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INTRODUCTION 
 

Choroidal neovascularization (CNV) leads to rapid 

deterioration of visual function in neovascular age-

related macular degeneration (AMD), a common and 

complex eye disease in the elderly. Abnormal growth of 

leaky choroidal vessels beneath the retina causes fluid 

exudation and edema, thereby resulting in retinal 

detachment and vision loss [1]. While CNV affects only 

about 10% of AMD patients, it causes up to 90% of 

vision loss associated with AMD. Both angiogenic and 

inflammatory factors contribute to CNV, with vascular 

endothelial growth factor (VEGF) and its signaling 

being the most well studied [2–5]. Intraocular injections 

of anti-VEGF compounds have been successful in 

treating neovascular (wet) AMD, yet many patients 

remain unresponsive to these therapies, suggesting 

additional factors are at work. Development of invasive 

CNV requires not only elevated VEGF levels [2–5], but 

also an increased inflammatory state in the eye which is 

associated with invasion of inflammatory cells [6–8]. 

Many inflammatory mediators such as TNFα are also 
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ABSTRACT 
 

Choroidal neovascularization (CNV) causes acute vision loss in neovascular age-related macular degeneration 
(AMD). Genetic variations of the nuclear receptor RAR-related orphan receptor alpha (RORα) have been 
linked with neovascular AMD, yet its specific role in pathological CNV development is not entirely clear. In 
this study, we showed that Rora was highly expressed in the mouse choroid compared with the retina, and 
genetic loss of RORα in Staggerer mice (Rorasg/sg) led to increased expression levels of Vegfr2 and Tnfa in the 
choroid and retinal pigment epithelium (RPE) complex. In a mouse model of laser-induced CNV, RORα 
expression was highly increased in the choroidal/RPE complex post-laser, and loss of RORα in Rorasg/sg eyes 
significantly worsened CNV with increased lesion size and vascular leakage, associated with increased levels 
of VEGFR2 and TNFα proteins. Pharmacological inhibition of RORα also worsened CNV. In addition, both 
genetic deficiency and inhibition of RORα substantially increased vascular growth in isolated mouse 
choroidal explants ex vivo. RORα inhibition also promoted angiogenic function of human choroidal 
endothelial cell culture. Together, our results suggest that RORα negatively regulates pathological CNV 
development in part by modulating angiogenic response of the choroidal endothelium and inflammatory 
environment in the choroid/RPE complex. 
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linked with the development of CNV [8–10]. In 

addition, higher dietary fat intake [11, 12] and impaired 

lipid transport [13] are implicated in AMD. Both free 

and oxidized lipid metabolites including cholesterol and 

ApoB-containing lipoproteins are found in human 

drusen [14–16], a hallmark of AMD, suggesting a close 

link between lipid metabolism and AMD. 

 

Retinoic acid receptor-related orphan receptor alpha 

(RORα) is a lipid-sensing nuclear receptor that can bind 

cholesterol and other cholesterol-derived oxysterols 

[17, 18], although whether these are physiological 

ligands is still under investigation. Genetic variations in 

RORα are linked with a higher risk of developing 

neovascular AMD in humans [19–21]. Functioning as a 

transcription factor, RORα is a critical regulator of 

many biologic processes including circadian rhythm, 

eye and cerebellar development, regulation of lipid 

metabolism and inflammation [22, 23]. It mediates the 

expression of key enzymes and factors in lipid 

metabolism [24–26], and is also important for immunity 

and inflammatory disorders [22, 27–30]. Ligand binding 

regulates the interaction of RORα with its 

transcriptional co-activators and/or co-repressors, the 

balance of which controls its resultant transcriptional 

activity [22]. Upon binding to a specific ROR response 

elements (RORE) in the regulatory region of target 

genes, RORα and its cofactors together mediate the 

expression of target genes to impact cellular processes 

[22]. 

 

In the retina, RORα has been localized in retinal 

neurons including retinal ganglion cells (RGC) and 

photoreceptors [31–33]. Our previous work found that 

RORα is expressed in both inflammatory cells, 

including retinal macrophages and microglia, and RGCs 

and regulates pathological retinal angiogenesis in a 

mouse model of oxygen-induced retinopathy modeling 

ischemic proliferative retinopathy [34, 35]. Whether 

RORα regulates CNV development remains unclear and 

is the focus of the current study.  

 

Here, we investigated whether RORα regulates CNV 

using a mouse model of laser-induced CNV, mimicking 

the neovascular features of wet AMD. We found that 

expression of RORα was enriched in the mouse 

choroid/RPE complex and upregulated in laser-induced 

CNV. In Staggerer mice (Rorasg/sg) with spontaneous 

mutation of RORα resulting in loss of its function [36], 

genetic deficiency of RORα significantly increased the 

size of laser-induced CNV lesions and associated 

vascular leakage. Treatment with an inverse agonist of 

RORα also worsened laser-induced CNV. Both genetic 
loss and pharmacological inhibition of RORα enhanced 

vascular expansion in choroidal explants ex vivo. 

Modulation of RORα also directly impacted choroidal 

vascular endothelium angiogenesis. Mechanistically, we 

found that loss of RORα led to upregulation of VEGF 

receptor 2 (VEGFR2) and TNFα in mouse choroidal/ 

RPE complex under normal conditions and following 

laser-induced CNV. These observations suggest that 

RORα may negatively regulate pathological CNV 

through modulation of both angiogenic and 

inflammatory pathways. 

 

MATERIALS AND METHODS 
 

Animals 

 

All animal studies were approved by the Institutional 

Animal Care and Use Committee at Boston Children’s 

Hospital. The studies also adhered to the Association 

for Research in Vision and Ophthalmology Statement 

for the Use of Animals in Ophthalmic and Vision 

Research. Heterozygous mutant Staggerer (Rora+/sg), 

B6.C3(Cg)-Rorasg/J, mice (stock no. 002651) were 

purchased from Jackson Laboratory (Bar Harbor, ME, 

USA) and bred to produce age-matched wild type (WT) 

and homozygous mice for this study. In addition, 

C57BL/6J mice (stock no. 000664, Jackson Lab) were 

used for agonist treatment experiments. 

 

Laser-induced CNV 

 

Laser photocoagulation was performed with Micron IV 

imaging system (Phoenix Research Lab, Pleasanton, CA, 

USA) as previously described [37, 38]. Briefly, young 

adult (2–3 months old) male Rorasg/sg and WT mice were 

anesthetized. Male mice were used to avoid influence of 

sex-hormone on biological variations of CNV response in 

female mice as reported previously [37, 39]. After pupil 

dilation, each eye received four laser burns spaced evenly 

around the optic disc. The laser rupture of Bruch’s 

membrane was confirmed by the presence of a vapor 

bubble. Lesions with no observation of bubbles and 

malformed lesions (fused, or with hemorrhage) were 

excluded from the study based on previously established 

criteria [37]. Seven (7) days post-laser, CNV was 

analyzed in choroidal flat mounts with isolectin B4 

(Invitrogen, I21413) staining to visualize and quantify 

lesion size. In addition, before euthanizing mice, fundus 

fluorescein angiography was performed and the severity 

of CNV lesion leakage was graded [40].  

 

For pharmacological modulation of RORα, injection of 

RORα inverse agonist (SR3335) and agonist (SR1078) 

was performed in 6-8-week-old male C57BL/6J mice 

with daily i.p. injection (b.i.d.) from day 0–7 post-laser, 

at a dose of 15 mg/kg (body weight) for both compounds 

[41, 42]. Both compounds were synthesized and 

provided by coauthors T.M.K. and L.A.S.’s groups at 

the Scripps [43]. 
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Fluorescein fundus angiography (FFA) 
 

Fluorescein angiography was performed 7 days after the 

laser photocoagulation [37]. Photographs were taken 

with Micron IV imaging system after injection of 

Fluorescein AK-FLUOR (100 mg/ml, NDC 17478-101-

12, Akorn, Lake Forest, IL, USA). AK-FLUOR stock 

was diluted to 10 mg/mL working solution and injected 

i.p. at 10 μL/g (mouse body weight). The lesions were 

graded as described previously [40], on an ordinal scale 

defined by the spatial and temporal pattern of 

hyperfluorescence: grade 0 (no leakage); grade 1 

(questionable leakage); grade 2A (leaky); grade 2B 

(pathologically significant leakage). 

 

Choroidal sprouting assay 

 

Sprouting of isolated choroidal explants was assayed as 

previously described [38, 44]. Peripheral parts of the 

choroid & sclera layer isolated from 6-8-week-old mice 

were cut into small pieces. Choroidal explants were 

then grown at 37°C with 5% CO2 on growth factor-

reduced Matrigel (30 μL/well; BD Biosciences, San 

Jose, CA, USA) in 24-well plates containing CSC 

complete medium (Cell Systems, Kirkland, WA, USA) 

with media change every other day. Images of explants 

were taken 4 days after plating using a ZEISS 

AxioOberver.Z1 microscope. The area of explant 

sprouting was quantified with ImageJ using a semi-

automated macro plug-in. Treatment with RORα 

inverse agonist (SR3335) and agonist (SR1078) (5 µM) 

or DMSO as control were performed in C57BL/6J 

choroidal explants. 

 

Human choroidal endothelial cell (hCEC) culture 

and MTT and migration assays 

 

HCECs were purchased (Celprogen, 36052-03) and 

cultured in endothelial cell complete medium (M36052-

03S, Celprogen) on extra-cellular matrix coated dishes 

Celprogen) according to vendor instruction. Cells 

between passage number 4 and 7 were treated with 

SR3335, SR1078 (both 10 µM) or vehicle DMSO. Cell 

viability and/or proliferation was assessed after 

treatment using an MTT (3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide) cell metabolic 

activity assay kit (V13154, Fisher Scientific) as 

described previously [45]. Cell migration assay was 

carried out according to previous protocols [46]. 

 

Tissue and cell preparation for real time quantitative 

polymerase chain reaction (RT-qPCR) 
 

Mouse choroidal sample preparation for RNA includes 

RPE/choroidal/sclera complex dissected from the eye 

ball. RPE RNA was isolated and purified from dissected 

WT eye cups after removal of the retina following 

previous protocol [47]. Macrophage cells were murine 

RAW 264.7 cells (TIB-71, ATCC). Human micro-

vascular endothelial cells (hRMEC) were purchased 

from Cell system (ACBRI 181) and mouse brain 

smooth muscle cells (mSMC) were from Cell Biologics 

(C57-6085). Cells were cultured according to vendor 

instructions respectively. 

 

Total RNA was isolated from the homogenized mouse 

eye tissues or cells by PureLink™ RNA Mini Kit 

(Invitrogen) according to the manufacturer’s 

instructions. Synthesis of cDNA was done by reverse 

transcription with iScript™ Reverse Transcriptase (Bio-

Rad, Hercules, CA, USA). Quantitative analysis of gene 

expression was carried out by RT-qPCR using a C1000 

Thermal Cycler (Bio-Rad) and the 2X SYBR Green 

qPCR Master Mix (bimake.com; Houston, TX, USA) 

with primers for specific genes. Copy number of each 

target gene cDNA was normalized to the house keeping 

genes, Rn18s or Gapdh, using comparative CT (ΔΔCT) 

method. 

 

Mouse primers used are listed below:  

 

Rora, forward: 5′-TCCCACCTGGAAACCTGCCAGT-

3′, reverse: 5′-ATGCGAGCTCCAGCCGAGGT-3′; 

Rn18s: forward: 5′-CACGGACAGGATTGACAGATT-

3′, reverse: 5′-GCCAGAGTCTCGTTCGTTATC-3′; 

Gapdh: forward: 5′-AACAGCAACTCCCACTCTTC-

3′, reverse: 5′-CCTGTTGCTGTAGCCGTATT-3′. 

 

Inflammatory genes: Il-1b, forward: 5′-TTCAGGCAG 

GCAGTATCACTC-3′, reverse: 5′-GAAGGTCCACGG 

GAAAGACAC-3′; Il-6, forward: 5′-TAGTCCTTCCTA 

CCCCAATTTCC-3′, reverse: 5′-TTGGTCCTTAGCC 

ACTCCTTC-3′; Nfkb1, forward: 5′-GGAGAGTCTGA 

CTCTCCCTGAGAA-3′, reverse: 5′-CGATGGGTTCC 

GTCTTGGT-3′; Nlrp3, forward: 5′-ATTACCC 

GCCCGAGAAAGG-3′, reverse: 5′-TCGCAGCAAA 

GATCCACACAG-3′; Tnfa, forward: 5′-TCCAGTAG 

AATCCGCTCTCCT, reverse: 5′-GCCACAAGCA 

GGAATGAGAAG-3′. 

 

Angiogenesis genes: Ang1, forward: 5′-AGCTCCACC 

TCGGGTCTACC-3′, reverse: 5′-TGGTCACTCTGGA 

TCTCATTGG-3′; Cxcr4, forward: 5′-AGCCTGTGGA 

TGGTGGTGTTTC-3′, reverse: 5′-CCTTGCTTGATG 

ACTCCCAAAAG-3′; Dll4, forward: 5′-TTCCAGGCA 

ACCTTCTCCGA-3′, reverse: 5′-ACTGCCGCTATTC 

TTGTCCC-3′; Flt1, forward: 5′-GTCACAGATGTG 

CCGAATGG-3′, reverse: 5′-TGAGCGTGATCAGCT 

CCAGG-3′; Fzd4, forward: 5′-TTCCTTTGTTCGGT 
TTATGTGCC-3′, reverse: 5′-CTCTCAGGACTGGT 

TCACAGC-3′; Kdr (Vegfr2), forward: 5′-TTTGGCA 

AATACAACCCTTCAGA-3′, reverse: 5′-GCTCCAGT 
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ATCATTTCCAACCA-3′; Notch1, forward: 5′-CCCT 

TGCTCTGCCTAACGC-3′, reverse: 5′-GGAGTCCTG 

GCATCGTTGG-3′; Pdgf, forward: 5′-TGTGCCCATT 

CGCAGGAAG-3′, reverse: 5′-GAGGTATCTCGTAA 

ATGACCGTC-3′; Plxnd1, forward: 5′-GCTGACTGTA 

GCCTATGGGGA-3′, reverse: 5′-GCCATCTGGTG 

GGATGTCAT-3′; Tspan12, forward: 5′-TGCTTGGA 

TGAGGGACTACC-3′, reverse: 5′-AACGTTCCGAAG 

TACCATGC-3′; Vegfa, forward: 5′-GGAGACTCT 

TCGAGGAGCACTT-3′, reverse: 5′-GGCGATTTAG 

CAGCAGATATAAGAA-3′. 

 

Human primers used are listed below: 

 
RORA, forward: 5′-ACTCCTGTCCTCGTCAGAAGA-

3′, reverse: 5′-CATCCCTACGGCAAGGCATTT-3′; 

GAPDH, forward: 5′-CCCTTCATTGACCTCAACTA 

CA-3′, reverse: 5′-ATGACAAGCTTCCCGTTCTC-3′. 

 

Western blot analysis  

 

Choroid/RPE complex was isolated from dissected 

mouse eyes at 1, 3, 5, and 7 days post-laser 

photocoagulation. Tissues were lysed in RIPA buffer 

(Thermo Scientific) with protease inhibitors and 

phosphatase inhibitors (Sigma-Aldrich). Total protein 

concentration was determined via a bicinchoninic acid 

(BCA; Thermo Fisher Scientific, 23227) assay. Equal 

amounts of protein lysates were then denatured using a 

1:10 mixture of 2-mercaptoethanol and 4X Laemmli 

buffer, followed by heating to 100°C for 5 minutes. 

After SDS-PAGE separation, proteins were transferred 

to polyvinylidene fluoride (PVDF) membranes and 

probed with RORα antibody (Abcam, ab60134), 

VEGFR2 antibody (R&D Systems, AF644), TNFα 

antibody (Cell Signaling Technology (CST), 11948), 

and β-actin antibody (CST, 3700). Secondary 

antibodies used are: HRP-conjugated mouse IgG, 

rabbit IgG (GE Healthcare UK Limited, NA9310V  

and NA934V, respectively) and goat IgG 

(SouthernBiotech, 6160-05). ECL Chemiluminescent 

Substrate Reagent Kit (Invitrogen) was used to 

generate signal for densitometry quantification. 

 

Retinal cross section and immunohistochemistry 

 

Mouse eyes were enucleated and fixed in 4% 

paraformaldehyde in PBS at room temperature for  

1 hour, followed by embedding in optimal cutting 

temperature (OCT) compound, and frozen for 

cryosection. Immunohistochemistry on retinal sections 

was performed as described in previous protocols [35, 

48]. Primary antibodies for RORα (Abcam, ab278099) 
were used and sections were costained with isolectin B4 

(Invitrogen, I21413) overnight at 4°C. After washing, 

the retinas were incubated with secondary antibody 

(Thermo Fisher, A11034) for 1 hour at room 

temperature followed by imaging with a fluorescence 

microscopy (Axio Observer Z1, Carl Zeiss 

Microscopy). 

 

Statistical analysis 

 

Quantitative data are presented as means ± SEM 

(standard error of the mean), with the exception of 

qPCR results, which are represented as the mean ± SD 

(standard deviation). Asterisks represent the P-value 

according to two-tailed Student’s t-test (2 groups), One-

way ANOVA (more than 2 groups), or Two-way 

ANOVA (two factors, more than 2 groups): *P ≤ 0.05; 
**P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001.  

 

Data and materials availability 

 

The paper contains all methods and data needed to 

evaluate the conclusions. Additional related data and 

materials are available upon request. 

 

RESULTS 
 

RORα was enriched in the mouse choroid and 

regulated expression of angiogenic and inflammatory 

genes  

 

We first compared relative gene expression levels of 

Rora in different mouse ocular tissues and cells. 

Expression of Rora mRNA was highly enriched in 

the normal choroid/RPE complex with about 6-fold 

increase compared with the retina (Figure 1A). 

Because the choroid/RPE complex also contains RPE 

and microglia/macrophages, we also compared Rora 

expression levels in isolated mouse RPE cells and 

cultured mouse macrophage (RAW264.7) cells, both 

of which showed lower expression levels than the 

combined choroid/RPE complex, suggesting that 

Rora is enriched in the mouse choroid (Figure 1A). 

Immunohistochemistry staining of eye cross sections 

also showed colocalization of RORα antibody 

staining with isolectin-positive choroidal vessels, in 

addition to RORα antibody staining in RPE 

(Figure 1B). 

 

Next, we evaluated expression of inflammatory and 

angiogenic genes in RORα-deficient (Rorasg/sg) 

choroid/RPE complex. Expression of Rora mRNA was 

very low and barely detectable in Rorasg/sg choroid/RPE 

compared with age-matched wild type (WT) controls 

(Figure 1C), confirming its genetic deficiency. 

Importantly, Rorasg/sg choroid/RPE complex had much 

higher expression levels of inflammatory cytokines, 

with ~8-fold upregulation of Tnfa mRNA, in addition to 

upregulation of Il1b, Il6, Il17a, and Nlrp3, compared 
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with WT (Figure 1C). In addition, expression of VEGF 

receptor 2 (Vegfr2, or Kdr) was significantly higher 

with ~7-fold upregulation in Rorasg/sg choroid/RPE 

complex (Figure 1D), while many other angiogenic-

related factors (Vegfa, Pdgf, Ang1, and Dll4) and 

receptors (Vegfr1, Plxnd1, Fzd4, Tspan12, Notch1&4, 

and Cxcr4) were either unchanged or modestly down-

regulated. These results indicate that RORα may 

regulate expression of both angiogenic and 

inflammatory genes and loss of RORα may promote an 

inflammatory and angiogenic environment around the 

choroid. 

 

Genetic deficiency of RORα worsened laser-induced 

CNV 

 

To determine the role of RORα in the regulation of 

CNV, we used a mouse model of laser-induced CNV 

to mimic the neovascular aspect of AMD (Figure 2A). 

Young adult (2–3-month-old) Rorasg/sg and WT mice 

were exposed to laser-induced CNV model. At one 

week post laser, Rorasg/sg choroidal flat mounts 

showed greater than 2-fold increase in CNV lesion 

area compared to WT (Figure 2B, 2C). In addition, 

genetic deficiency of RORα resulted in a higher 

percentage of leaky CNV lesions (Figure 2D, 2E). 

Over 78% of Rorasg/sg CNV lesions were graded as 

leaky (including 37.5% of grade 1, 31.25% of grade 

2A, and 9.38% of grade 2B lesions), while in WT mice 

the percentage of leaky lesions was approximately 

58% (Figure 2D, 2E). These findings of larger, leakier, 

and hence more severe CNV lesions in RORα-

deficient mice suggest a negative regulatory role of 

RORα in CNV formation. 

 

Loss of RORα upregulated VEGFR2 and TNFα 

protein levels in laser-induced CNV 

 

Having established that loss of RORα exacerbates laser-

induced CNV, we next evaluated whether dysregulation 

of angiogenic and inflammatory genes such as VEGFR2 

and TNFα as seen in normal Rorasg/sg choroid may

 

 
 

Figure 1. RORα was enriched in mouse choroid and regulated inflammatory and angiogenic genes. (A) Relative Rora 

expression in different types of mouse ocular tissues, namely retina and RPE/choroid complex, and cells (isolated pure RPE from mouse 
eyes and RAW264.7 macrophage cell line) measured with quantitative RT-PCR and normalized to housekeeping gene Rn18s. The choroid 
complexes expressed the highest expression levels of Rora compared to the retinas, RPE, and macrophage cells (n = 3/group). (B) 
Immunohistochemistry staining of retinal cross sections shows RORα antibody staining (green), vascular endothelium marker isolection 
(red), and DAPI (blue). Ch: choroid. Scale bars, 100 µm. (C, D) q-PCR analysis for the expression of Rora and inflammatory (C) and angiogenic 
(D) genes in the RPE/choroid complexes from Rorasg/sg and WT mice in normal condition without CNV showed that deficiency of RORα led 
to significant increase in Vegfr2 and Tnfa mRNA levels, in addition to changes in other inflammatory and angiogenic genes (n = 3 
mice/group). Data are presented as means ± SEM. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001. 
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stimulate CNV formation. Protein levels of RORα were 

highly upregulated over time at 1, 3, and 5 days after 

laser in C57BL/6J mice (Figure 3A, 3B), which may 

reflect hypoxia-stimulated RORα expression in CNV 

after laser-induced tissue injury, since RORα is known 

to be hypoxia-responsive. 

 

Next we evaluated whether VEGFR2 and TNFα, both 

upregulated in Rorasg/sg choroid/RPE complex (Figure 

1C, 1D) are also affected in Rorasg/sg eyes with CNV. 

VEGFR2 is a major receptor for VEGF, the main 

inducer of both clinical and experimental CNV [5]. On 

the other hand, TNFα, a major inflammatory cytokine 

secreted by macrophages, T cells, vascular endothelium 

and neurons, also primes vascular endothelium for their 

angiogenic response [49]. We found that protein levels 

of VEGFR2 and TNFα were strongly upregulated in 

Rorasg/sg vs. WT choroid/RPE complex 7 days after 

laser-induced CNV (Figure 3C, 3D), consistent with 

worsened CNV lesions in Rorasg/sg eyes (Figure 2). 

Together, these findings suggest that genetic loss of 

RORα may increase laser-induced CNV severity as the 

result of enhanced VEGFR2 and TNFα levels in the 

choroid/RPE complex (Figure 3D). 

 

 
 

Figure 2. Genetic deficiency of RORα increased lesion size and vascular leakage in a mouse model of laser-induced 
choroidal neovascularization (CNV). (A) A cartoon illustrating laser-induced CNV model in mice. Young adult mice are exposed to laser, 
which ruptures Bruch’s membrane and causes CNV. (B) Representative images of choroidal flat mounts with laser-induced CNV from wild 
type (WT) and RORα-deficient (Rorasg/sg) mice stained with isolectin IB4 (red) showing four lesions, with optic disc in the center. Scale bars, 
500 µm. (C) Quantification of the relative fold-change of CNV lesion areas showed that RORα-deficient mice have larger CNV lesion sizes 
compared to age-matched WT (n = 22–23 eyes/group). Each data point represents averaged lesion size from one eye. Solid horizontal bars 
indicate means ± SEM; ****P ≤ 0.0001. (D) Representative images of fundus fluorescein angiography (FFA) from WT and Rorasg/sg mice with 
laser-induced CNV at day 6 after laser photocoagulation. (E) Lesions were graded on an ordinal scale of the fluorescein (D; green) leakage 
appearance: grade 0 (no leakage); grade 1 (questionable leakage); grade 2A (leaky); grade 2B (pathologically significant leakage). Rorasg/sg 

mice revealed much fewer grade 0 lesions and more grade 1, 2A and 2B lesions compared to WT mice (n = 10 mice/group). 
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Genetic loss and pharmacological inhibition of 

RORα increased choroidal explant sprouting 

abilities ex vivo 

 

To explore the effects of RORα on choroidal angiogenic 

ability, we next performed ex vivo sprouting assays 

using mouse choroidal explants, which partly maintain 

the cellular matrix and environment in living choroid 

(Figure 4A). In line with the results from the in vivo 

laser-induced CNV model, choroidal explants isolated 

from Rorasg/sg mice exhibited about 2-fold increase in 

sprouting abilities compared with the choroidal explants 

from age-matched WT (Figure 4B, 4C), suggesting 

increased choroidal angiogenic potential in the absence 

of RORα. 

 

To modulate RORα pharmacologically, synthetic RORα 

inverse agonist SR3335 [41] and RORα/γ agonist 

SR1078 [42] were developed. These compounds can 

bind to the ligand binding domain of RORα to modulate 

its transcriptional activity [43]. Choroidal explants 

treated with RORα modulators showed results 

consistent with Rorasg/sg mice, where choroidal explants 

treated with SR3335 to inhibit RORα revealed 

significantly larger (~60%) sprouting areas compared 

with the vehicle controls, and RORα activation with 

SR1078 treatment showed a trend of reduced sprouting 

ability ex vivo (Figure 4D, 4E). Together, these data 

suggest that both genetic and pharmacological 

modulation of RORα directly altered the angiogenic and 

sprouting ability of choroid.  

 

Pharmacological modulation of RORα affected 

laser-induced CNV lesions 

 

To further corroborate the effects of RORα on CNV, we 

administered pharmacological modulators of RORα 

(inverse agonist SR3335 or agonist SR1078) to 

C57BL/6J mice (daily intraperitoneal injection) after 

laser-induced CNV (Figure 5A). SR3335 treatment for 

RORα inhibition resulted in substantially increased 

CNV lesion size (Figure 5B, 5C), consistent with our 

findings in mice with systemic deficiency of RORα 

(Figure 2). The administration of SR1078 for RORα 

activation showed a trend of attenuated severity of CNV 

lesion size (Figure 5B, 5C). In addition, more CNV 

lesions with SR3335 treatment and less with SR1078 

were graded as leaky in grade 1 and 2 (Figure 5D). One 

might note that the percentage of overall leaky lesion 

differs in control-treated C57BL/6J mice vs. WT mice 

(in Figure 2), potentially reflecting difference in mouse 

colony, FFA procedures and the inherent variability in 

the CNV model itself. Together these data indicating 

that pharmacological modulation of RORα activities 

may influence the development of CNV and could serve 

as a potential strategy for controlling pathological CNV. 

 

 
 

Figure 3. RORα was induced in CNV and regulated VEGFR2 and TNFα levels in laser-induced CNV. (A, B) Western blotting 

images (A) and densitometric analysis (B) of protein levels of RORα from choroid/RPE complexes with laser-induced CNV from C57BL/6J 
mice at 1, 3, 5 and 7 days (d) post-laser, compared with β-actin. β-actin served as loading control. Each band represents pooled sample 
from 3 retinas. n = 3 mice/group. (C, D) Western blotting images (C) and densitometric analysis (D) showing TNFα and VEGFR2 protein 
levels in choroid/RPE complexes at 3, 5, and 7 days after laser-induced CNV in Rorasg/sg and WT eyes, compared with β-actin as loading 
control. Each band represents pooled sample from 3 retinas. n = 3 mice/group. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001. 
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Angiogenic function of human choroidal endothelial 

cells was directly regulated by pharmacological 

modulation of RORα  

 

To evaluate whether RORα may function directly in 

human choroidal endothelium, we first assessed relative 

mRNA expression levels of RORα in human choroidal 

endothelial cells (hCECs), human microvascular 

endothelial cells (hRMECs), mouse brain smooth 

muscle cells (mSMCs) and whole mouse retina. Smooth 

muscle cells were examined because of their presence in 

choroid vascular tissue. RORα mRNA was highly 

expressed in hCECs as compared with hRMECs, and 

expression of RORα mRNA in mSMCs was barely 

detectable (Figure 6A), confirming enrichment of 

RORα in choroidal vascular endothelium. 

 

Next, hCECs were treated with RORα inverse agonist 

SR3335 or agonist SR1078. Choroidal endothelial cell 

viability and/or proliferation was assessed using MTT 

assay. We found that SR3335 treatment showed 

significant increase (p ≤ 0.05) in cellular metabolic 

activity of hCECs as compared to the vehicle control, 

whereas a decreased trend was observed upon SR1078 

treatment (Figure 6B). In addition, RORα inhibition 

with SR3335 significantly promoted hCEC migration, 

and in contrast, RORα activation with SR1078 

suppressed hCEC migration (Figure 6C, 6D). These

 

 
 

Figure 4. RORα regulates choroidal sprouting ex vivo. (A) A cartoon illustrates the experimental steps of choroidal explant assay by 

isolation, dissection and culture of choroid fragments. (B) Representative images of choroidal sprouting assays from age-matched WT and 
Rorasg/sg mice. Scale bars, 1 mm. (C) Quantitative analysis of the choroidal sprouting area from 5 days after explantation showed that 
Rorasg/sg choroids have significantly increased sprouting ability ex vivo compared to WT. n = 3–5 mice (10–12 explants)/group. (D) 
Representative images of choroidal explants isolated from C57BL/6J mice and treated with SR3335 (RORα inverse agonist), SR1078 (RORα/γ 
agonist) or vehicle control DMSO (all at 5 µM). Scale bars, 1 mm. (E) Quantification of the sprouting area indicated that inhibition of RORα 
with SR3335 significantly increased choroidal sprouting area while SR1078 reduced the choroidal sprouting ability compared to the DMSO 
(control) treated group. n = 3 mice/group; 10–12 explants per treatment. Data are presented as mean ± SEM. *P ≤ 0.05. 
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Figure 5. Pharmacological modulation of RORα affects CNV lesion size in mice. (A) A cartoon of the drug treatment timeline in 

laser-induced CNV. RORα inverse agonist (SR3335), agonist (SR1078), or vehicle control was intraperitoneally injected (daily) into C57BL/6J 
mice after laser-induced CNV. (B) Representative images of isolectin-stained (red) choroidal flat mounts, isolated from mice of all treatment 

groups on day 7 after laser photocoagulation. Scale bars, 500 m. (C) Quantification of isolectin-stained CNV area showed significantly 
increased CNV lesion size in the mice treated with SR3335, and while as the CNV lesion size in the SR1078-treated group did not show 
significant change, compared to the vehicle control treated group (n = 5–8 mice/group). (D) Vascular leakage from CNV lesions were 
assessed by fundus fluorescein angiography (FFA) at day 6 after laser photocoagulation and graded on an ordinal scale of the fluorescein 
leakage appearance: grade 0 (no leakage); grade 1 (questionable leakage); grade 2A (leaky); grade 2B (pathologically significant leakage). 
n = 5–8 mice/group. Data are presented as mean ± SEM. *P ≤ 0.05. 
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data suggest that pharmacological modulation of RORα 

activities directly regulates choroidal angiogenesis in 

the vascular endothelium, which underlies the influence 

of RORα on the development of CNV lesions. 

 

DISCUSSION 
 

In this study, we present findings for a protective role of 

RORα in a mouse laser-induced CNV model of 

neovascular AMD. We found that the expression of 

RORα was enriched in the mouse choroid and 

particularly choroidal endothelium, consistent with 

previous work finding presence of RORα in human 

aortic vascular endothelium [50]. Both genetic 

deficiency and pharmacological inhibition of RORα 

worsened laser-induced CNV, suggesting an anti-

angiogenic role of RORα in CNV, in line with a 

previous study in a hind limb ischemia model that 

reported increased ischemia-induced angiogenesis in 

Rorasg/sg mice [51]. Previously in an oxygen-induced 

retinopathy model and in Vldlr−/− mice with 

spontaneous subretinal neovascularization, we found 

that either genetic loss or pharmacological inhibition of 

RORα suppressed retinal neovascularization in neonatal 

mice [34]. These results together reflect distinct tissue-

specific anti-angiogenic roles of RORα in regulating

 

 
 

Figure 6. Pharmacological modulation of RORα regulates human choroidal endothelial cell angiogenic function. (A) Relative 

mRNA expression of RORα in human choroidal endothelial cell (hCEC), human retinal microvascular endothelial cell (hRMEC), mouse brain 
smooth muscle cell (mSMC) and mouse whole retina (mRetina), measured with quantitative RT-PCR and normalized to housekeeping gene 
GAPDH (human) and Gapdh (mouse) respectively. n = 3/group. (B) HCECs were treated with RORα inverse agonist (SR3335), agonist 
(SR1078), or DMSO vehicle control. MTT assay was performed to evaluate cell viability and proliferation. Cell growth was calculated as fold 
change of relative absorbance normalized to the values at 0 hr. n = 3/group. (C, D) Quantification analysis (C) and representative images (D) 
of hCEC migration assay. Cells were grown to confluence and treated with SR3335, SR1078, or DMSO vehicle control. Mitomycin was used 
to inhibit cell proliferation. A scratch wound was generated in the cells. Cell migration were measured after 24 hr and quantified as new cell 
coverage areas normalized by the original wound areas. n = 4/group. Scale bar: 250 µm. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001. 
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adult tissue angiogenesis in the choroid and peripheral 

organs, which may differ from its pro-angiogenic role in 

neonatal retinal vasculature under pathological 

conditions. Indeed, RORα is expressed in much higher 

levels in choroidal endothelium than in retinal 

microvascular endothelium (Figure 6). In addition, 

RORα deficiency stimulated a pro-inflammatory 

environment in the CNV choroid in this study, whereas 

in the oxygen-induced retinopathy model [34], RORα 

deficiency lead to an anti-inflammatory profile in 

neonatal retinas. These endothelial specific and 

inflammatory difference together may underlie in part 

the different vascular response to RORα in the two 

ocular vascular beds and angiogenesis models. 

 

Rorasg/sg choroid with CNV exhibited enhanced levels 

of VEGFR2 and TNFα proteins, which may explain the 

exacerbated laser-induced CNV lesions. VEGFA is the 

major inducer of CNV in wet AMD and also the most 

important angiogenic factor in experimental CNV [5]. 

While loss of RORα did not significantly alter 

expression of Vegfa, it enhanced VEGFR2 expression 

and thereby VEGF signaling response, which 

contributes to CNV formation. Other angiogenesis-

related genes including VEGFR1 showed modest 

changes in mRNA levels suggesting their potentially 

limited impact. VEGFR2 is expressed abundantly in 

vascular endothelium including the choroid, and RORα 

expression was also found to be enriched in the choroid, 

suggesting a vascular specific role RORα of choroidal 

RORα in regulating CNV. This notion is consistent with 

our findings in ex vivo choroidal explants and hCECs, 

where genetic loss and pharmacological inhibition of 

RORα both promoted vascular growth in choroidal 

explants, and RORα modulation directly regulated 

hCEC angiogenesis. In addition, TNFα protein levels 

were also upregulated in Rorasg/sg choroid, along with 

several other inflammatory cytokines and factors such 

as Nlrp3, further promoting the choroidal inflammatory 

environment to potentially sensitize VEGF response and 

exacerbate CNV (Figure 7). Previously, inhibition of 

VEGF or TNFα was found to block or reduce laser-

induced CNV in a monkey model [52]. Together our 

findings suggest that RORα may regulate both VEGF 

 

 
 

Figure 7. A schematic model for the effects of RORα on regulating CNV in wet AMD. Deficiency of RORα in choroid vessels 

directly induces expression of VEGF receptor VEGFR2, leading to enhanced choroidal endothelial angiogenic response and exacerbated 
pathological CNV formation. RORα deficiency may also influence CNV via increased TNFα, and chronic inflammation in the choroidal local 
environment, to potentially sensitize VEGF angiogenic response and thereby CNV formation. Abbreviations: BrM: Bruch’s membrane; CNV: 
choroidal neovascularization; Mc: microglial cell; Mp: macrophage; RPE: retinal pigment epithelium. 
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and TNFα to regulate both angiogenesis and 

inflammation in CNV. Previously in an oxygen-induced 

retinopathy model we found that genetic deficiency of 

RORα regulates macrophage polarization and retinal 

inflammation with dampened TNFα [34]. RORα also 

plays a critical role in regulating TH17-driven inflam-

matory disorders [27, 30], suggesting a diverse and 

tissue-dependent role of RORα in inflammation 

regulation. As a constitutively active transcription 

factor, it is unclear through what mechanisms loss of 

RORα induced upregulation of VEGFR2, TNFα and 

other downstream factors. Whether this reflects direct 

transcriptional repression through potentially negative 

response elements [53] on their RORE sites, or indirect 

regulation via other intermediate factors will await 

further studies.  

 

We found enriched levels of RORα in the mouse 

choroid and human choroidal vascular endothelial cell 

culture, consistent with a recent report of nuclear 

receptor atlas showing abundant levels of RORα in 

freshly isolated choroid and primary choroidal 

endothelial cells from human donors [54]. RORα was 

also present in RPE and macrophages. Macrophages 

contribute greatly to formation of CNV [55], whereas 

RPE, a main producer of secreted VEGF, also 

influences CNV formation significantly. Therefore, 

potential cell-specific contribution of RORα from RPE 

or inflammatory cell sources towards the observed 

CNV effects cannot be excluded. In addition, 

localization of RORα was also reported in retinal 

neurons such as RGCs [33, 35] and cone photo-

receptors [56], although the relative contribution of 

RORα in these retinal neurons in CNV formation is 

likely limited. Choroid tissue also contains smooth 

muscle cells, although our analysis of mouse brain 

smooth muscle cells showed undetectable levels of 

RORα expression (Figure 6). A previous study found 

RORα expression in human aortic smooth muscle cells 

[50], hence RORα expression in smooth muscle cells 

may be organ- or species-dependent. Additional 

investigation exploring the cell specific contribution of 

RORα in CNV will help address this limitation of the 

current study. Studying other potential molecular 

targets of RORα in CNV is also needed in future work, 

as well as the physiological roles of natural RORα 

ligands in CNV formation. 

 

The natural ligands for RORα are cholesterol derivatives, 

and RORα regulates cholesterol homeostasis in the liver 

[57]. Dyslipidemia is closely linked with clinical AMD, 

and both cholesterol and cholesteryl fatty acid esters are 

found to be highly concentrated in the extracellular 

milieu around Bruch's membrane and enriched  

in drusen [58]. One of them, 7-ketocholesterol, 

accumulates with age in ocular tissues and in drusen 

[58] and promotes choroidal endothelial cell migration 

and neovascularization by inducing endothelial-

mesenchymal transition [58]. RORα may be the link 

between these cholesterol metabolites and choroidal 

angiogenesis and inflammation, leading to worsened 

CNV in the absence of RORα. 
 

Pharmacological modulation of RORα with a synthetic 

agonist and inverse agonist regulated vascular growth in 

choroidal explants and in laser-induced CNV, 

suggesting RORα may be a potential druggable target 

for managing CNV. RORα may target both angiogenic 

and inflammatory pathways, which can offer more 

advantage than targeting a single pathway. While 

SR1078 only showed limited protection towards 

choroidal explant and CNV in this work, future 

development of more potent or more efficient RORα-

specific agonists may provide better protection. 

Currently, AAV-delivery of RORα (OCU410) is being 

evaluated by Ocugen Inc. (Malvern, PA, USA) as a 

potential dry AMD treatment with a planned clinical 

trial. Targeting RORα and its related pathway may thus 

provide a new way to tackle CNV in late neovascular 

AMD or even early dry AMD by addressing both angio-

genic and inflammatory pathogenic factors, which can 

offer more advantage than targeting a single pathway.  
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