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ABSTRACT

Objective: The role of dual-specificity phosphatase 10 (DUSP10) has been investigated in several types of
cancer. Nevertheless, the underlying function of DUSP10 in lower-grade glioma (LGG) remains undetermined.
Methods: We entirely determined the expression features and prognostic significance of DUSP10 in numerous
tumors by implementing a pan-cancer analysis. Adjacently, we thoroughly inspected the correlation between
DUSP10 expression and clinicopathologic features, prognosis, biological processes, immune traits, gene
variations, and treatment responses based on the expression features in LGG. In vitro studies were conducted
to detect the underlying functions of DUSP10 in LGG.

Results: Unconventionally boosted DUSP10 expression and higher DUSP10 expression correlated with poorer
prognosis were discovered in various tumors, including LGG. Fortunately, DUSP10 expression was proven to be
an independent prognostic indicator of patients with LGG. Additionally, DUSP10 expression was tightly linked
to the immune modulation, gene mutations, and response to immunotherapy/chemotherapy in LGG patients.
In vitro studies illustrated that the DUSP10 was abnormally increased and pivotal for cell proliferation in LGG.
Conclusions: Collectively, we verified that DUSP10 was an independent prognostic indicator and may become a
novelty target of targeted therapy of LGG.

INTRODUCTION [4]. Currently, the most common clinical management
strategies, including surgery, chemotherapy, and
Gliomas are the most common brain tumors [1]. In line radiotherapy, are applied to treat LGG [5]. Nevertheless,
with the corresponding World Health Organization the number of clinical anticancer drugs used to treat
(WHO)-standard, gliomas are classified from grade | to patients with LGG has remained scarce, and the clinical
grade IV [2]. Importantly, grade Il and Ill gliomas are prognosis of LGG patients is still not satisfactory. Thence,
considered LGGs by the Cancer Genome Atlas it is imminently needed to examine novel molecular
(TCGA). LGGs could be classified on the basis of the signatures for the evaluation of the prognosis and
clinicopathologic features, such as the 1p/19q codeletion individualized treatment of patients with LGG.
and isocitrate dehydrogenase (IDH) mutation status [3].
Although LGGs patients possess better prognosis, 70% of DUSP10, also named MKP5, plays a vital part in cell
them will develop malignant progression within 10 years growth and proliferation [6]. DUSP10 protein exists as
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two Cdc25 homology regions: a specific 150 N-terminal
amino acid sequence and a C-terminal catalytic domain
[7]. Recent research has revealed that elevated DUSP10
expression was strictly associated with the malignant
development of several cancers, such as liver [8],
colorectal [9], breast [10], and pancreatic [11] cancers.
Nevertheless, the specific role of DUSP10 in patients
with LGG is still unknown. Thus, we implemented
bioinformatic analysis and in vitro studies verification
to inspect the underlying features of DUSP10 in LGG
patients. This research may be significant for evaluating
the survival and excavating effective therapies for LGG
patients.

Firstly, we initiated a pan-cancer analysis of DUSP10
and determined that the prognostic significance of
DUSP10 in pan-LGG was more valuable than in other
tumors. Thus, it was necessary to implement further
study to examine the prognostic significance of
DUSP10 in LGG. Subsequently, we utilized the three
independent LGG cohorts, including the TCGA,
Chinese Glioma Genome Atlas (CGGA), and
GSE61374 cohorts, to further inspect the prognostic
significance of DUSP10 in LGG. In line with the
median values of DUSP10 expression, we categorized
the LGG patients into high- and low-DUSP10
expression subtypes. Survival analysis verified that
high-DUSP10 subset possessed worse prognosis than
low-DUSP10 subset. Multiple studies have illustrated
that tumor immune microenvironment may be strongly
related to the survival of patients with tumors [12, 13].
Therefore, we estimated the connection between
DUSP10 expression and immunological traits
(including stromal and immune scores, tumor-
infiltrating immune cells [TIICs], and immune
checkpoint genes [ICPGs] expression), genomic
alternations, and responses to immunotherapy/
chemotherapy. Afterwards, we conducted the in vitro
studies to ascertain the anomalous expression and the
underlying functions of DUSP10 in LGG. In short, we
considered that DUSP10 was an independent prognostic
indicator and may play a critical part in the treatment of
LGG patients based on the above-presented
comprehensive analysis.

RESULTS
Pan-cancer analysis of DUSP10

The flow diagram of the research was exhibited in
Supplementary Figure 1. By contrasting the DUSP10
expression data of pan-cancer, we discovered that
DUSP10 was aberrantly increased in diverse tumors,
including LGG (Figure 1A). Forest charts exhibited that
increased DUSP10 expression was inversely connected
with overall survival (OS) in HNSC, KIRC, LGG,

LIHC, PAAD, THCA, UCS, and UVM (Figure 1B).
Additionally, the results of survival analysis also
demonstrated that higher DUSP10 expression tended to
demonstrate a worse prognosis in pan-LGG
(Figure 1C).

Afterwards, we excavated the interrelation between
DUSP10 expression and ICPGs expression in 33
tumors. The co-expression results testified that DUSP10
was tightly correlated with most of ICPGs in pan-LGG
(Figure 1D). Moreover, we inspected the connection
between DUSP10 expression and tumor mutation
burden (TMB) in 33 types of tumors. In COAD, LGG,
PAAD, SKCM, and THCA, DUSP10 expression was
positively linked to TMB, whereas in HNSC and LUSC,
it was inversely linked to TMB (Figure 1E).

Correlation between DUSP10 and clinicopathologic
features in LGG

In line with the median values of DUSP10 expression,
we isolated LGG samples into high-DUSP10 and low-
DUSP10 subsets and inspected the interrelation between
DUSP10 expression and clinicopathologic properties in
the three datasets. The results declared that up-regulated
DUSP10 expression was obviously linked to older age,
1p/19q non-codel, IDH wildtype, and MGMT
unmethylation in the TCGA dataset (Figure 2A, 2B).
Analogical outcomes were examined in CGGA
(Supplementary Figure 2A, 2B) and GSE61374
(Supplementary Figure 3A, 3B) datasets.

Elevated DUSP10 expression correlates with poor
prognosis of LGG

The Kaplan-Meier (KM) analysis was applied to
explore the differential OS prognosis between the two
subtypes in LGG patients. The results illustrated that the
OS of high-DUSP10 subset was apparently worse than
low-DUSP10 subset in the TCGA (Figure 2C), CGGA
(Supplementary  Figure 2C), and GSE61374
(Supplementary Figure 3C) datasets. Therefore, we
studied the association between DUSP10 expression,
risk score, and OS status in LGG patients and
discovered that up-regulated DUSP10 expression was
related to the higher risk score and worse OS status in
TCGA (Figure 2D), CGGA (Supplementary Figure 2D),
and GSE61374 (Supplementary Figure 3D) datasets.
The detailed proportion of survival status of LGG
samples was also examined in the TCGA (Figure 2E),
CGGA (Supplementary Figure 2E), and GSE61374
(Supplementary Figure 3E) datasets. Additionally, the
area under the curves (AUCs) for 1/3/5-year OS were
0.835, 0.781, and 0.763, respectively, in the TCGA
dataset (Figure 2F); 0.755, 0.796, and 0.755,
respectively, in the CGGA dataset (Supplementary
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Figure 2F); and 0.647, 0.736, and 0.648, respectively, in

GSE61374 dataset (Supplementary Figure 3F).

Independent prognostic significance of DUSP10 in

LGG

Univariate and multivariate Cox regression analyses
were executed to evaluate whether DUSP10 was an

independent prognostic factor in the three datasets. The
results indicated that DUSP10 expression, WHO grade,
IDH, age, and 1p/19g were independent prognostic
indicators of LGG patients in the TCGA cohort (Figure
2G, 2H). In the CGGA dataset, we detected that
DUSP10 expression, WHO grade, and 1p/19q were
independent prognostic indicators of LGG patients
(Supplementary Figure 2G, 2H). Similarly, in the
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Figure 1. Pan-cancer analysis of DUSP10. (A) Differential expression of DUSP10 in normal and cancer tissues. (B) Univariate Cox
regression analysis of DUSP10 expression in various tumors. (C) Kaplan-Meier analysis of DUSP10 in pan-LGG. (D) Co-expression of DUSP10
and ICPGs in different cancers. (E) Differential TMB in diverse cancers. *P < 0.05, **P < 0.01, *"*P < 0.001.
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GSE61374 cohort, DUSP10 expression, age, and Functional annotations of DUSP10
1p/19g were also considered independent prognostic

indicators of LGG patients (Supplementary Figure 3G, We ascertained differentially expressed genes (DEGS)
3H). Thence, DUSP10 expression may be an on the basis of the mean values of DUSP10 expression
independent prognostic indicator of LGG patients. (log2 (fold change)| >0.5 and P < 0.05). In total, we
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Figure 2. Clinical correlation analysis of DUSP10 in TCGA. (A) Association between DUSP10 expression and clinical traits of LGG in
TCGA. (B) Variance analysis of DUSP10 expression in different clinical features (including age, gender, grade, and 1p/19q, IDH, and MGMT
statuses) in the TCGA dataset. (C) Prognostic analysis of high-DUSP10 and low-DUSP10 subtypes in the TCGA dataset. (D) Distribution of risk
score, OS, and OS status of high-DUSP10 and low-DUSP10 subtypes in the TCGA dataset. (E) Different proportions of the living situation
between the two subtypes. (F) ROC curves representing the predictive role of the risk score in TCGA. (G, H) Univariate and multivariate Cox
analyses of DUSP10 expression and clinicopathological characteristics in TCGA. *P < 0.05, **P < 0.01, *"*P < 0.001.
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screened out 461 down-regulated and 1819 up-regulated
DEGs in the TCGA cohort and 637 down-regulated and
1954 up-regulated DEGs in the CGGA cohort.
Conspicuous DEGs in TCGA (Figure 3A) and CGGA
(Supplementary Figure 4A) cohorts were displayed in
the heatmap. Subsequently, these down-regulated and
up-regulated DEGs were exploited to conduct Gene
Ontology biological process (GO-BP) and Kyoto
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Figure 3. Biological functions of DUSP10 in LGG in TCGA. (A) DEGs between the low-DUSP10 and high-DUSP10 expression LGG
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in neutrophil activation, T cell activation, and response
to the drug (Figure 3B). Analogical results were
ascertained in the CGGA dataset (Supplementary Figure
4B). The KEGG analysis in the TCGA (Figure 3C) and
CGGA (Supplementary Figure 4C) datasets showed that
down-regulated DEGs were enriched in neuroactive
ligand-receptor interaction, and synaptic vesicle cycle,
and up-regulated DEGs were mostly enriched in
the PI3K-Akt and JAK-STAT signaling pathways,
leukocyte transendothelial migration, and cell cycle.

GSEA analysis was implemented to examine the
underlying molecular mechanisms between high-
DUSP10 and low-DUSP10 subtypes in LGG. The
results prompted that the high-DUSP10 subtype was
majorly linked to the JAK-STAT signaling pathway,
and leukocyte transendothelial migration in the TCGA
dataset (Figure 3D). Analogical outcomes were found in
the CGGA cohort (Supplementary Figure 4D).

Connection between DUSP10 and immune traits

The results of functional enrichment analysis exhibited
the underlying association between DUSP10 and
immune regulation in LGG. This urged us to estimate
the interrelation between DUSP10 and immune traits in
LGG. We adopted the ssGSEA algorithm to recognize
the abundance of 29 immune-connected indicators to
check the interrelation between DUSP10 expression and
immune infiltration. The immune-associated signatures
in low-DUSP10 subset were apparently lower than in
high-DUSP10 subset in the TCGA (Figure 4A) and
CGGA (Supplementary Figure 5A) datasets. The results
disclosed that DUSP10 expression was positively
related to the ESTIMATE, stromal and immune scores
but inversely linked to tumor purity in the TCGA
(Figure 4B) and CGGA (Supplementary Figure 5B)
datasets. Moreover, we conducted the CIBERSORT
algorithm to investigate the infiltration abundances of
THCs between the two subtypes. The infiltration
abundances of resting memory CD4* T cells,
macrophages M1, and naive B cells were positively
linked to DUSP10 expression, and macrophages M2,
naive CD4* T cells, and memory B cells were inversely
related to DUSP10 expression in the TCGA cohort
(Figure 4C, 4D). We discovered similar results from the
CGGA dataset (Supplementary Figure 5C, 5D).

Additionally, we also confirmed that DUSP10
expression was positively connected with the majority
of ICPGs in the TCGA dataset (Figure 4E). The detailed
correlation between DUSP10 and some celebrated
ICPGs (including PD1, PD-L1, CTLA4, CD28, CD80,
and CD86) was explored by conducting a correlation
analysis in the TCGA cohort (Figure 4F). The above-
mentioned outcomes were also determined in the

CGGA dataset (Supplementary Figure 5E, 5F).
Moreover, we examined the expression distribution of
DUSP10 among distinct cell types in LGG immune
microenvironment by exploiting GSE167960 dataset
and found that DUSP10 was most elevated in immune
cells (Supplementary Figure 6).

DUSP10
alterations

expression is associated with gene

An accumulating body of research has disclosed that
genomic variations might play a vital part in adjusting
immune infiltration and tumor immunity [14, 15]. Thus,
we employed copy number alteration (CNA) and
somatic mutations analysis to recognize gene variations
between low-DUSP10 and high-DUSP10 subsets. The
frequency of CNA, both amplification and deletion, was
obviously lower in low-DUSP10 subset than in high-
DUSP10 subset (Figure 5A, 5B). Whereafter, the
“waterfall” plot was created to exhibit that both low-
and high-DUSP10 expression subsets possessed specific
mutated genes. The results indicated that the variation
frequencies of IDH1 and CIC in low-DUSP10 subset
were higher than in high-DUSP10 subset (Figure 5C,
5D). Afterwards, we inspected the interrelation between
DUSP10 expression and TMB level in LGG and
detected that DUSP10 expression was positively
connected with the TMB level (Figure 5E, 5F). The
results exhibited that high-TMB subset owned worse
OS than low-TMB subset (Figure 5G). Next, we further
investigated the differential OS of distinct DUSP10
expression in the low- and high-TMB subsets and
discovered that higher DUSP10 expression and TMB
level owned worser OS in patients with LGG
(Figure 5H).

Relationship between DUSP10 expression and
treatment responses

We executed the TIDE algorithm to forecast the
reaction of LGG patients to immune checkpoint
blockers (ICB) therapy and discovered that the high-
DUSP10 subtype acquired better TIDE scores than the
low-DUSP10 subtype (Figure 6A). The DUSP10
expression in responders to ICB therapy was higher
than in non-responders (Figure 6B). Additionally, the
proportion of responders in low-DUSP10 subset was
also lower than in high-DUSP10 subset (Figure 6C).
Thus, DUSP10 could be a potential immunotherapy
target.

We investigated the association between DUSP10
expression and chemotherapeutics (such as PIK-93,
TGX221, AKT inhibitor VIII, MK-2206, bortezmib,
and MG-132) based on the results of functional
annotations to evaluate LGG patients with distinct
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DUSP10 expression in guiding chemotherapy. The
results testified that the high-DUSP10 subgroup was
related to lower inhibitory centration (IC50) in these
anticarcinogens (Figure 6D). It means that high-

In vitro experiments of DUSP10 in LGG

The protein expression levels of DUSP10 were
apparently higher in LGG tissues when compared to

DUSP10 subtype was more sensitive to these para-cancerous tissues (Figure 7A). Additionally, we
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DUSP10 in three LGG cell lines (including SW-1783,
SW-1088, and BT142) and a NHA cell line and
discovered that DUSP10 expression was distinctly
higher in the LGG cell lines when compared to the
NHA cell line (Figure 7B, 7C).

Subsequently, we inspected the interrelation between
DUSP10 expression and cell proliferation in LGG.

CCK-8 (Figure 7D) and colony formation assays
(Figure 7E, 7F) displayed that the proliferative capacity
of the SW1088 si-DUSP10 group was markedly
reduced when compared to the si-NC group. Mean-
while, downregulating DUSP10 expression resulted in
an obvious reduction in proliferation implemented by
EdU assays in SW1088 cells (Figure 7G, 7H). In
addition, we also observed that the cell cycle was
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strongly influenced by the downregulation of DUSP10
expression. After knocking down DUSP10 of SW1088
ells, the number of cells in the S phase was reduced and
the GO/G1 phase was elevated (Figure 71, 7J). These
results illustrate that DUSP10 play a crucial part in the
cell proliferation in LGG.

DISCUSSION

In spite of great progress has been obtained in LGG
surgery, radiotherapy, and chemotherapy, patients with

LGG still have poor clinical prognosis [16-18]. Since
the effect of traditional treatments for LGG patients
remains limited, there is clearly needed to investigate
the effective prognostic and therapeutic targets for these
patients. DUSP10, a member of the MKPs subfamily, is
a crucial factor in regulating cell proliferation. A
growing number of studies have elaborated that
increased DUSP10 expression may promote the
malignant progression of several cancers. Nevertheless,
the particular value of DUSP10 in patients with LGG
remains unknown. Thus, we entirely investigated the
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Figure 7. In vitro experiments verification of DUSP10 in LGG. (A) Western blot analysis of DUSP10 expression in LGG tissues and
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connection between DUSP10 expression, clinical
features, prognosis, biological functions, tumor
immunity, gene variations, and responses to immuno-
therapy/chemotherapy in LGG.

We employed the pan-cancer analysis of DUSP10 and
detected that higher DUSP10 expression was linked to
shorter survival time, higher ICPGs expression, and
higher TMB burden in pan-LGG. We implemented
survival analysis in the TCGA dataset to estimate the
prognostic significance of DUSP10 in LGG and found
that the high-DUSP10 subset owned poorer prognosis
when compared to the low-DUSP10 subset. The
proportion of OS status of LGG patients was also

CD8* T cell
CD4* T cell

Immune checkpoints

D Immunotherapy

investigated, and the results revealed that up-regulated
DUSP10 expression was powerfully connected with
inferior OS status. Receiver operating characteristics
(ROC) curves and AUC values were implemented to
validate the accurateness of DUSP10 in forecasting the
OS of LGG patients. Besides, Cox regression analyses
affirmed that DUSP10 was an independent prognostic
factor of LGG. Analogical results were discovered in
the CGGA and GSE61374 datasets.

GO-BP and KEGG analyses in the TCGA and CGGA
datasets elucidated that DUSP10 expression was
majorly associated with immune modulation, cell cycle,
PI3K-Akt and JAK-STAT signaling pathways.
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Figure 8. The underlying biological mechanisms of DUSP10 in LGG.
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Additionally, GSEA analysis explicated that the high-
DUSP10 subset was mainly linked to immune responses
and cancer-associated signaling pathways. Thus,
DUSP10 might promote the malignant progression of
LGG by activating the cancer-connected signaling
pathways.

The TME mainly included tumor cells, tumor-related
stromal cells, and immune cells [19]. Multiple studies
confirmed that TME played a pivotal part in the
malignant progression, prognosis, and immunotherapy
response of LGG [20, 21]. Therefore, it is necessary to
detect the connection between the DUSP10 expression
and TME in LGG. The ssGSEA algorithm was
employed to examine the difference in immune-
interrelated signatures between the two subsets in the
TCGA and CGGA cohorts. The ESTIMATE and
CIBERSORT algorithms were also implemented to
identify the composition of TME and TIICs in the two
subtypes. These results declared that DUSP10
expression was forcefully associated with the immune
infiltration in LGG. Moreover, the results of single-
cell analysis disclosed that DUSP10 was closely
interrelated with the LGG immune microenvironment.
Recently, immunotherapy has become a novel
treatment for tumors by activating specific immune
cells in the tissue microenvironment [22-24].
Particularly, ICB have become a new immunotherapy
drug to treat different types of tumors and provided
good curative effects [25-27]. Thence, we assessed the
connection between DUSP10 expression and ICPGs
expression in LGG patients and detected that DUSP10
expression was positively related to the expression of
some common ICPGs in the TCGA and CGGA
datasets. Importantly, we detected that ICB therapy
was more effective in high-DUSP10 subgroup than in
low-DUSP10 subgroup by performing the TIDE
algorithm. Additionally, the somatic mutation and
CNA analyses suggested that the high-DUSP10
expression subset owned higher TBM and CNA
burden than the low-DUSP10 expression subset. Thus,
DUSP10 might play a vital value in the immuno-
therapy of LGG patients. The underlying roles of
DUSP10 in LGG were displayed in Figure 8.

Currently, TMZ is the most commonly used in the
treatment of glioma patients. However, its efficacy
remains restrained. Thus, it is urgently needed to
examine the new therapeutic drugs for LGG patients.
The chemotherapeutics sensitivity analysis determined
that the high-DUSP10 subset was more effective to
chemotherapeutics, such as PIK-93, TGX221, AKT
inhibitor VIII, MK-2206, bortezmib, and MG-13, than
the low-DUSP10 subset. Hence, DUSP10 might
represent a potential predictor for the chemosensitivity
of patients with LGG.

By knocking down the DUSP10, we ascertained that the
LGG cell proliferation ability was significantly reduced.
Therefore, DUSP10 may be an effective target for
LGG treatment in the near future. However, DUSP10
might be not an optimal drug target because of the
formation of LGG involves activation of a variety of
oncogenes and signaling pathways. The best therapeutic
effect could be achieved only by systematically
assessing the LGG patient’s condition and developing
individualized treatment plan. Additionally, some
limitations existed in our research. Firstly, more
independent LGG cohorts should be included to check
the prognostic significance of DUSP10 in LGG.
Secondly, the specific functions of DUSP10 in LGG
should be detected by exploiting in vivo studies in the
future.

CONCLUSION

The study illustrated that DUSP10 was a powerful
prognostic factor and strongly related to cellular
proliferation in LGG. DUSP10 might become an
effectual target/therapeutic agent for patients with LGG.

METHODS
Data gathering and collating

The DUSP10 expression, survival, clinical, and TMB
data in 33 tumors were attained from the TCGA
database. Additionally, the DUSP10 expression data of
normal tissue was acquired from Genotype-Tissue
Expression (GTEX).

Adjacently, three independent LGG cohorts, TCGA,
CGGA (CGGA _325), and GSE61374 cohorts, were
employed in this research. The mRNA expression,
survival, and clinical data of LGG samples from the
three independent cohorts were obtained from TCGA,
CGGA, and Gene Expression Omnibus (GEO)
databases. RNA-seq expression data from TCGA and
CGGA cohorts in fragments per kilobase million
format, was transformed into transcripts per kilobase
million values and then transformed by log2. Similarly,
the robust multichip averaging analysis (RMA)-
processed values of GSE61374 were transformed by
log2 to permit easier comparison. Additionally, the
single-cell RNA-seq dataset GSE167960 was acquired
from GEO website.

Inclusion criteria for samples

LGG samples were included if they had: (1) WHO
grade information; (2) gene expression information; (3)
OS > 1 month. In total, 477 (Supplementary Table 1),
170 (Supplementary Table 2), and 137 (Supplementary
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Table 3) LGG samples were filtered out from TCGA,
CGGA, and GEO datasets, respectively. Additionally,
we included LGG samples with OS of < 1 month for
pan-cancer analysis of DUSP10 to assure the
consistency of survival information in 33 tumor types.

Prognostic role of DUSP10

LGG samples were categorized into high-DUSP10 and
low-DUSP10 subsets in line with median values of
DUSP10 expression in the three cohorts. The KM
analysis was exploited to determine the OS of LGG
patients in high-DUSP10 and low-DUSP10 subsets.
Additionally, the survival state ratio, ROC curves, and
AUC values were employed to check the exactness of
DUSP10 expression in forecasting the prognosis of
LGG patients in the three datasets. Afterwards, we
employed Cox regression analyses in the three datasets
to examine whether DUSP10 expression was an
independent biomarker of LGG patients.

Functional enrichment and gene set enrichment
analysis

Under the criteria of |log2FC| of > 0.5 and false-
discovery rate (FDR) of < 0.05 [28, 29], we exploited R
package limma to select the DEGs between the low-
DUSP10 and high-DUSP10 subsets [30]. On the
grounds of DEGs, we executed GO-BP and KEGG
analyses by utilizing R package clusterProfiler [31].
GSEA analysiswas implemented to detect the
obviously enriched molecular pathways in the two
subsets [32]. With the standards of normalized
enrichment score (NES) >1, p < 0.05, and FDR < 0.25,
we identified the significant enriched molecular
pathways in the two subsets.

Immunological characteristics and  single-cell
analysis
The immunological features including immune

signatures, abundances of stromal and immune cells,
and ICPGs expression level were evaluated. First,
the sSGSEA algorithm was applied to ascertain
the differential abundance of 29 immune-associated
signatures, which were obtained from previous studies
[33, 34], in low-DUSP10 and high-DUSP10 subsets.
The ESTIMATE algorithm was conducted to
investigate the abundance of immune cells, stromal
cells, and tumor purity according to the expression
profiles of LGG patients [35]. Four kinds of scores,
including ESTIMATE score (representing nontumor
composites), stromal score (representing the abundance
of stromal cells), immune score (representing the
abundance of immune cells), and tumor purity, were
measured. Whereafter, the CIBERSORT algorithm was

executed to quantify the infiltration level of TIICs in
line with the gene expression data of LGG patients [36].
Additionally, we selected 25 ICPGs according
to previous research [37], and investigated their
correlation with DUSP10 expression. The GSE167960
dataset was exploited to inspect the correlation between
DUSP10 and LGG immune microenvironment.

Gene variation analysis

The RCircos tool was utilized to recognize and exhibit
the conspicuous deletions and amplifications in the
whole genome between low- and high- DUSP10
expression subgroups [38]. We performed the Maftools
and GenVisR [39, 40] to account for and display
variation types and frequencies of genes between low-
DUSP10 and high-DUSP10 subgroups. The TMB, as a
newly developing biomarker for forecasting the
response to immunotherapy, reveals the total number of
nonsynonymous mutations. The conjunction between
DUSP10 expression and TMB level in 33 kinds of
cancer was ascertained by performing R package fmsb.
Afterwards, the association between the DUSP10
expression and TMB level was detected by conducting
the R package ggplot2 in the independent LGG TCGA
dataset.

Evaluation of DUSP10 expression and treatment
responses

The TIDE algorithm was implemented to detect the
reaction of LGG patients to immunotherapy according
to the expression data of LGG patients. Moreover, the
sensitivity difference to several chemotherapeutic drugs,
such as PIBK/AKT inhibitors (PIK-93, TGX221, AKT
inhibitor V111, and MK2206) and a proteasome inhibitor
(bortezomib and MG-132), between high-DUSP10 and
low-DUSP10 subtypes was explored by using R
package pRRophetic [41].

Cell culture and transfection

Three LGG lines, including SW1088, SW1783, and
BT142, were obtained from the American Type Culture
Collection. Normal human astrocyte (NHA) cell line
was purchased from Culture Collection of the Chinese
Academy of Sciences (Shanghai, China). SW1783 and
SW1088 cell lines were incubated with Leibovitz’s L-
15 medium and 10% fetal bovine serum (Gibco).
BT142 and NHA cell lines were incubated with
Dulbecco’s modified Eagle’s medium/F12 medium. All
cell lines were incubated at 5% CO2 and 37°C. SW1088
cell lines were transfected with lentiviral vector
containing DUSP10 shRNA (5'-CAATGAACCAA
GCCGAGTGAT-3') or negative control (NC) vector at
a multiplicity of infection of 10. Polybrene was
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employed to elevate transfection efficiency and
puromycin was applied to filter out positive cells.

Western blot analysis

LGG and para-cancerous tissue samples (n = 6 each)
were gathered from the Second Affiliated Hospital of
Nanchang University. We extracted brain tissues and
cell lysates by exploiting radioimmunoprecipitation
assay buffer (Solarbio, China) mixed with proteinase
inhibitors. Then, we separated lysates by utilizing 10%
SDS-PAGE and transferred it to PVDF membranes.
Then, the membranes were incubated with primary
antibodies, including DUSP10 (1:1000, DF4694 affinity
Biosciences, Proteintech, China) and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) (1:20000, 60004-
1-lg, Proteintech, China), and the relevant secondary
antibodies. Eventually, the bands on the membranes
were visualized by conducting a GV6000M imaging
system (GelView 6000pro).

Quantitative real-time PCR

Total RNA was isolated from cells with the Simply P
Total RNA Extraction Kit (Bioflux, China) and reverse-
transcribed it into complementary DNA with HiScript
I1I-RT SuperMix (Vazyme, China). Subsequently, the
values were managed with the 272ACT method. Primer
sequences of genes were as follows: DUSP10 forward,
5'-ATACCAATGAACCAAGCCGAGT-3’; DUSPI10
reverse, 5-TCTTGGAGCTGGAGGGAGTTG-3/;
GAPDH  forward, 5-GGTGTGAACCATGAGA
AGTATGA-3’; and GAPDH reverse, 5'-GAGTCCTT
CCACGATACCAAAG-3'.

CCK-8 assay

Transfected SW1088 cells (2 x 10° peer well) were
plated in 96-well plates and cultured for 5 days. Cell
proliferation was examined by Cell Counting Kit 8
assay (Glpbio, GK10001) according to the protocol.

Colony formation assay

Transfected SW1088 cells were seeded in 6-well plates
at 2 x 10° peer well and incubated for 2 weeks.
Subsequently, 0.1 % crystal violet stain solution was
implemented to stain the cells, and the number of
colonies was quantified by ImageJ.

EdU assay

Transfected SW1088 cells (2 x 10*) were seeded in 24-
well plates and incubate for 3 days. Subsequently, the
cells were cultured with EdU reagent for 2 h and 4%
paraformaldehyde and 0.5% Triton X-100 were

employed to fix the cells. The Hoechst staining was
exploited to stain the cells. The EdU incorporation rate
was counted by ImageJ.

Cell cycle analysis

Transfected SW1088 cells were fixed with 70% ethanol
at 4°C overnight. Next, the cells were stained with
RNase A containing propidium iodide (Suzhou, China).
We ascertained the cell cycle distribution by conducting
flow cytometry.

Statistical analysis

The KM analysis was executed to differentiate the
prognosis between high-DUSP10 and low-DUSP10
subsets by using a two-sided log-rank test. The veracity
of DUSP10 expression in predicting prognosis was
verified by AUC values and ROC curves. The
independent prognostic significance of DUSP10 was
checked by exploiting Cox regression analyses.
Comparison of these immune-associated factors,
including 29 immune-connected signatures, TIICs, 25
ICPGs, TMB, and CNA burden, between the two
subtypes was measured by the Student’s t test.
Additionally, Pearson’s or Spearman’s correlation test
was employed to examine the association between
distributed variables. The sensitivity difference to
anticancer drugs between the two subtypes was
estimated by conducting the Wilcoxon signed-rank test.
We performed all statistical analyses in R programming,
version 4.1.0, SPSS Statistics, and GraphPad Prism 8.
P < 0.05 was deemed to be significant.

Availability of data and materials

The data used in the study can be acquired in the TCGA
(https://portal.gdc.cancer.gov/), CGGA (http://www.
cgga.org.cn/), and GEO (https://www.ncbi.nlm.nih.gov/
geo/) websites.
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Supplementary Figure 1. Flow diagram of overall research. (A) Pan-cancer analysis. (B) Clinical features. (C) Prognosis analysis. (D)
Biological functions. (E) Immune features. (F) Genetic mutations. (G) Experimental verification. (H) Treatment response of DUSP10 in LGG.
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Supplementary Figure 2. Clinical correlation analysis of DUSP10 in CGGA. (A) Association between DUSP10 expression and clinical
traits of LGG in CGGA. (B) Variance analysis of DUSP10 expression in different clinical features (including age, gender, grade, and 1p/19q,
IDH, and MGMT statuses) in the CGGA dataset. (C) Prognostic analysis of high-DUSP10 and low-DUSP10 subtypes in the CGGA dataset. (D)
Distribution of risk score, OS, and OS status of high-DUSP10 and low-DUSP10 subtypes in the CGGA dataset. (E) Different proportions of the
living situation between the two subtypes. (F) ROC curves representing the predictive role of the risk score in CGGA. (G, H) Univariate and
multivariate Cox analyses of DUSP10 expression and clinicopathological characteristics in CGGA. "P < 0.05, **P < 0.01, ***P < 0.001.
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Supplementary Figure 3. Clinical correlation analysis of DUSP10 the GSE61374 dataset. (A) Association between DUSP10
expression and clinical traits of LGG the GSE61374 dataset. (B) Variance analysis of DUSP10 expression in different clinical features
(including age, gender, grade, and 1p/19q, IDH, and MGMT statuses) in the GSE61374 dataset. (C) Prognostic analysis of high-DUSP10 and
low-DUSP10 subtypes in the GSE61374 dataset. (D) Distribution of risk score, OS, and OS status of high-DUSP10 and low-DUSP10 subtypes
in the GSE61374 dataset. (E) Different proportions of the living situation between the two subtypes. (F) ROC curves representing the
predictive role of the risk score in GSE61374. (G, H) Univariate and multivariate Cox analyses of DUSP10 expression and clinicopathological

characteristics in GSE61374. *P < 0.05, **P < 0.01, **P < 0.001.
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Supplementary Figure 4. Biological functions of DUSP10 in LGG in CGGA. (A) DEGs between the low-DUSP10 and high-DUSP10
expression LGG subgroups. (B, C) The GO-BP (B) and KEGG (C) analyses for DUSP10 in LGG patients in the CGGA dataset. (D) GSEA in the
CGGA dataset.
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Supplementary Figure 5. Different TME and immunological characteristics of the low- DUSP10 and high-DUSP10 subtypes
in CGGA. (A, B) Association between DUSP10 expression and 29 immune-associated signatures, ESTIMATE, immune, stromal scores, and
tumor purity. (C) Comparisons of infiltration of 22 types of immune cells in the two subgroups. (D) Lollipop plots exhibited the relationship
between DUSP10 expression and TIICs. (E, F) Co-expression analysis of DUSP10 and 25 ICPGs. "P < 0.05, **P < 0.01, ***P < 0.001.
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Supplementary Figure 6. Single-cell analysis of DUSP10 in GSE167960. (A, B) The cell types in LGG immune microenvironment and
the expression distribution of DUSP10. (C, D) Expression levels of DUSP10 in immune cells.
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Supplementary Tables

Supplementary Table 1. Clinical features of LGG patients from TCGA.

Clinical features Total (477) %

Age Age <45 287 60.17%
Age >45 190 39.83 %

Gender Female 216 45.28%
Male 261 54.72%

Grade WHO II 231 48.43%
WHO Il 246 51.57%

1p/19q Non-codel 321 67.30%
Codel 156 32.70%

IDH Mutant 389 81.55%
Wildtype 85 17.82%

Unknow 3 0.63%

MGMT Unmethylated 82 17.19%
Methylated 395 82.81%

Supplementary Table 2. Clinical features of LGG patients from CGGA.
Clinical features Total (170) %

Age Age <45 129 75.88%
Age >45 41 24.12%

Gender Female 65 38.24%
Male 105 61.76%

Grade WHO II 97 57.06%
WHO 111 73 42.94%

1p/19q Non-codel 113 66.47%
Codel 55 32.35%

Unknow 2 1.18%

IDH Mutant 125 73.53%
Wildtype 44 25.88%

Unknow 1 0.59%

MGMT Unmethylated 70 41.18%
Methylated 84 49.41%

Unknow 16 9.41%
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Supplementary Table 3. Clinical features of LGG patients from GSE61374.

Clinical features Total (137) %
Age Age <45 83 60.58%
Age >45 54 39.42%
Gender Female 53 38.69%
Male 84 61.31%
Grade WHO Il 61 44.53%
WHO Il 76 55.47%
1p/19q Non-codel 100 72.99%
Codel 37 27.01%
IDH Mutant 115 83.94%
Wildtype 22 16.06%
MGMT Unmethylated 38 27.74%
Methylated 98 71.53%
Unknow 1 0.73%
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