 cancers. 

The ICGC cohort included data from 232 HCC patients. 

 

Collection of EMT-related genes 

 

The EMT-related genes involved in this study were 

obtained from each of the three datasets. 1. 1184  

EMT-related genes were obtained from the dbEMT 2.0 

database (http://dbemt.bioinfo-minzhao.org/index.html); 2. 

“HALLMARK_EPITHELIAL_MESENCHYMAL_TRA

NSITION” gene set was downloaded from the MSigDB 

database [12] and 200 EMT-related genes were obtained. 

3. 815 EMT-related genes were obtained from the 

EMTome database (http://www.emtome.org/). Based on 

this, a total of 1872 EMT-related genes were obtained. 

Details of EMT genes are detailed in Supplementary 

Table 1. 

 

Weighted gene co-expression network analysis 

(WGCNA) 

 

WGCNA is a powerful bioinformatics algorithm that 

can efficiently integrate highly correlated genes into  

the same module and perform correlation analysis 

between modules and phenotypes [13]. First, based on 

https://portal.gdc.cancer.gov/repository
http://dbemt.bioinfo-minzhao.org/index.html
http://www.emtome.org/
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the mRNA expression profile of the TCGA-HCC cohort, 

we obtained Immunescore using the ESTIMATE 

algorithm and set a soft threshold with reference to  

a previous study [14]. Then, WGCNA analysis was 

performed to screen out the module genes significantly 

correlated with the Immunescore, and the module with 

the largest correlation coefficient was selected for 

further analysis according to the Pearson correlation 

coefficient. 

 
Construction and verification of iEMT_score 

 
The Support Vector Machine (SVM) is a machine 

learning method with powerful classification capabilities 

[15] that combine with recursive feature cancellation 

(RFE) to produce better classification performance 

[16]. In this study, we used SVM-REF to identify 

genes that play an important role in iEMT, resulting  

in 34 key genes. Finally, the overall survival (OS)  

of patients was included, and the machine learning 

LASSO algorithm was used to screen out the  

best iEMT affecting the OS of patients, based on 

which, iEMT_score was constructed. The iEMT_score 

formula is calculated as follows: iEMT_score = 

ARMC9 expression * ARMC9 coefficient + ADAM15 

expression * ADAM15coefficient + STC2 expression 

* STC2 coefficient. HCC patients are divided into high 

iEMT_score groups and low iEMT_score groups 

based on iEMT_score median values. The TCGA 

cohort serves as the training cohort and the ICGC 

cohort as the validation cohort. The difference in 

survival between the two groups of patients was 

compared using the Kaplan-Meier method. 

 
Construction of nomogram 

 
First, we included clinical data from patients (age,  

sex, tumor grade, and stage) and used both univariate 

and multivariate Cox to explore whether iEMT_score 

is an independent factor influencing OS in HCC 

patients. Based on this, we combined iEMT_score and 

clinical data to construct a nomogram that is easy  

for clinicians to use, and evaluated the accuracy and 

stability of the nomogram using ROC curves and 

calibration curves. 

 
GSEA, GO and KEGG analysis 

 
“c2.cp.kegg.v7.4.symbols.gmt” is downloaded from 

the MSigDB database [12]. The limma package 

analyzed the DEGs of the high iEMT_score group  
and the low iEMT_score group. GSEA, GO and 

KEGG analyzes were performed using the R packages 

“org.hs.eg.db”, “clusterProfiler” and “enrichplot”. 

Somatic mutation status analysis 

 

Somatic mutation information in TCGA-HCC samples 

is downloaded from the Genomic Data Commons  

Data Portal (https://portal.gdc.cancer.gov/). This data is 

processed by the R package “maftools” [17]. We finally 

showed the top 10 genes that are most prone to 

mutations in the high iEMT_score group and the low 

iEMT_score group, respectively. 

 

Tumor immunological features of iEMT_score 

 

We assessed tumor immunological features from two 

aspects. 1. The correlation of iEMT_score with 48 immune 

checkpoints and 24 human leukocyte antigen (HLA) 

family gene expression was explored. 2. We estimated 

the infiltration status of immune cells in the sample 

using seven algorithms, including XCELL, TIMER, 

QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT− 

ABS and CIBERSORT. These results are available on 

the TIMER2.0 database (http://timer.comp-genomics.org/). 

We used spearman to analyze the correlation of 

iEMT_score with these immune cells. 

 

Chemotherapy response prediction 

 

The “oncoPredict” package [18] was used to assess the 

IC50 values of HCC samples for 6 common targeted 

drugs and chemotherapy drugs. Then, we use the 

Wilcoxon test to analyze the IC50 difference between 

the high iEMT_score group and the low iEMT_score 

group of these 6 common drugs, and use spearman to 

analyze the correlation between iEMT_score and the 

IC50 of these common drugs. 

 

Cell culture and transient transfection 

 

HCC cell lines BEL7402 and HCCLM3 were a gift 

from Dr. Dai [19]. All cells were cultured in DMEM 

medium containing 1% penicillin-streptomycin and 10% 

fetal bovine serum. Lipofectamine 3000 transfection 

reagent (Thermo Fisher Scientific, China) was used for 

transient transfection according to the instructions. The 

sequence of si-ARMC9 is as follows, sense: CCUG 

GACUCCAGAGUUAAA; antisense: UUUAACUCUG 

GAGUCCAGG. 

 
qRT-PCR analysis 

 

RNAiso Plus reagent (Takara Bio, Japan) is used to 

extract total RNA from BEL7402 cell and HCCLM3 

cell. RNA was back transcribed to cDNA using the 

PrimeScript™ RT Master Mix (Takara Bio, Japan). 

Quantification was performed by SYBR Green qPCR 

Master Mix (Vazyme Bio, China) with β-actin as the 

internal control. Each PCR reaction is performed in 

https://portal.gdc.cancer.gov/
http://timer.comp-genomics.org/
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triplicate, with the average value used to calculate  

the expression level. The target gene primer sequences 

used in this study are described below: β-actin forward: 

CCCTGGAGAAGAGCTACGAG; β-actin reverse: GG 

AAGGAAGGCTGGAAGAGT; ARMC9 forward: GC 

AAGCCTACATCAGCAATGACC; ARMC9 reverse: 

CTTCTGCCAGTGACGCAAAAGC. 

 
Cell counting kit-8 (CCK8) assay and Transwell 

assay 

 

We seeded 2×103 BEL7402 and HCCLM3 cells in  

96-well plates and we seeded 4×104 BEL7402 cells  

and HCCLM3 in the upper chamber (Corning, USA) 

containing 250ul serum-free medium. The steps of 

CCK8 assay and Transwell assay are detailed in 

previous studies in our laboratory [20]. 

 

Statistical analysis 

 

All statistical analysis is performed on R software 

(Version 4.1.0). The Wilcoxon test is used for pairwise 

comparisons. The above sections describe more detailed 

statistical methods. P < 0.05 is considered statistically 

significant. 

 

RESULTS 
 

WGCNA identifies EMT immune-associated key 

module genes 

 

According to the “Materials and Methods” section, we 

identified 1872 EMT genes. In addition, we used the 

Immunescore to construct EMT genes-based co-

expression network and module for 374 HCC samples 

using the WGCNA algorithm. By defining module 

connectivity (Figure 1A), at least 100 genes in the 

module, Diss Thres is 0.25, and finally WGCNA 

algorithm determines 4 modules (Figure 1B). According 

to the thermal spectrum of the correlation between the 

module and the Immunescore (Figure 1C), the EMT 

gene correlation coefficient in the MEturquoise module 

was the highest (721 genes, Cor=0.5, p=2e-25). What’s 

more, we identified differentially expressed genes 

(DEG) of the EMT gene in 374 HCC tissues and  

50 adjacent normal tissues. As shown in Figure 1D, a 

 

 
 

Figure 1. Acquisition of iEMT gene. (A) Scale independence and average connectivity of the TCGA-HCC cohort. (B) Gene dendrogram and 

modules of the TCGA-HCC cohort. (C) Person correlation analysis between co-expressed gene modules and Immunescore in TCGA-HCC 
cohort. (D) Differential analysis volcano map of EMT genes. (E) Venn diagram of key module genes and DEGs. 
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total of 1028 genes were differentially expressed 

(|log2foldchange| > 1.5, P < 0.05), of which 919 genes 

were up-regulated and 109 genes expression were 

down-regulated. To screen for key genes, we screened 

375 common genes from the two sets of genes, as 

shown in the Wayne diagram (Figure 1E). As a result, 

these 375 genes were identified as immune-associated 

EMT genes (iEMT) for subsequent analysis. 

 

Machine learning constructs iEMT_score predicts 

prognosis in HCC patients 

 

First, to identify the most important genes in iEMT,  

we used SVM-REF for further screening. The results 

showed that the optimal feature subset contains 34 iEMTs 

(Figure 2A). Then, we included OS data, identified 

three central genes (ARMC9, ADAM15, STC2, Figure 

2B) using Lasso regression analysis, and constructed 

iEMT_score based on this. We then divided TCGA-

HCC patients into high iEMT_score group and low 

iEMT_score group based on median iEMT_score. The 

Kaplan-Meier curve shows that patients in the higher 

iEMT_score group had worse OS than those in the low 

iEMT_score group (Figure 2C). Interestingly, this result 

was replicated in the validation cohort ICGC-HCC, 

where patients with low iEMT_score had better OS than 

those with high IEMT_score (Figure 2D). In addition, 

we further determined the prognostic value of 

iEMT_score in HCC patients with different pathological 

features. The results showed that iEMT_score could not 

effectively predict the prognosis of HCC patients in 

women and patients with tumor stages I-II, but showed 

excellent prognostic ability in the rest of the groups. 

Collectively, these results suggest that our iEMT_score 

can effectively predict the prognosis of HCC patients 

(Figure 2E–2L). 

 

Construct nomogram based on iEMT_score 

 

First, we included clinical data from patients in the 

TCGA-HCC cohort. Univariate cox analysis showed 

that tumor stage and iEMT_score are risk factors 

affecting OS in HCC patients (Figure 3A). Multivariate 

Cox regression analysis confirmed that tumor stage and 

 

 
 

Figure 2. Machine learning construction iEMT_score and prognostic value verification. (A) SVM-REF algorithm to screen the optimal 
feature subset. (B) Lasso algorithm adjusts feature selection and constructs iEMT_score. (C) Kaplan-Meier analysis of iEMT_score subgroups in 
the TCGA-HCC cohort (training cohort). (D) Kaplan-Meier analysis of iEMT_score subgroups in the ICGC-Japan-HCC cohort (validation cohort). 
Kaplan-Meier survival curve analysis of iEMT_score in different ages (E, F), genders (G, H), tumor grades (I, J) and stages (K, L). 
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IEMT_score were independent risk factors affecting OS 

in HCC patients after adjusting for clinicopathological 

factors (Figure 3B). Subsequently, we constructed a 

novel nomogram combining clinical parameters and 

iEMT_score (Figure 3C). We first used ROC curve to 

check the AUC value of each indicator to predict OS in 

HCC patients, and the results showed that iEMT_score 

was significantly better than other clinical parameters 

(including tumor stage), and the nomogram constructed 

based on this further improved the accuracy of 

predicting OS in HCC patients (Figure 3D). Specifically, 

the nomogram predicts the AUC values of 1-year,

 

 
 

Figure 3. Construction of nomogram. (A, B) Univariate and multivariate Cox analysis of common clinical parameters and iEMT_score.  

(C) Nomogram combining common clinical parameters and iEMT_score. (D) ROC analysis of common clinical parameters, iEMT_score and 
nomogram. (E) ROC evaluation of the accuracy of the nomo map in predicting 1-year, 3-year and 5-year OS in HCC patients. (F) Calibration 
curves evaluating the robustness of nomo plots in predicting 1-, 3-, and 5-year OS in HCC patients. 
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3-year, and 5-year OS in HCC patients by 0.728, 0.719, 

and 0.722, respectively, demonstrating good predictive 

power (Figure 3E). In addition, the calibration curves 

showed that the nomogram predicted 1-year, 3-year, and 

5-year OS values for HCC patients were highly consistent 

with the actual values (Figure 3F). 

 

GSEA, GO and KEGG 

 

To further explore the mechanism of action that 

iEMT_score influences HCC, we divided patients into 

high iEMT_score group and low iEMT_score group  

by iEMT_score median and further performed GSEA.  

The results showed that the signaling pathways  

affected by the high iEMT_score group were mainly 

enriched in KEGG CELL ADHESION MOLECULES 

CAMS, KEGG CYTOKINE CYTOKINE RECEPTOR 

INTERACTION, KEGG ECM RECEPTOR 

INTERACTION, KEGG FOCAL ADHESION, KEGG 

LEISHMANIA INFECTION (Figure 4A). Signaling 

pathways affected by the low iEMT_score group were 

mainly enriched in KEGG DRUG METABOLISM 

CYTOCHROME P450, KEGG FATTY ACID 

METABOLISM, KEGG GLYCINE SERINE AND 

THREONINE METABOLISM, KEGG PEROXISOME, 

KEGG RETINOL METABOLISM (Figure 4B). In 

addition, we also analyzed the DEGs between the  

high iEMT_score group and the low expression  

group (|log2foldchange| > 1, P < 0.05), and we obtained 

a total of 428 DEGs. Based on these genes, we further 

performed GO analysis and KEGG analysis. GO 

analysis results showed that DEGs were mainly 

enriched in: response to xenobiotic stimulus, mitotic 

nuclear division and other BPs; collagen−containing 

 

 
 

Figure 4. GSEA of different iEMT_score subgroups. (A) Signaling pathways enriched by High iEMT_score group. (B) Signaling pathways 

enriched by Low iEMT_score group. (C) GO analysis for DEGs. (D) KEGG analysis for DEGs. 



www.aging-us.com 7153 AGING 

extracellular matrix, apical plasma membrane and 

other CCs; collagen binding, antioxidant activity  

and other MFs (Figure 4C). KEGG results showed 

that DEGs were mainly enriched in the response to 

xenobiotic stimulus, nuclear division, etc. (Figure 4D). 

 
iEMT_score is associated with the immunological 

properties of HCC 

 
First, we analyzed somatic mutation and identified  

the 10 genes with the most common somatic mutation 

in different iEMT_score subgroups. The mutation 

rates of TP53, TTN, CTNNB1 and MUC16 were 

higher than 15% in both groups. TP53 mutation was 

more common in the high iEMT_score group, where 

CTNNB1 mutation was more common in the low 

iEMT_score group (Figure 5A, 5B). Next, we also 

explored the correlation between iEMT_score and 

gene expression of 48 immune checkpoints and 24 

HLA families. According to Spearson analysis, the 

expression of 42 immune checkpoint genes and 24 

HLA family genes was positively correlated with 

iEMT_score, and 1 immune checkpoint gene expression 

(ADORA2A) was negatively correlated with iEMT_score 

(Figure 5C, 5D). Overall, iEMT_score was positively 

correlated with gene expression at most immune 

checkpoints and gene expression in all HLA families. 

In addition, we investigated the correlation between 

immune cell infiltration levels and iEMT_score  

as estimated by XCELL, TIMER, QUANTISEQ, 

MCPCOUNTER, EPIC, CIBERSORT−ABS and 

CIBERSORT. After integrating the results, the 

iEMT_score was positively correlated with immune 

infiltration of B cells, neutrophils, dendritic cells, 

cancer-associated fibroblasts, and M2 macrophages 

(Figure 5E). 

 
Chemotherapy sensitivity between different iEMT_ 

score subgroups 

 
Postoperative targeted therapy and chemotherapy are 

critical for HCC patients, and Sorafenib remains  

the first-line therapy for targeted therapy in patients 

with advanced HCC [21]. Therefore, we explored  

the correlation between Sorafenib IC50 value and 

iEMT_score, and the results showed that patients  

in low iEMT_score group were more sensitive to 

Sorafenib (Figure 6A, 6B). In addition, we also 

analyzed the sensitivity of other common targeted 

drugs and chemotherapy drugs to different iEMT_score 

subgroups. Patients in the low iEMT_score group  
were more sensitive to Oxaliplatin and Cisplatin,  

while patients with high iEMT_score were more 

sensitive to 5-Fluorouracil, Erlotinib and Tamoxifen 

(Figure 6C–6L). 

Knockdown of ARMC9 significantly inhibited the 

proliferation, migration and invasion of the HCC 

cell line HCC-LM3 

 

To gain insight into the in vitro function of CTSA in 

HCC, we characterized the oncogenic phenotype of 

BEL-7402 (si-ARMC9) by ARMC9 knockdown. The 

qPCR results showed that si-CTSA could significantly 

inhibit the expression of ARMC9 in BEL7402 and 

HCCLM3 cells (Figure 7A). We investigated the role of 

ARMC9 in the proliferation of BEL7402 and HCCLM3 

cells by the CCK8 method, and the role of ARMC9 in 

the migration and invasion of BEL7402 and HCCLM3 

cells using the Transwell method. CCK8 assay and 

Transwell assay analysis showed that reducing ARMC9 

impaired the proliferation (Figure 7B, 7C), migration 

and invasion (Figure 7D, 7E) abilities of BEL7402 and 

HCCLM3 cells. 

 
DISCUSSION 
 
In this study, for the first time, we comprehensively 

explored the potential roles of 1872 EMT genes in 

HCC, and constructed a novel prognostic model 

(iEMT_score) containing 3 iEMT genes using WGCNA 

and machine learning. According to the median value of 

iEMT_score, the patients were divided into high 

iEMT_score group and low iEMT_score group, and  

it was found that the OS of patients in the high 

iEMT_score group was significantly better than that  

in the low iEMT_score group. These results were 

validated in the TCGA and ICGC liver cancer cohorts. 

In addition, our findings showed that iEMT_score was 

an independent risk factor for predicting OS in HCC 

patients, and the ROC results showed that iEMT_score 

was more accurate in predicting OS in HCC patients 

than common clinical factors (age, gender, tumor grade 

and stage). These results indicate that iEMT_score has 

superior performance in predicting OS of HCC patients 

than common clinical factors, especially tumor stage. 

 
Nomograms are widely used to predict the prognosis of 

cancer patients and can meet our needs for comprehensive 

clinical and biological models [22, 23] and widely 

recognized by clinicians for its friendly digital interface. 

Although the iEMT_score we generated has a strong 

role in predicting the OS of HCC patients, there  

are still great shortcomings in considering biological 

characteristics alone. In order to make up for this 

shortcoming, we further constructed a new nomogram 

combined with clinical indicators. Facts have proved 

that nomogram has a stronger ability to predict OS  
of HCC patients than any clinical index or iEMT_score. 

 

It is worth noting that, compared with the prognostic 

models constructed by other researchers [24–26], we 
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Figure 5. Immunological properties of different iEMT_score subgroups. (A) Top 10 mutation-prone genes in High iEMT_score group. 
(B) Top 10 mutation-prone genes in Low iEMT_score group. (C) Correlation between iEMT_score and expression of 48 immune checkpoint 
molecules. (D) Correlation between iEMT_score and 24 HLA family gene expressions. (E) Correlation analysis between iEMT_score and 
immune cell infiltration. 



www.aging-us.com 7155 AGING 

construct iEMT_score with only 3 EMT genes, which  

is very convenient for clinical application. In the 

 study, ARMC9, ADAM15 and STC2 were identified as  

the central genes and used to construct IEMT_score. 

Previous studies have shown that high expression of 

ADAM15 is associated with poorer OS and promotes 

proliferation, migration and invasion of HCC cells  

in vitro [27]. STC2 is often highly expressed in HCC 

 

 
 

Figure 6. Correlation analysis between 6 commonly used drugs and iEMT_score. (A, B) Correlation analysis between Sorafenib 

and iEMT_score. (C, D) Correlation analysis between Oxaliplatin and iEMT_score. (E, F) Correlation between Cisplatin and iEMT_score 
analysis. (G, H) Correlation analysis between 5-Fluorouracil and iEMT_score. (I, J) Correlation analysis between Erlotinib and iEMT_score.  
(K, L) Correlation analysis between Tamoxifen and iEMT_score. 
 

 
 

Figure 7. Exploring the oncogenic role of ARMC9 in HCC. (A) Validation of the knockdown efficiency of si-ARMC9 in BEL7402 and 

HCCLM3. (B, C) The effect of ARMC9 knockdown on the proliferation ability of BEL7402 and HCCLM3 cells was evaluated by CCK8 assay.  
(D, E) The effect of ARMC9 knockdown on the migration and invasion abilities of BEL7402 and HCCLM3 cells was evaluated by Transwell assay. 
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patients, which promotes tumor progression through the 

AKT pathway and is associated with poor overall and 

disease-specific survival [28]. However, ARMC9 has 

not been reported in HCC. On the one hand, we verified 

the expression of three central iEMT genes in HCC 

tissues at the mRNA level and protein level. Research 

blanks on ARMC9 in HCC. Therefore, we further 

explored the biological role of ARMC9 in HCC. The 

results showed that knockdown of ARMC9 could 

significantly inhibit the proliferation, migration and 

invasion of the HCC cell line HCC-LM3. Indicating 

that ARMC9 may be one of the potential targets for the 

treatment of HCC patients. 

 

We explored the potential signalling pathways that 

iEMT_score affects HCC through GSEA analysis. The 

results showed that the high iEMT_score group was 

significantly enriched in KEGG CELL ADHESION 

MOLECULES CAMS, KEGG ECM RECEPTOR 

INTERACTION, KEGG FOCAL ADHESION, KEGG 

LEISHMANIA INFECTION and other cancer metastasis-

related pathways [29, 30]. This provides partial insights 

into how iEMT_score affects HCC progression and 

prognosis. Furthermore, we further understand the 

immunological properties of iEMT_score subgroups. 

First, we investigated somatic gene mutations in 

different iEMT_score subgroups. The largest difference 

in mutations between groups was that the TP53 gene 

was more common in the high iEMT_score group than 

in the low iEMT_score group (34% vs 18%). Previous 

studies have shown that TP53 is not only the most 

frequently mutated gene in HCC, but also can affect the 

progression and prognosis of HCC patients [31]. HCC 

patients with TP53 mutations have shorter OS and 

disease-free survival [32]. Therefore, consistent with 

our survival results, patients in the high iEMT_score 

group with high TP53 mutations had shorter OS than 

patients with low TP53 mutations. Second, previous 

studies have shown that immune checkpoint molecules 

and HLA family genes are potential predictive bio-

markers of response to immunotherapy [33, 34]. 

Therefore, this study explored the correlation of 

iEMT_score with 48 immune checkpoint molecules  

and 24 HLA family genes. The results showed that 

iEMT_score was correlated with the expression of most 

immune checkpoint molecules and all HLA family 

genes. Of course, including (PD-1, PD-L1, CTLA4  

and HLA-G) and other classic biomarkers [35–38]. It 

was closely related to traditional classic biomarkers, 

implying that iEMT_score is a potential predictive 

biomarker for ICI response. Finally, we further explore 

the crosstalk between iEMT_score and TME. We used 

7 common algorithms to comprehensively present the 
immune cell composition of HCC patient tumor tissue. 

By integrating and analyzing these results, we found 

that the immune infiltration of iEMT_score B cells, 

Neutrophil, Myeloid dendritic cell, Cancer associated 

fibroblast and Macrophage M2 was positively correlated. 

The role of B cells in HCC remains controversial,  

with several studies illustrating different results [39, 

40]. Elevation of Neutrophil generally correlates with 

worse OS in most cancers [41], including liver cancer 

[42]. Likewise, previous studies have shown that tumor 

progression-promoting CAF and Macrophage M2 are 

associated with poor prognosis in HCC patients [43, 

44]. These partly explain the reason why the prognosis 

of HCC patients with High iEMT_score is worse. 

 
The frequent emergence of drug resistance seriously 

impairs the survival time of HCC patients, which 

greatly troubles clinicians in their treatment options  

[21, 45]. On the other hand, the new use of old drugs 

has become an important strategy for the development 

of anticancer drugs due to its advantages of high  

drug safety and low cost. Therefore, a comprehensive 

analysis of drug sensitivity in HCC patients is necessary. 

In this study, we used “oncoPredict” to estimate the 

sensitivity of TCGA-HCC cohort patients to 6 common 

chemotherapy and targeted therapy drugs, including 

Sorafenib, Oxaliplatin, Cisplatin, 5-Fluorouracil, etc. 

The differences in the sensitivity of different iEMT_score 

subgroups to 6 chemotherapy and targeted therapy 

drugs were also explored, which provided some 

theoretical basis for the personalized treatment of HCC 

patients. 

 
In conclusion, our study constructed a robust prognostic 

model that included 3 iEMT genes. The model was 

shown to accurately predict OS in HCC patients in  

the training cohort (TCGA) and validation cohort 

(ICGC). In addition, we also explored the immuno-

logical properties of different iEMT_score subgroups, 

providing some new insights for the individualized 

treatment of HCC patients. Finally, the oncogenic role 

of ARMC9 in HCC was demonstrated. 
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SUPPLEMENTARY MATERIALS 

 

 

 

Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Details of EMT-related genes. 


