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INTRODUCTION 
 

N-methyl-D-aspartate (NMDA) receptors are integral 

components in diverse physiological processes, exerting 

a crucial influence on synaptic plasticity, cognitive 

functions, psychiatric conditions, and the intricate 

connectivity of neural networks [1–6]. These receptors 

play a significant role in regulating signal transmission 

and information processing in the brain. Their 

involvement in synaptic plasticity underscores their 

importance in shaping the strength and efficiency of 

neuronal connections, which is pivotal for learning and 

memory. The age-associated decrease in NMDA 

receptor function profoundly influences both synaptic 

and cognitive function. [7–21]. The NMDA receptor 

requires the binding of glutamate and the co-agonist D-

serine for activation [22–24]. Results from various 

investigations suggest that D-serine serves as the 

principal endogenous co-agonist for the activation of 

NMDA receptors within brain regions that are 

associated with cognition [25–27].  

 

D-serine levels depend on serine racemase (SR), the 

enzyme that converts L-serine to D-serine [28–30]. 

Under physiological conditions, D-serine is produced 

by neuronal SR and is released postsynaptically [27, 
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ABSTRACT 
 

Aging is associated with a decrease in N-methyl-D-aspartate (NMDA) receptor function, which is critical for 
maintaining synaptic plasticity, learning, and memory. Activation of the NMDA receptor requires binding of the 
neurotransmitter glutamate and also the presence of co-agonist D-serine at the glycine site. The enzymatic 
conversion of L-serine to D-serine is facilitated by the enzyme serine racemase (SR). Subsequently, SR plays a 
pivotal role in regulating NMDA receptor activity, thereby impacting synaptic plasticity and memory processes 
in the central nervous system. As such, age-related changes in the expression of SR could contribute to 
decreased NMDA receptor function. However, age-associated changes in SR expression levels in the medial and 
lateral prefrontal cortex (mPFC, lPFC), and in the dorsal hippocampal subfields, CA1, CA3, and dentate gyrus 
(DG), have not been thoroughly elucidated. Therefore, the current studies were designed to determine the SR 
expression profile, including protein levels and mRNA, for these regions in aged and young male and female 
Fischer-344 rats. Our results demonstrate a significant reduction in SR expression levels in the mPFC and all 
hippocampal subfields of aged rats compared to young rats. No sex differences were observed in the 
expression of SR. These findings suggest that the decrease in SR levels may play a role in the age-associated 
reduction of NMDA receptor function in brain regions crucial for cognitive function and synaptic plasticity. 
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31]. However, D-serine is also produced by reactive  

glia under inflammatory conditions such as injury  

and neurodegenerative disease [32–35]. D-serine 

availability modulates the maturation of neuronal 

circuitry and is involved in influencing various behavior 

measures [36, 37]. Previous studies have indicated a 

decrease in D-serine levels with aging, which was 

associated with alterations in glutamatergic synaptic 

transmission [26, 38–43]. Results demonstrate that an 

age-associated decrease of D-serine and its enzyme, SR, 

in the hippocampus [40, 41, 44, 45] and that NMDA 

receptor hypofunction in the hippocampus can be 

rescued by exogenous D-serine [40, 41, 46]. A recent 

study found that secreted amyloid protein precursor-α 

(sAPPα), derived from the cleavage of amyloid protein 

precursor, notably enhances NMDA receptor function 

exclusively in aged animals, restoring impaired long-

term potentiation (LTP) associated with aging. Yet, this 

effect is significantly reduced in SR knockout mice 

[47]. Overall, the results suggest that D-serine is crucial 

for the activation of NMDA receptors and NMDA 

receptor-mediated synaptic plasticity. Therefore, it is 

conceivable that age-related alterations in the 

expression of SR may contribute to a reduction in 

NMDA receptor function. 

 

Various brain regions exhibited similar age-related 

transcriptional changes. However, region-specific 

transcriptions were associated with the performance of 

cognitive tasks that depended on the corresponding brain 

region [48–50]. In studies concentrating on the three main 

hippocampal subregions, impaired spatial memory is 

correlated with substantial transcriptional differences in 

CA1 and CA3 regions but only minimal differences in the 

dentate gyrus (DG) [50–52]. The rodent dorsal 

hippocampus, corresponding to the human posterior 

hippocampus, is involved in the cognitive process of 

learning and memory associated with navigation, 

exploration, and locomotion [53]. Different hippocampal 

subregions (CA1, CA3, DG) contribute uniquely to 

memory, specializing in various aspects of formation, 

storage, and retrieval. This functional diversity enables the 

hippocampus to support complex mechanisms involved in 

spatial, episodic, and declarative memory. The unique 

properties and connectivity of each subregion contribute 

to the intricate and dynamic nature of the overall memory 

system in the hippocampus. Each subregion of the 

hippocampus has a unique contribution to the processing 

of memory including pattern separation, and pattern 

completion [54, 55]. Therefore, we further subdivided the 

dorsal hippocampus into CA1, CA3, and DG, and 

assessed the protein expression and mRNA levels in these 

areas. We also determined expression of SR in two 

additional regions: the ventral hippocampus (VH), which 

is involved with emotional behavior [53, 56] and the 

hypothalamus, a major link between the nervous system 

and the endocrine system which is also responsible for 

maintaining homeostasis [57]. Synonymous with previous 

research, we confirmed reduced protein and mRNA 

expression of SR in the aged rat hippocampus, with the 

greatest reductions seen in the CA3 and CA1 subregions. 

Interestingly, reduced SR expression was found in 

additional areas of interest including VH and hypo-

thalamus. Our results of decreased SR expression in the 

VH with aging align with prior findings indicating 

reduced SR activity in the neuropil of the radial layer of 

the CA1 field in aged rats exposed to stress [58, 59]. 

 

Previous work from our lab suggested that an age-

related decrease in NMDA receptor function in the 

medial prefrontal cortex (mPFC) contributes to 

impaired executive function in rodents [15]. 

Additionally, our recent results demonstrate that the 

viral vector-mediated increase in SR expression within 

the mPFC of middle-aged rats led to effective 

contingency acquisition in visual discrimination tasks, 

likely attributable to improved attentional function. In 

addition, electrophysiological recordings revealed a 

substantial enhancement in NMDA receptor-mediated 

synaptic responses recorded from the mPFC following 

the upregulation of SR expression [60]. Therefore, we 

asked whether SR could be reduced in the prefrontal 

cortex of our rat model. Results from previous studies 

have shown that there is no loss of SR in the cerebral 

cortex [41]. However, results were not delineated to 

specific subregions. As such, we isolated the prefrontal 

cortex into medial and lateral PFC (mPFC, lPFC)  

areas and performed Western blotting and reverse 

transcription-polymerase chain reaction (RT-PCR) 

assays on these subregions to access the expression 

levels of protein and mRNA respectively. Interestingly, 

we found a significant reduction of SR expression levels 

in both regions. These results reveal a decline in SR 

expression levels in the mPFC, lPFC, and all 

hippocampal subfields during aging. This decline could 

contribute to a reduction in NMDA receptor-mediated 

synaptic transmission and impaired cognition. 

 

MATERIALS AND METHODS 
 

Subjects 

 

Young (4-6 months) and aged (22-26 months) male and 

female Fisher 344 rats were sourced from the National 

Institute on Aging via the University of Florida Animal 

Care and Service facility. All rats were pair-housed and 

maintained on a 12:12 h light cycle with ad libitum 

access to food and water. Before handling, rats were 

habituated to the facilities for at least one week. All 

experiments were conducted following the guidelines 

described by the US Public Health Service Policy on 

Humane Care and Use of Laboratory Animals and were 
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approved by the University of Florida Institutional 

Animal Care and Use Committee. 

 
Tissue collection 

 

Rats were weighed and anesthetized with isoflurane 

before decapitation. Brains were removed and the 

hypothalamus, left and right PFC, and left and right 

hippocampus were rapidly dissected on an ice-cold dish. 

Each half of the PFC was subdivided into medial (mPFC) 

and lateral (lPFC). Each hippocampus was first divided 

into dorsal and ventral (VH) areas. The dorsal 

hippocampus was further subdivided into CA1, CA3, and 

DG. All samples were flash-frozen in liquid nitrogen and 

stored at -80° C until processing for Western blotting or 

reverse transcription-polymerase chain reaction. 

 

Western blotting 

 

For Western blot analysis, samples were sonicated in 

radio-immunoprecipitation assay (RIPA) buffer (Thermo 

Fisher, Waltham, MA, USA) supplemented with 

phosphatase and protease inhibitors, and ethylene-

diaminetetraacetic acid (EDTA) (Thermo Scientific). 

Lysates were centrifuged at 20,000 xg for 10 min at 4° C. 

Protein concentration was measured using a Pierce 

bicinchoninic acid assay (BCA) protein assay (Thermo 

Scientific Cat# 23227). Sample lysates were denatured in 

Laemmli buffer (BioRad, Hercules, CA, USA) 

containing 2-mercaptoethanol and boiled for 5 minutes. 

All samples and controls (10 µg/well) plus a standard 

were loaded into a 4-15% TGX-stain-free gel (Bio-Rad 

Cat# 5678085). Technical replicates (duplicates) were 

randomly positioned on the same gel. Following 

electrophoresis, gels were UV-activated (Bio-Rad 

ChemiDoc) for 1 minute prior to transferring to LF-

PVDF membranes using the Trans-Blot Turbo RTA 

transfer kit and Transfer System (Bio-Rad). Membranes 

were imaged for Total Protein (Bio-Rad ChemiDoc) prior 

to blocking with Intercept blocking buffer (LI-COR, Cat# 

927-60001). Membranes were probed for SR antibody 

(Santa Cruz sc-365217, 1:1000) and β-actin (Abclonal 

AC026, 1:10,000) overnight at 4° C. Li-Cor near-infrared 

secondary antibodies (IRDye 800CW 1:20,000 and 

IRdye 680LT 1:10,000) were applied for 1 hour at room 

temperature. Membranes were washed with tris-buffered 

saline with tween (TBST) and tris-buffered saline (TBS) 

before scanning on the Odyssey CLx Infrared Imaging 

System (LI-COR Biosciences, Lincoln, NE, USA). 

Sample bands were quantified in Image Studio Lite Ver 

5.2 (LI-COR Biosciences). Total Protein (range 30kDa-

100kDA) was quantified using Image Lab Software Ver 

6.1 (Bio-Rad Laboratories). Raw data was combined in 
Excel (Microsoft). Raw signals were first normalized to a 

Total Protein Lane Normalization Factor (LNF) and 

technical replicates were averaged for each animal. The 

means were then used to calculate the fold 

increase/decrease over young control per blot. 

Experiments were repeated at least twice or more times 

with sample position (lane) randomized between blots. 

To compare across blots, the control master mix, which 

contained equal concentrations of young protein lysate, 

was loaded onto every blot. Results from independent 

experiments were combined, and the mean, SD, and 

inter-assay %CVs were calculated for each animal. 

Values are reported as fold-change from the young 

control group (young=1.000). In addition, signals were 

also normalized to B-actin housekeeping protein (HKP) 

for comparison with values obtained by the Stain-Free 

Total Protein normalization method. Discrepancies 

between the data obtained by utilization of the two 

normalization methods are reported where they occur. 

 

Reverse transcription-polymerase chain reaction 

(RT-PCR) 

 

RNA was isolated using the RNeasy Lipid Tissue Mini 

kit (Qiagen, Cat#74804), and DNase digestion was 

performed with the RNase-Free DNase set (Qiagen, 

Cat#79254). The concentration was measured with a 

NanoDrop 2000 spectrophotometer. For Reverse 

Transcription Quantitative Polymerase Chain Reaction 

(RT-qPCR), cDNA was prepared using the QuantiTect 

Reverse Transcription kit (Qiagen, Cat#205311) 

following the manufacturer’s protocol. Gene expression 

was quantified using TaqMan Gene Expression Assay 

for Serine racemase (SRR) (TaqMan Assay ID: 

Rn01648369_m1, Cat# 4331182, Applied Biosystems, 

Foster City, CA, USA) in a QuantStudio3 Applied 

Biosystems as per the manufacturer’s instructions. 

Samples were loaded in triplicate. The ΔΔCT method 

[61] was used to determine the relative change in gene 

expression levels. Values were normalized to beta (β)-

actin (ACTB gene) and experiments were run in 

duplicate. 

 

Statistical analysis 

 

For statistical analysis, Statview software was used to 

perform a one-way analysis of variance (ANOVA) to 

indicate significant differences in SR expression levels 

between young (YA) and aged (OA) rats. Post hoc test 

was used to uncover specific differences between group 

means when an analysis of variance test is significant. 

Data were interpreted as statistically significant if p≤0.05. 

 

RESULTS 
 

SR protein was decreased in the male rat brain 

 

First, we compared the protein expression of SR in 

subregions of the PFC between aged (OA, 26 mo) and 
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young (YA, 5 mo) male Fischer 344 rats. There was a 

significant effect of age on SR protein levels in mPFC 

[F(1, 8) = 35.542, p=0.0004] (Figure 1A and 

Supplementary Figure 1A) and lPFC [F(1, 8) = 29.872; 

p=0.0006] (Figure 1B and Supplementary Figure 1B). 

Post hoc test indicated that the mean value of SR protein 

in the mPFC was significantly reduced (p< 0.0005, n = 

5/age) in aged rats (M=0.798, SD=0.051, %CV=7.4) 

when compared to young rats (M=1.000, SD=0.059, 

%CV=3.4). The mean values of SR protein expression in 

the lPFC were reduced (p <0.001, n=5/age) in aged male 

rats (M=0.824, SD=0.049, %CV=6.9) compared to young 

male rats (M=1.000, SD=0.052, %CV=5.1). These results 

suggest a decline in SR protein levels with advanced age 

within the two subregions of the PFC in male rats. 

Next, we compared the protein expression of SR in 

subregions of the hippocampus. ANOVAs across the 

hippocampal subfields CA3 [F(1, 8) = 26.554; p 

=0.0009] (Figure 1C and Supplementary Figure 1C) and 

CA1 [F(1, 12) = 8.108; p =0.0147] (Figure 1D and 

Supplementary Figure 1D) suggested a significant 

difference in SR protein levels in hippocampal 

subregions. The mean values of SR protein expression 

showed a significant decrease of SR protein levels in 

CA3 (p <0.001, n=5/age), and in CA1 (p <0.05, 

n=7/age), of aged male rats when compared to young 

male rats (CA3 aged: M=0.791, SD=0.069, %CV=6.5; 

CA3 young: M=1.000, SD=0.059, %CV=6.3; CA1 

aged: M=0.912, SD=0.055, %CV=4.5; CA1 young: 

M=1.000, SD 0.069, %CV=4.2). Interestingly, there 

 

 
 

Figure 1. Protein levels of serine racemase were decreased with age in the male F344 rat brain. Western blots demonstrating 
expression of SR in (A) medial prefrontal cortex (mPFC), (B) lateral prefrontal cortex (lPFC), (C) CA3 subfield of the hippocampus, (D) CA1 
subfield of the hippocampus, (E) Dentate gyrus (DG) subfield of the hippocampus, (F) ventral hippocampus (VH), (G) hypothalamus (Hypo). 
Bar graphs illustrate the quantitative analysis of immunoreactivity for SR when normalized to total protein. B-actin is shown for visual 
comparison only. Blots for total protein can be seen in Supplementary Figure 1. Asterisks for p-values indicate significance (*p<0.05, 
**p<0.005, ***p<0.0005). 
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was only a trend for an effect of age on SR protein 

levels in DG [F(1, 8) = 4.338; p =0.0590], (DG aged: 

M=0.920, SD=0.047, %CV=7.0; DG young: M=1.000, 

SD=0.066, %CV=7.5) (Figure 1E and Supplementary 

Figure 1E). For all male rat subregions, similar Western 

Blot results were obtained when signals were 

normalized to β-actin, except for the DG. For the DG 

samples, further analysis showed that the housekeeping 

protein β-actin normalized to total protein was 

significantly different between aged and young [F(1, 8) 

= 5.930; p < 0.05] with 3 of the 5 aged animals 

contributing to this difference. Therefore, caution must 

be used when interpreting protein levels from the DG of 

young and old animals when protein is normalized to 

the B-actin housekeeping protein due to variability in 

older animals. 

 

Additionally, we found a significant effect of age in the 

male VH [F(1, 8) = 13.799; p =0.0059] (Figure 1F and 

Supplementary Figure 1F) and the male hypothalamus 

[F(1, 8) = 40.607; p =0.0002] (Figure 1G and 

Supplemental Figure 1G). Post hoc tests indicated a 

decline of SR in the VH (p <0.01, n=5/age) of aged 

male rats (M=0.892, SD=0.036, %CV=4.3) when 

compared to young males (M=1.000, SD=0.054, 

%CV=5.6), and a decline of SR in the hypothalamus (p 

<0.0005, n=5/age) of aged male rats (M=0.784, 

SD=0.055, %CV=7.0) compared to the young males 

(M=1.000, SD=0.053, %CV=8.8).  

 

SR mRNA expression was reduced in the male rat 

brain  

 

Given the age-related decrease in SR protein 

expression, we decided to examine mRNA alterations in 

a few specific regions, namely the medial prefrontal 

cortex (mPFC), CA1, CA3, and DG. A notable age-

related effect was observed on SR mRNA expression in 

the mPFC [F(1, 8) = 11.177, p = 0.0102] (Figure 2A). 

Post hoc tests confirm a decline of SR mRNA in the 

mPFC (p <0.05, n=5/age) of aged male rats (M=0.858, 

SD=0.075) compared to the young males (M=1.000, 

 

 
 

Figure 2. mRNA levels of serine racemase, as determined by RT-PCR analysis, decreased with age in select subregions of the 
male Fisher 344 rat brain. Bars demonstrating the quantitative fold change in SR mRNA in (A) medial prefrontal cortex (mPFC), (B) CA1 

subfield of the hippocampus, (C) CA3 subfield of the hippocampus, (D) No changes in dentate (DG) subfield of the hippocampus were 
observed. Asterisks for p-values indicate significance (*p<0.05, **p<0.005, ***p<0.0001). 
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SD=0.058). There was a significant effect of age on SR 

mRNA expression in CA1 [F(1, 8) = 170.345, p 

<0.0001] (Figure 2B). Post hoc tests confirm a decline 

of SR mRNA in the CA1 region (p <0.0001, n=5/age) 

of aged male rats (M=0.488, SD=0.051) compared to 

the young males (M=1.000, SD=0.071). There was a 

significant effect of age on SR mRNA expression in 

CA3 [F(1, 8) = 16.832, p =0.0034] (Figure 2C). Post 

hoc tests confirm a decline of SR mRNA in the CA3 

region (p <0.005, n=5/age) of aged male rats (M=0.843, 

SD=0.065) compared to the young males (M=1.000, 

SD=0.056). No significant differences were found in SR 

mRNA expression between young and aged male DG 

[F(1, 8) = 0.068, p=0.8012] (Figure 2D). 

SR protein expression was reduced in the female rat 

brain 

 

We compared SR protein expression in specific brain 

regions of old female (22-26 months) and young female 

(~6 months) rats. In the female mPFC, a significant age-

related effect was observed [F(1, 8) = 54.889, p < 

0.0001] (Figure 3A and Supplementary Figure 2A). 

Post hoc test indicated that the mean value of SR 

expression in mPFC was significantly reduced (p < 

0.0001, n = 5/age) in aged female rats (M=0.849, 

SD=0.017, %CV=7.8) when compared to young female 

rats (M=1.000, SD=0.042, %CV=6.2). In the 

hippocampus, there was also a significant effect of age 

 

 
 

Figure 3. Protein levels of serine racemase were reduced with age in select areas of the female Fisher 344 rat brain. Western 

blots demonstrating expression of SR in (A) medial prefrontal cortex (mPFC) (B) CA3 subfield of the hippocampus, (C) CA1 subfield of the 
hippocampus, (D) hypothalamus (Hypo). Bar graphs illustrating the quantitative analysis of immunoreactivity for SR when normalized to total 
protein. B-actin is shown for visual comparison only. Blots for total protein can be seen in Supplementary Figure 2. Asterisks for p-values 
indicate significance (*p<0.05, ****p<0.0001). 
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on SR expression in the female rat CA3 [F(1, 8) = 

6.865, p=0.0306] (Figure 3B and Supplementary Figure 

2B) and the female CA1 [F(1, 12) = 6.763, p=0.0232] 

(Figure 3C and Supplementary Figure 2C). Post hoc test 

indicated that the mean value of SR expression was 

significantly reduced in the CA3 (p < 0.05, n = 5/age) in 

aged female rats (M=0.833 SD=0.131, %CV=8.4) when 

compared to young female rats (M=1.000, SD=0.057, 

%CV=5.9). In addition, there was a significant 

reduction in the CA1 (p < 0.05, n = 7/age) in aged 

female rats (M=0.884 SD=0.090, %CV=8.5) when 

compared to young female rats (M=1.000, SD=0.077, 

%CV=5.9). However, we did not see a significant 

change in the hypothalamus [F(1, 8) = 2.895, p=0.1273] 

(Figure 3D and Supplementary Figure 2D). 

SR protein expression in the mPFC during aging 

and sexual dimorphism 

 

We wanted to see if there was a difference between 

males and females in the mPFC region, which is known 

for its susceptibility to NMDA receptor malfunctions 

during aging. As expected, no significant differences 

were found between young female and young male 

mPFC [F(1, 8) = 2.121, p=0.1834] (Figure 4A and 

Supplementary Figure 3A) or between aged female and 

aged male mPFC [F(1, 8) = 2.858E4, p=0.1834] (Figure 

4B and Supplementary Figure 3B). Interestingly though, 

there was an indication of significance between aged 

female mPFC and aged male mPFC when normalizing 

to B-actin [F(1, 8) = 8.336, p=0.0203]. Post hoc test 

 

 
 

Figure 4. No sex differences in protein levels of serine racemase in the mPFC were observed. Western blots demonstrating 

expression of SR in (A) young female vs young male, and (B) old female vs old male. For A and B, fold changes were calculated from females 
for each age group. (C) depicts fold change of protein levels adjusted from young females. Bar graphs depict quantitative analysis of 
immunoreactivity for SR when normalized to total protein (see supplementary figure 3). The signal for B-actin is shown here for visual 
comparison only. 

8408



www.aging-us.com 8 AGING 

indicated that the mean value of SR expression was 

significantly less for aged males (M=0.808, SD=0.121, 

%CV=5.8) vs aged females (M=0.939, SD=0.121, 

%CV=8.2) (p < 0.05, n = 5/age). However, further 

analysis revealed that B-actin normalized to total 

protein was significantly different between aged female 

vs aged male mPFC [F(1, 8) = 5.961, p=0.0405] (Aged 

female M=0.892, SD=0.082; %CV=3.1; Aged male 

M=1.000, SD=0.024, %CV=15.9). The disparity 

between normalization methods suggests that using β-

Actin as the housekeeping protein may not yield reliable 

results when comparing aged males and females. 

 

DISCUSSION 
 

The findings of the present study reveal that aging is 

linked to a decline in SR protein levels across various 

brain regions, including the prefrontal cortex (both 

medial and lateral PFC), dorsal hippocampal subregions 

(CA3 and CA1), ventral hippocampus, and hypo-

thalamus. Additionally, we observed a reduction in SR 

mRNA levels associated with advancing age in the 

mPFC, CA1, and CA3. Intriguingly, there was no 

decrease in SR mRNA in the DG, despite a discernible 

trend toward reduced SR protein levels in this subfield. 

Notably, we encountered variability in the expression of 

the B-actin housekeeping protein in the DG, prompting 

consideration for a reanalysis of mRNA expression 

using an alternative loading control. In parallel with the 

observations in male rats, our investigation of the aged 

female rat brain revealed a noteworthy decrease in SR 

protein levels within the mPFC and the CA3 and CA1 

subfields of the hippocampus. Interestingly, in contrast 

to the male counterparts, we did not observe a 

significant reduction in SR protein levels within the 

hypothalamus of age and young females. It is worth 

noting that our study did not account for the time 

interval between the loss of ovarian function and the 

point of sacrifice. Consequently, it is conceivable that 

some of the aged female rats may exhibit lingering 

effects of estrogen, potentially manifesting as a form of 

neuroprotection within this specific brain region. This 

raises the possibility that the observed differences in SR 

protein levels in the aged female hypothalamus could be 

influenced by the temporal aspects of hormonal 

changes, warranting further investigation into the 

intricate interplay between estrogen fluctuations and SR 

expression in the aging female brain. When comparing 

the mPFC between young males and young females, as 

well as between aged males and aged females, we 

observed no significant differences.  

 

Interestingly, our findings corroborate with previous 

studies that reported the loss of SR protein and mRNA 

in the hippocampus [40, 41], but diverge in revealing 

differences in both the medial and lateral PFC. In 

contrast to other studies that found no difference in the 

cerebral cortex of aged male Wistar rats [41], our focus 

on the PFC highlighted a decline in SR levels with 

aging in this region. This observation is crucial as the 

mPFC, analogous to the human dorsolateral PFC, 

governs executive functions including attention and 

cognitive flexibility [62–65]. NMDA receptor hypo-

function in this region has been linked to reduced 

attention and learning in aged rats [15]. The decrease in 

SR protein, and consequently, the reduction in D-serine, 

may directly contribute to the loss of NMDA receptor 

function.  

 

Additionally, these findings suggest the absence of 

sexual dimorphism in SR expression within this 

particular brain region. Additionally, our findings, 

revealing a decline in SR expression in the hippocampal 

subregions with aging, are consistent with previous 

research indicating a reduction in SR activity in the 

neuropil of the radial layer of the CA1 field in aged rats 

exposed to stress [58, 59]. This alignment suggests a 

potential connection between age-related changes in  

SR expression and stress-induced alterations in 

hippocampal regions. Moreover, our results extend this 

observation to encompass other hippocampal 

subregions, strengthening the link between decreased 

SR expression and age-related changes in hippocampal 

function, particularly in contexts involving stress 

exposure.  

 

The findings from our recent study illustrate that the 

viral vector-mediated upregulation of SR expression in 

the mPFC of middle-aged rats led to effective 

contingency acquisition during visual discrimination, 

suggesting a potential improvement in attentional 

function. Moreover, electrophysiological recordings 

revealed a significant enhancement in NMDA receptor-

mediated synaptic responses recorded from the mPFC 

as a result of the upregulation of SR expression. These 

observations suggest a link between the increased 

expression of SR, improved attentional function, and 

enhanced NMDA receptor-mediated synaptic responses, 

shedding light on the potential neurobiological 

mechanisms underlying the observed behavioral effects 

[60]. The present findings provide experimental support 

for the hypothesis positing that the reduction in SR 

expression may be a contributing factor to the decline in 

NMDA receptor function and potentially exert a 

negative influence on cognitive function.  

 

The observed indirect correlation between decreased SR 

expression in mPFC and hippocampal subregions and 

NMDA receptor activity implies a potential role of SR 
in modulating cognitive processes. These results 

contribute to our understanding of the intricate 

relationship between SR expression and NMDA 
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receptor function, shedding light on a potential 

mechanism underlying cognitive decline. Further 

investigations into the molecular and functional aspects 

of this association may yield valuable insights for 

developing targeted interventions to mitigate cognitive 

deficits associated with alterations in SR expression. 
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Supplemental Figure 1. Representative images for Total Protein correspond to the same bands/lanes seen in Figure 1 for 
young (YA) and old (OA) male rats. Western blots demonstrating expression of Total Protein in (A) medial prefrontal cortex (mPFC),  

(B) lateral prefrontal cortex (lPFC), (C) CA3 subfield of the hippocampus, (D) CA1 subfield of the hippocampus, (E) Dentate gyrus (DG) subfield 

of the hippocampus, (F) ventral hippocampus (VH), and (G) hypothalamus (Hypo). The blue lines represent the designated lanes, while the 
red boxes indicate the measured area (from low molecular weight to high molecular weight). These measurements are consistent with 
previous studies, where the authors measured total protein [1]. 
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Supplemental Figure 2. Representative images for Total Protein correspond to the same bands/lanes seen in Figure 3 for 
young (YA) and old (OA) female rats. Western blots demonstrating expression of Total Protein in (A) medial prefrontal cortex (mPFC),  

(B) CA3 subfield of the hippocampus, (C) CA1 subfield of the hippocampus, and (D) hypothalamus (Hypo). The blue lines represent the 
designated lanes, while the red boxes indicate the measured area (from low molecular weight to high molecular weight). 
 

 
 

Supplemental Figure 3. Representative images for Total Protein correspond to the same bands/lanes seen in Figure 4 for 
young females (YF) and young males (YM), and old females (OF) and old male rats (OM). Western blots demonstrating expression 

of Total Protein in (A) young female vs young male, and (B) old female vs old male. The blue lines represent the designated lanes, while the 
red boxes indicate the measured area (from low molecular weight to high molecular weight). 
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