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INTRODUCTION 
 

Stroke is among the most fatal neurological diseases, and 

it is the second leading cause of death in those aged >60 

years and the fifth leading cause of death in those aged 

<15 years [1–3]. Strokes are clinically classified into 

ischemic stroke (IS), hemorrhagic stroke, and transient 

ischemic attack, with IS accounting for 80% of all stroke 

cases [3, 4]. IS is not only a major cause of death but is 

also responsible for a significant number of disability-

adjusted life years, which increased by 138.6% from 

1990 to 2019 [5]. Therefore, improving the prognosis of 

IS is crucial for alleviating the disease burden. 

 

Senescence is a fundamental biological process 

characterized by a general decline in tissue function, 

increased susceptibility to neurological diseases, and 

decreased resistance to inflammation and infection [6]. 

Typically, IS is accompanied by accelerated sensory-

motor and neurocognitive decline, which are signs of 

senescence [7, 8]. Accordingly, advanced age is a known 

risk factor for IS [9]. Furthermore, IS is strongly 
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ABSTRACT 
 

Ischemic stroke (IS) is a fatal neurological disease that occurs when the blood flow to the brain is disrupted, 
leading to brain tissue damage and functional impairment. Cellular senescence, a vital characteristic of aging, is 
associated with a poor prognosis for IS. This study explores the potential role of cellular senescence in the 
pathological process following IS by analyzing transcriptome data from multiple datasets (GSE163654, 
GSE16561, GSE119121, and GSE174574). By using bioinformatics methods, we identified hub-senescence-
related genes such as ANGPTL4, CCL3, CCL7, CXCL16, and TNF and verified them using quantitative reverse 
transcription polymerase chain reaction. Further analysis of single-cell RNA sequencing data suggests that MG4 
microglial is highly correlated with cellular senescence in MCAO, and might play a crucial role in the 
pathological process after IS. Additionally, we identified retinoic acid as a potential drug for improving the 
prognosis of IS. This comprehensive investigation of cellular senescence in various brain tissues and peripheral 
blood cell types provides valuable insights into the underlying mechanisms of the pathology of IS and identifies 
potential therapeutic targets for improving patient outcomes. 
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associated with cellular senescence, a major cause of 

aging [10]. Cellular senescence refers to the permanent 

state of cell cycle arrest, which is a defense mechanism 

that prevents unwanted damage to cells [11]. The 

inability of cells to re-enter the cell cycle in response to 

irreversible growth arrest, resistance to apoptosis, 

production of the senescence-associated secretory 

phenotype (SASP), mitochondrial dysfunction, and 

changes in DNA and chromatin levels are common 

pathophysiological processes of cellular senescence [12]. 

High levels of inflammatory cytokines and SASP have 

been detected in the IS-pedunculated region [13]. Various 

studies have shown that cellular senescence intervention 

improves the prognosis of patients with IS and is a 

promising therapeutic approach [14, 15]. There are good 

reasons to believe that cellular senescence plays an 

important role in the pathophysiological process of IS, 

and there are solid grounds for the assertion that cellular 

senescence is crucial to the pathophysiology of IS. 

 

Identifying senescent cells in vivo remains challenging, 

although cellular senescence can drive a variety of age-

related disease manifestations through aging-related 

secretory phenotypes. Recently published gene sets 

related to senescent cells can aid in identifying in vivo 

cellular senescence [16]. Moreover, senescence can vary 

significantly in different cell types. The senescence of 

endothelial, smooth muscle and immune cells is believed 

to participate in the senescence of blood vessels, and the 

senescence of immune cells is believed to promote the 

aging of other cell types [17, 18]. Additionally, the 

senescence of neurons and glial cells is widespread in 

neurodegenerative diseases [19]. However, few studies 

have examined cellular senescence after IS, and there is 

a lack of research on the relationship between cellular 

senescence and a wide range of cell types in the brain. In 

this study, we identified hub genes for cellular 

senescence in IS using bioinformatics and experimental 

validation and explored their biological pathways. Using 

single-cell RNA sequencing (scRNA-seq), we evaluated 

the hub senescence-related gene (HSRG) expressions in 

various cell types and mapped the developmental 

trajectories of microglia and cellular communication 

networks. Finally, we predicted potential therapeutic 

drugs based on the HSRGs. The approach used in this 

study is depicted in the flow diagram (Figure 1). 

 

MATERIALS AND METHODS 
 

Microarray datasets 

 

SenMayo is a recently published gene set that  

includes 125 and 118 unrepeatable genes in humans 

and mice, respectively [16]. The gene set was 

downloaded from the supplementary information of 

the original article. The Gene Expression Omnibus 

(“http://www.ncbi.nlm.nih.gov/geo/”) is an open-

source database that provides gene expression profiles 

for our study. Four datasets including GSE163654, 

GSE16561, GSE119121, and GSE174574 were used 

(Table 1). Bulk RNA-sequencing (bulk RNA-seq) of 

brain tissue from three sham-operated rats and three 

middle cerebral artery occlusion (MCAO) rats in 

GSE163654 was used for differential expression 

analysis. GSE16561 contains bulk RNA-seq data of 

peripheral blood from 39 patients with IS and 24 

patients with normal groups, which were used for 

expression and immune cell infiltration analyses. 

 

 
 

Figure 1. The flowchart of data preparation and analysis. 

http://www.ncbi.nlm.nih.gov/geo/
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Table 1. Detailed information of the gene expression matrixes and platform. 

GEO dataset Platform Species Tissue Country Author 

GSE163654 GPL17117 Rat Penumbras tissue of brains Canada Tymianski M et al. 

GSE16561 GPL6883 Human Peripheral blood USA Barr TL et al. 

GSE119121 GPL6247 Rat Blood Belgium Dagonnier M et al. 

GSE174574 GPL21103 C57BL/6 Brain China Zheng K, Hao J 

 

GSE119121 contains bulk RNA-seq data from rat 

peripheral blood from the MCAO and sham groups 

used for the temporal analysis of gene expression. 

Finally, scRNA-seq data of the brain tissue from 

GSE174574 with three sham group mice and three 

MCAO group mice were processed and used for cell 

communication analysis. 

 

Differential expression analysis 

 

The R software (v4.2.1, R Foundation, Vienna, Austria) 

was used for all analyses and visualizations in this study. 

To create the analysis matrix, all original bulk RNA-seq 

matrices were normalized and coupled with the 

associated RNA probes. Data with non-mRNA 

expression loss and no corresponding gene names were 

excluded. The differentially expressed genes (DEGs) 

were screened using the criteria |log2 (fold change) | >0.5 

and a p-value of <0.05. Heatmaps and volcano plots were 

generated using the “heatmap” and “ggplot2” packages, 

respectively. Finally, a Venn diagram was created using 

the website http://www.bioinformatics.com.cn/ for the 

Venn analysis. 

 

Pathway enrichment analysis and protein-protein 

interaction network 

 

Gene ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway analysis of DEGs were 

performed and visualized using the “org.Mm.eg.db” and 

“clusterProfiler” packages. The free website, STRING 

(https://www.string-db.org/), was used to analyze 

functional protein association networks of DEGs. A 

minimum interaction score of ≥0.150 was defined as the 

cut-off value, and the resulting protein-protein 

interaction network was visualized using Cytoscape 

software. Finally, the hub genes were ascertained by 

visualizing the bulk RNA-seq of DEGs in GSE16561 

using the “reshape2” and “ggpubr” packages. 

 

Animal and establishment of the MCAO model 

 

The Medical Experimental Animal Center (Xi’an 

Jiaotong University) provided 12 pathogen-free male 

Sprague-Dawley rats (weight: 280–300 g). A modified 

Zea-Longa model, in which the coil occlusion was 

permanently placed in the middle cerebral artery, was 

used to create a rat permanent MCAO model [20]. The 

rats (n = 8) were randomly allocated to either the sham 

group or the MCAO group, with four rats in each group. 

The Longa scale was used to assess the neurobehavioral 

scores of rats in each group two hours after MCAO. 

Animals with no neurological impairment following 

surgery were excluded from the study. The rats were 

euthanized three days after the operation via 

intraperitoneal injection. The brains were removed and 

sliced before being put in 2% triphenyl tetrazolium 

chloride (TTC) (Solarbio Life Science, Beijing, China) 

and incubated at 37° C for 30 minutes. 

 

Quantitative reverse transcription polymerase chain 

reaction (RT-qPCR) 

 

Three rats from each group were anesthetized 48 hours 

after surgery, and tissue samples were collected from the 

ischemic penumbra. The samples were immediately 

stored in liquid nitrogen, and total RNA was extracted 

from each sample using the TRIzol reagent (Sinopharm 

Chemical Reagents Co., Ltd., China). The extracted RNA 

was reverse-transcribed into complementary DNA using 

SweScript All-in-One RT SuperMix (Wuhan Saiwei 

Biotechnology Co., Ltd., China). Table 2 shows the 

primer sequences used in the study. The 2-Ct method was 

used to calculate the relative mRNA expression, which 

was then compared to that of the normal group 

(glyceraldehyde 3-phosphate dehydrogenase mRNA 

expression). A student’s t-test was used for statistical 

comparisons, and differences with a p-value of <0.05 

were considered statistically significant. 

 

Construction of a prediction model 

 

The nomogram model, calibration, decision, and 

clinical impact curves were based on the expression 

data of HSRGs in GSE16561, implemented by the 

“rms” and “rmda” packages. The receiver operating 

characteristic (ROC) curve was also plotted through the 

“ROCR” package, and the calibration, decision curve 

analysis (DCA), and clinical impact curves were drawn. 

 

Temporal analysis of expression 

 

GSE119121 contains the bulk RNA-seq of MCAO  

rats at different time points, and the DEGs expression 

http://www.bioinformatics.com.cn/
https://www.string-db.org/


www.aging-us.com 5500 AGING 

Table 2. Specific primers used for quantitative real-time PCR. 

Gene Forward Reverse 

Angptl4 CATGGCTGCCTGCGGTAACG AGTTGCTGGATCTTGCTGTTCTGAG 

Ccl3 CACCGCTGCCCTTGCTGTTC GGAATTTGCCGTCCATAGGAGAAGC 

Ccl7 GATCTCTGCCGCGCTTCTGTG TGGATGAATTGGTCCCATCTGGTTG 

Cxcl16 CAGTTTCAGAGCACCCAGCAGTC GCCTAGCCTCCAGACCATAGCC 

Tnf CACCACGCTCTTCTGTCTACTGAAC TGGGCTACGGGCTTGTCACTC 

 

was described by a heatmap and a violin plot using  

the “heatmap,” “reshape2,” and “ggpubr” packages. 

Simultaneously, the mean value of hub gene expression 

at different time points was calculated, and a line graph 

was drawn. 

 

Immune cell infiltration analysis 

 

To analyze immune cell infiltrations in GSE16561 and 

calculate merged expression data, we used the 

CIBERSORT method, which is a technique for 

analyzing different immune cell types in tissues [21]. 

The samples were filtered using a p-value of <0.05, and 

a bar plot was generated to show the percentage of each 

immune cell type in each sample. The “pheatmap” 

package was used to generate a heatmap of the 22 

immune cells and a heatmap describing the hub gene 

expression in immune cells as well. The package 

“vioplot” was used to compare and visualize the levels 

of 22 immune cells in IS and normal samples. Using  

the “corrplot” package, a correlation heatmap was 

generated that revealed the correlation of 22 different 

types of infiltrating immune cells.  

 

ScRNA-seq data processing and cell communication 

analysis 

 

GSE174574 contains the scRNA-seq of three sham group 

mice and three MCAO group mice. ScRNA-seq data 

were processed using the “Seurat” package for 

unsupervised graph-based clustering before analysis [22]. 

The following were the screening criteria for the cells 

examined: Cells with 500–6,000 unique molecular 

identifiers and 35% of mitochondrial genes judged to be 

of high quality were eliminated from further research. 

The normalized data function was used to normalize the 

quality-controlled data, and then the find variable 

features tool was used to select 2000 highly variable 

genes. The mutual principal component analysis tool 

“Seurat” was used to integrate the data. The proportion of 

cells was determined by selecting the top 20 main 

components for the visualization of dimensionality 
reduction using uniform manifold approximation and 

projection (UMAP). The “SingleR” package was used for 

cell type identification, in which “MouseRNAseqData” 

was used as a reference. Additionally, the “cellcall” 

package was used to infer intercellular communication 

[23]. To determine differentiation trajectories for major 

clusters with large cell numbers, the “monocle3” package 

was used for cell trajectory analysis [24].  

 

Drug screening and molecular docking 

 

The DSigDB database contains the Food and Drug 

Administration-approved drugs and experimental 

compounds (http://tanlab.ucdenver.edu/DSigDB) and  

is a free website with the DSigDB interface 

(https://maayanlab.cloud/Enrichr/). Drugs and compounds 

were predicted using Enrichr, based on hub genes. The 

screening criterion was adj. p <0.05, and the ranking 

was based on the comprehensive score. The protein was 

converted to the PDBQT file format so that AutoDock 4 

software could recognize and read the modified protein. 

To prepare the ligands for docking, charges were added 

and optimized. Three PDBQT files were identified: 

rigid DEG proteins, flexible proteins, and drug ligands. 

Finally, we used AutoDock 4 software to perform 

molecular docking. 

 

RESULTS 
 

Identification of the senescence-related genes (SRGs)  

 

The DEGs between the six-hour rat MCAO groups and 

sham groups in GSE163654 were discovered and are 

shown in a volcano plot (Figure 2A). Among them, 326 

genes were upregulated and 199 genes were 

downregulated. Subsequently, according to the Venn 

plot, 14 upregulated DEGs (CCL3, Jun, CCL4, Il1a, 
VGF, VEGFA, IL1B, ANGPTL4, TNF, CCL2, CXCL16, 

GEM, ICAM1, CCL7) and two downregulated SRGs 

(CXCL12, SELPLG) were involved in the senescence-

related SenMayo dataset (Figure 2B). Specifically, 92 

edges were linked between 16 corresponding proteins in 

the protein-protein interaction network (Figure 2C).  

A heatmap shows the expression of these 16 genes 

(Figure 2D). Based on these 16 genes, GO/KEGG 

functional enrichment analysis was performed. The 

subsequent GO/KEGG functional enrichment analysis 

showed that these genes were highly enriched in 

leukocyte migration, positive regulation of the ERK1 

and ERK2 cascades, cytokine activity, and cytokine 

http://tanlab.ucdenver.edu/DSigDB
https://maayanlab.cloud/Enrichr/
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receptor binding (Figure 2E). Finally, to identify the 

conservation of these genes between species, we 

compared the expression of these 16 genes in human 

peripheral blood between the IS and normal groups 

(Figure 2F). Thirteen of these 16 genes were expressed 

in both mice and humans, and five (ANGPTL4, CCL3, 

CCL7, CXCL16, and TNF) showed statistically 

significant differences.  

 

SRGs expression in the peripheral blood of the rat 

 

By analyzing the GSE119121 expression matrix, we 

visualized the expression of these 16 SRGs in the 

peripheral blood of the MCAO and sham groups  

(Figure 3A). We further compared the expression trends 

of these SRGs at five different time points (1, 2, 3, 6, 

and 24 hours) (Figure 3B). Notably, CXCL16 expression 

and GEM decreased in the MCAO group but tended to 

recover after 24 hours. The expression levels of VGF, 

CCL3, and CCL4 decreased at later time points. 

Meanwhile, the expression levels of the other 11 genes 

increased at different time points within 24 hours in the 

MCAO group, and most of them recovered 24 hours 

after the operation. Additionally, the expression of five 

SRGs was significantly different at some points after the 

MACO operation compared with that before the 

operation. Finally, a line graph was drawn to describe 

the variation trends of the five hub genes (Figure 3C). 

Thus, ANGPTL4, CCL3, CCL7, CXCL16, and TNF have 

better species conservation in the peripheral blood of rats 

and humans and were identified as HSRGs for further 

research. 

 

 
 

Figure 2. Discovery of SRGs in rat MCAO model and human peripheral blood. (A) The volcano plot for DEGs of brain tissue in 

GSE163654. The genes related to cellular senescence were labeled. Red represents high gene expression and blue represents low expression. 
(B) The Venn plot for the distribution of DEGs. (C) The protein-protein interaction network for SRGs. (D) The heatmap for SRGs in GSE163654. 
(E) GO/KEGG pathway analysis and protein interaction network of SRGs. The color of the proteins corresponds to the pathway and the 
number shows the count of genes. (F) The violin plot for SRGs of human peripheral blood in GSE16561. *p < 0.05, **p < 0.01, ***p < 0.001. 
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Validation of HSRGs by RT-qPCR in the MCAO 

model 

 

We performed RT-qPCR in the MCAO model to 

demonstrate the critical role of HSRGs in IS. To verify 

the success of our MCAO model, TTC staining was 

performed on the brain tissue of MCAO rats (Figure 

4A). TTC staining stains the normal brain tissue red, 

while the infarct lesions appear white, allowing a good 

evaluation of the infarct in the brain. According to the 

RT-qPCR results, the expression levels of all five genes 

differed significantly (p <0.05) (Figure 4B). Gene 

expression levels were higher in the brain tissues of rats 

in the MCAO model than in the sham group, and the 

expression trend was consistent with that shown in 

Figure 2D between the MCAO and sham groups in 

GSE163654. 

 

Construction of a clinical prediction model  

 

Based on the expression levels of HSRGs in GSE16561, 

we constructed a nomogram prediction model (Figure 

4C). To verify the effectiveness of the model, ROC, 

calibration, DCA, and clinical impact curves were plotted 

(Figure 4D–4G). The area under the curve (AUC) of the 

prediction model was approximately 0.956, and the 

calibration curve showed good calibration. The DCA 

curve showed that this predictive model could yield 

significantly greater net benefits for making clinical 

decisions. In terms of the clinical impact curve, the 

prediction model determined that the population at risk 

for IS was strongly matched to the actual population 

when the threshold probability was >65% of the 

predicted score probability value, confirming the good 

clinical efficiency of the prediction model. 

 

Immune cell infiltration analysis 

 

The CIBERSORT algorithm was used to predict 

immune cell infiltration in the IS and normal groups. 

The bar plot and heatmap displayed the percentage of 

each of the 22 types of immune cells in each human 

blood sample from GSE16561 (Figure 5A, 5B). 

Correlation analysis of immune cells revealed that 

resting mast cells and activated mast cells had the most 

significant negative correlation, while naïve B cells and 

CD8 T cells, follicular helper cells, resting mast cells 

and activated CD4+ memory T cells, M2 macrophages 

and monocytes, resting dendritic cells and M1 

macrophages, neutrophils and activated mast cells had a 

significant positive correlation (Figure 5C). The violin 

plot of the immune cell infiltration difference showed 

that, in comparison to the normal group, patients with 

IS had lower levels of CD8+ T cells and activated  

NK cells (Figure 5D). Finally, we analyzed HSRG 

expression in 22 types of immune cells (Figure 5E).  

 

 
 

Figure 3. Expression of SRGs in the rat peripheral blood and identification of HSRGs. (A) The heatmap for SRGs in GSE119121 at 

different time points. (B) The violin plot for SRGs in GSE119121. (C) The line graph describes the variation trend of HSRGs expression at 
different time points. 
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ScRNA-seq reveals the cellular senescence pattern 

after IS 

 

Cell clusters were identified by UMAP analysis in 

MCAO and sham-operated mice (Figure 6A). We 

further annotated the cell clusters through the “SingleR” 

package and mapped them to the UMAP (Figure 6B). 

Nine cell clusters were identified: astrocytes, 

endothelial cells, epithelial cells, fibroblasts, 

granulocytes, microglia, monocytes, natural killer cells, 

and oligodendrocytes. Subsequently, HSRG expression 

in each cell cluster was mapped onto UMAP diagrams 

and quantified (Figure 6C, 6D). Finally, we used the 

“AUCell” package to evaluate the total hub gene 

expressions in all types of cells and cells with an AUC 

value greater than 0.078 were adopted (Figure 6E). 

Significantly, HSRGs were highly expressed in 

microglia and monocytes (Figure 6F). Based on the 

UMAP and violin plots, microglia and monocytes had 

the highest senescence scores, as shown in Figure 6G.  

 

Intercellular communication and internal signaling 

based on scRNA-seq 

 

The intercellular communication in the MCAO and 

sham groups is shown, respectively (Figure 7A). 

Monocytes, granulocytes, and microglia were more 

involved in cellular communication as receptors in the 

sham group. Subsequently, we identified microglia and 

monocytes as receivers and assessed their cellular 

interactions with astrocytes and monocytes (Figure 7B, 

7C). Further analysis of transcription factors (TFs) 

involved in cellular communication revealed that Mef2c 

and Myc were activated when microglia served as 

recipients, whereas Fos, Nfkb1, and Stat1 were activated 

when monocytes served as recipients. Finally, we 

presented TF activities in receiver cells using a TF 

enrichment plot, and all TFs were activated in 

monocytes, microglia, and granulocytes (Figure 7D). 

 

Cell trajectory analysis of microglia 

 

The cell trajectories of the microglia are presented as 

3D images in Figure 8A. Individual clustering and 

UMAP mapping showed that microglia were divided 

into four clusters (Figure 8B). To annotate these 

microglial cell sub-clusters, we identified the top five 

cell marker genes in each cluster (Figure 8D). The 

marker genes include “P2RY12”, “SIGLECH”, 

“GPR34”, “mt-ATP8”, “SELPLG” of MG1, “CCL12”, 
“TNF”, “ADAMTS1”, “SOCS3”, “CCL2” of MG2, 

“SPP1”, “LGALS3”, “LPL”, “LILRB4A”, “LILR4B” 

of MG3, and “CTLA2A”, “IGFBP7”, “CLDN5”, 

“PGLYRP1”, “SLC2A1” of MG4. Analysis of the 

differences in the number of cell clusters showed that 

MG1 was the main microglia in the sham group, 

 

 
 

Figure 4. Validation of HSRGs by rat MCAO model and construction of prediction model. (A) TTC staining verification of rat MCAO 
model. (B) Validation of quantitative real-time PCR analysis. (C) Nomogram of HSRGs for predicting IS. A calibration curve (D), Clinical decision 
analysis (E, F), and ROC curve (G) of the nomogram. 
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whereas MG2, MG3, and MG4 were the main microglia 

in the MCAO group (Figure 8E). Additionally, 

ANGPTL4 showed specificity for MG4, and its 

expression was higher in the MCAO group. In MG2-4, 

CCL7, CXCL16, and TNF were highly expressed in the 

MCAO group. Although CCL3 was expressed in 

different subgroups, its expression level was higher in 

the MCAO group (Figure 8F). Finally, the cell 

trajectory of microglia was determined to explore their 

divergent trajectory. 

 

 
 

Figure 5. Immune cell infiltration analysis in human peripheral blood. (A, B) The landscape of immune infiltration between IS and 
normal groups in GSE16561. (C) Correlation matrix of all 22 immune cell subtype compositions. Higher, lower, and the same correlation levels 
are displayed in red, blue, and white. (D) Comparison of 22 immune cell subtypes between patients in IS and normal groups. (E) The heatmap 
for HSRGs in 22 immune cell subtype compositions. 
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Drug screening and molecular docking 

 

Small-molecule compounds that may bind to 

ANGPTL4, CCL3, CCL7, CXCL16, and TNF were 

identified using the DSigDB database; the top 10 

compounds are listed in Table 3. Among these, retinoic 

acid had the highest combined score (608812). We then 

drew a structural diagram of retinoic acid, which can 

bind to ANGPTL4, CCL3, CCL7, CXCL16, and TNF 

(Figure 9A–9F). 

 

DISCUSSION 
 

Senescence has long been a significant issue for 

researchers and has accelerated since the occurrence of 

IS [6]. Cellular senescence is one of the significant 

causes of senescence and has recently attracted 

considerable attention [11]. SenMayo is a set of genes 

that accurately describes and assesses cellular 

senescence [16]. In this study, we aimed to identify the 

HSRGs involved in IS and cellular senescence in brain 

tissue by the SenMayo gene set. A nomogram model 

was constructed based on HSRGs and was evaluated 

preliminarily to predict cellular senescence in patients 

with IS. Immune activity plays a vital role in cellular 

senescence after IS, which has been discussed in detail 

using immune cell infiltration analysis. To further 

elucidate the mechanism, scRNA-seq analysis was 

performed to determine the cellular localization of 

HSRGs, intercellular communication, and cellular 

 

 
 

Figure 6. The scRNA-seq reveals the expression of HSRGs in mouse brains. (A) Cluster analysis of scRNA-seq in GSE174574 dataset. 
Red represents the cells in the MCAO group and blue represents the cells in the Sham group. (B) Cell cluster identification was obtained in 
(A). Different colors represent different cell clusters, with a total of 9 identified. (C) Distribution of HSRGs expression in different cell clusters. 
Compared with the Sham group, red represents the high expression of genes in the IS group. (D) Quantified expression of HSRGs in different 
cell clusters. (E) The distribution of cell AUC value, an AUC value greater than 0.078 were adopted. (F) Distribution of HSRGs expression in 
different cell clusters based on AUC value. (G) Quantified AUC value of HSRGs in different cell clusters. 
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trajectory. Finally, small molecules that can bind to hub 

gene expression proteins are considered potential drugs 

for alleviating cellular senescence after IS. Overall, this 

study combined multiple bioinformatic analysis 

methods and experimental verification to conduct a 

rigorous discussion of cellular senescence after IS at 

different transcriptome levels, providing a reference for 

further research in this field. 

 

Functional enrichment analysis revealed that SRGs 

were primarily related to leukocyte migration and 

cytokine-cytokine receptor interactions. This suggests 

that the immune response plays a significant role in 

cellular senescence after an IS. However, while the 

immune response can be protective, the invasion of 

innate immune cells into the brain and meninges during 

the acute phase can exacerbate ischemic damage [25]. 

Additionally, peripheral organs can become a second 

“battlefield” for the immune response after IS. Danger 

signals are released from damaged brain cells into the 

circulatory system, which then activates systemic 

immunity, causing severe immunosuppression, life-

threatening infections, and a poor prognosis [26]. In the 

chronic phase, antigen presentation initiates an adaptive 

immune response against the brain, which may underlie 

the neuropsychiatric sequelae [25]. Studies have also 

shown that microglia, astrocytes, foam cells, and 

lymphocytes are activated in IS, forming glial scars that 

persist for ten years later and are associated with 

cognitive decline [27]. During the acute phase of IS, a 

significant number of injured immune cells secrete 

various cytokines, while some cells exhibit a SASP 

pattern, which is an important indicator of cellular 

senescence after IS [28].  

 

 
 

Figure 7. Intercellular communication analysis based on scRNA-seq. (A) The intercellular communication in the MCAO and sham 
groups. Microglia (B) and monocytes (C) as receivers assessed the cellular interactions with astrocytes and monocytes. (D) The TF enrichment 
plot in monocytes, microglia, and granulocytes. 
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After validating with rat and human blood samples and 

RT-qPCR of rat brain tissue, ANGPTL4, CCL3, CCL7, 

CXCL16, and TNF were identified as HSRGs. 

ANGPTL4 is a protein associated with endothelial cell 

integrity, inflammation, oxidative stress, and lipid 

metabolism and may be involved in the pathogenesis  

of IS [29]. CCL3 and CCL7, as chemokines, and 

CXCL16, as chemokine ligands, are associated with  

the recruitment and activation of inflammatory cells, 

neuronal survival, and neoangiogenesis, and are 

important mediators of IS [30]. Previous studies have 

reported that CCL3 may play an important role in 

neutrophil recruitment and the development of 

atherosclerosis [31]. Moreover, Waśkiel-Burnat et al. 

recently reported that CCL7 may be a significant 

biomarker of atherosclerosis [32]. Additionally, CXCL16 

is implicated in the immune inflammatory response to 

atherosclerotic plaques, from antigen recognition to the 

migration and infiltration of immune cells into areas of 

inflammation [33, 34]. At the same time, TNF is not 

only associated with neuroinflammation after IS but also 

promotes SASP-stimulated lysosomal extravasation, 

 

 
 

Figure 8. Cell trajectory analysis and identification of microglia. (A) 3D images of cell trajectories and the microglia part are amplified. 

(B) Individual clustering and UMAP mapping for microglia. (C) Cell trajectories of the microglia. (D) The bubble pattern of the top five cell 
marker genes in four microglia clusters. (E) Distribution of four cell clusters in the IS and Sham groups. (F) Quantified expression of HSRGs in 
four cell clusters. 
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Table 3. The top 10 compounds bind to HSRGs. 

Term Adjusted P-value Combined score Genes 

Retinoic acid 0.012148 608812 CCL7, CCL3, ANGPTL4, TNF, CXCL16 

Roflumilast 0.001246 15085.69 CCL3, TNF 

indinavir 0.001246 13656.83 CCL3, TNF 

PCI-24781 0.001246 12459.14 CCL7, CCL3 

Lopinavir 0.001609 8557.58 CCL3, TNF 

Antimycin A 0.002311 5832.819 CCL3, TNF 

isoproterenol 5.20E-04 5550.691 CCL7, CCL3, TNF 

Honokiol 0.002577 5105.231 CCL3, TNF 

15-Acetyldeoxynivalenol 5.20E-04 4787.728 CCL3, ANGPTL4, TNF 

palmitic acid 0.003584 3921.078 CCL3, TNF 

 

leading to cellular senescence [35]. Sequencing data 

from the brain tissue in the MCAO model demonstrated 

good agreement with our PCR validation results, but a 

degree of variability was observed in the peripheral 

blood. For the lack of data from human brain tissue, we 

combined data from human peripheral blood to 

determine HSRGs. In human peripheral blood, CCL3 

and TNF showed decreased expression after IS, which 

may be related to the blood-brain barrier. However, it 

still indicates that the expression changes of HSRGs 

after IS are more sensitive than other SRGs. Moreover, 

we noticed that the expression of Cxcl16 and Tnf in rat 

peripheral blood was different from that in humans, and 

the Temporal analysis showed that their expression trend 

changed again 6 hours after MCAO. We supposed that 

the difference is due to different stages of disease 

development at different points in time. Overall, the 

HSRGs we identified were species-conserved and 

showed some efficacy in predicting the onset of IS. 

 

Our study also suggests that HSRGs expression may 

change over time and that predictive models may need 

to be adjusted over time. After IS, damaged neuronal 

cells release large amounts of senescence-associated 

cytokines that affect immune cell function [13]. 

Therefore, we focused on the different immune cell type 

expressions in the peripheral blood of patients with IS. 

Notably, the IS group had lower numbers of CD8+ 

 

 
 

Figure 9. Molecular docking of proteins corresponding to HSRGs and retinoic acid. (A) The structural diagram of retinoic acid. (B–F) 

Docking simulation of proteins and small molecule compounds. 
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T cells and activated NK cells. Additionally, HSRGs 

were significantly differentially expressed in neutrophils, 

naïve B cells, CD8+ T cells, and T-cell follicular helper 

cells, particularly in neutrophils and CD8+ T cells, where 

all hub genes were differentially expressed. CD8+ T cells 

in the peripheral blood migrate to the brain parenchyma 

after IS [36]. Ritzel et al. recently reported that CD8+ T 

cells enhance inflammation and leukocyte recruitment 

and act as a marker of senescence of the central nervous 

system [37]. Moreover, the majority of research 

suggested that the dynamics of NK cells in IS are 

characterized by an increase in the brain and a decrease 

in the peripheral blood, which was consistent with our 

results [38, 39]. Meanwhile, brain ischemia weakens NK 

cell-mediated immune defenses by interfering with 

neurogenic and intracellular pathways [40].  

 

Among the various cell types in IS, microglia and 

monocytes are prone to show a cellular senescence 

phenotype in the brain tissue (Figure 6). Microglia play 

a key role in IS as resident central nervous system 

immune cells and are a double-edged sword for neural 

healing [41, 42]. Raffaele et al. have shown that 

microglia release microcytes that enhance the prognosis 

of IS by limiting the senescence of immune cells and 

promoting the formation of oligodendrocytes [43]. 

Furthermore, senescence-associated microglia can 

substantially affect brain homeostasis, particularly iron 

storage and metabolism, leading to senescence-related 

susceptibility and poor functional recovery after IS  

[44, 45]. Several studies have also indicated that the 

cellular senescence of monocytes is an important 

feature of immune-senescence that can delay or 

accelerate the establishment of atherosclerotic plaques 

[46, 47]. The present study further resolved the issue of 

communication between these cells and glial cells. We 

found that the intensity of cellular communication 

between granulocytes, microglia, and monocytes, which 

act as receivers in the MCAO group, was significantly 

increased compared to other cells, further illustrating 

the important role of the immune response after IS 

(Figure 7A). Taken together, we suggest that 

intervention in the cellular senescence phenotype of 

immune cells, especially microglia and monocytes, may 

be the key to reducing senescence and improving the 

prognosis of IS. 

 

Microglia are intrinsic brain cells that are important for 

senescence. After subpopulation analysis of microglia, 

MG4 was found to be closely related to cellular 

senescence owing to higher levels of hub gene 

expression in the MCAO group. Based on marker 

genes, MG4 cells were identified as vessel-associated 
microglia, maintaining blood-brain barrier integrity via 

Claudin-5 expression, a tight-junction protein. Vessel-

associated microglia maintain BBB integrity at first by 

expressing the tight-junction protein Claudin-5 and 

making physical contact with endothelial cells, while 

microglia phagocytose astrocytic end-feet and disrupt 

BBB function during chronic inflammation [48]. 

Furthermore, retinoic acid was identified as a small 

compound that could bind to HSRGs. The positive 

effect of retinoic acid in improving the prognosis of IS 

possibly relies on improving blood-brain barrier 

disruption and reducing apoptosis and neuronal damage, 

which has been demonstrated in animal studies but is 

still lacking in clinical studies [49–51]. The reversal 

effects of retinoic acid on cellular senescence 

phenotypes have also been documented [52, 53]. We 

believe that retinoic acid could be used as a possible 

medication to ameliorate the cellular senescence 

phenotype and improve the prognosis of IS. 
 

Even though we rigorously discussed the senescence of 

various cell types after IS, this study has some 

limitations. First, although a clinical prediction model 

constructed based on HSRGs was verified, further 

verification using external data is lacking. Additionally, 

vessel-associated microglia have been identified to play 

an important role in cellular senescence, and further 

flow cytometry to verify their function. Moreover, 

owing to the lack of data from neuronal cells, the 

cellular senescence of neurons after IS was not 

discussed in this study. Finally, retinoic acid has been 

identified as a potential drug for improving the cellular 

senescence phenotype and prognosis of IS; however, 

further experimental validation is required. 
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