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ABSTRACT 
 

Background: Valvular heart disease (VHD) is becoming increasingly important to manage the risk of future 
complications. Electrocardiographic (ECG) changes may be related to multiple VHDs, and (AI)-enabled ECG has 
been able to detect some VHDs. We aimed to develop five deep learning models (DLMs) to identify aortic 
stenosis, aortic regurgitation, pulmonary regurgitation, tricuspid regurgitation, and mitral regurgitation. 
Methods: Between 2010 and 2021, 77,047 patients with echocardiography and 12-lead ECG performed within 
7 days were identified from an academic medical center to provide DLM development (122,728 ECGs), and 
internal validation (7,637 ECGs). Additional 11,800 patients from a community hospital were identified  
to external validation. The ECGs were classified as with or without moderate-to-severe VHDs according to 
transthoracic echocardiography (TTE) records, and we also collected the other echocardiographic data and 
follow-up TTE records to identify new-onset valvular heart diseases. 
Results: AI-ECG adjusted for age and sex achieved areas under the curves (AUCs) of >0.84, >0.80, >0.77, >0.83, and 
>0.81 for detecting aortic stenosis, aortic regurgitation, pulmonary regurgitation, tricuspid regurgitation, and 
mitral regurgitation, respectively. Since predictions of each DLM shared similar components of ECG rhythms, the 
positive findings of each DLM were highly correlated with other valvular heart diseases. Of note, a total of  
37.5–51.7% of false-positive predictions had at least one significant echocardiographic finding, which may lead  
to a significantly higher risk of future moderate-to-severe VHDs in patients with initially minimal-to-mild VHDs. 
Conclusion: AI-ECG may be used as a large-scale screening tool for detecting VHDs and a basis to undergo an 
echocardiography. 
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INTRODUCTION 
 

The cardiac blood flow direction from one area to 

another is related to heart valves, including the aortic 

valve, pulmonary valve, tricuspid valve, and mitral 

valve. In the United States, 2.5% of patients suffered 

from moderate or severe valvular heart disease, [1] and 

more than half were asymptomatic. Moreover, aortic 

stenosis was also a significant valvular heart disease and 

was present in 0.4% of patients, [1] and valvular heart 

diseases were more common in elderly individuals. 

Severe valvular heart disease may lead to heart failure 

and sudden death, [2] and immediate intervention  

is necessary to manage the risk of complications [3]. 

Currently, most asymptomatic patients with valvular 

heart disease are identified by advanced health 

examination, including echocardiography. Due to the 

characteristics of echocardiography of expensiveness 

and requirement of indispensable specialists, it cannot 

be used as a wider screening tool, and a universally 

available alternative to screen for potential valvular 

diseases is needed. 

 

Since valvular heart diseases are related to ventricular 

hypertrophy, atrium enlargement, atrial fibrillation, 

atrial premature complex and ventricular premature 

complex, changes in electrocardiography (ECG) were 

observed in patients with those conditions. With the 

revolution of deep learning models (DLMs), artificial 

intelligence (AI)-enabled ECG may extract subtle 

rhythm abnormalities beyond those extracted by human 

experts to identify diverse cardiac diseases [4]. Previous 

studies have already developed a DLM to identify left 

ventricular hypertrophy, [5] left atrium enlargement, [6] 

and arrhythmia [7] using available large annotation 

databases. We hypothesized that AI-ECG would allow 

for the detection of valvular diseases in individuals with 

at least cardiac structure or rhythm changes. 

 

Previous studies have developed DLMs for detecting 

aortic stenosis with an AUC >0.86 using 12-lead ECG 

and demography; [8, 9] aortic regurgitation with an 

AUC >0.80 using 12-lead ECG and demography; [10] 

and mitral regurgitation with an AUC >0.81 using 12-

lead ECG [11]. However, the low positive predictive 

value, which may cause anxiety and inconvenience for 

patients, was the major concern for direct application of 

these DLMs in clinical practice. Previous research on 

false-positive prediction by AI-ECG of left ventricular 

dysfunction (LVD) with more than 4-fold risk of new-

onset LVD, [4] also showed that false-positive cases 

might be considered at high risk of new-onset aortic 

stenosis [8] and mitral regurgitation [11]. However, the 

mechanism of this phenomenon is still unclear, leading 

to a lack of strategies for intervention. Moreover, a 

growing number of DLMs for detecting more valvular 

diseases in one AI-ECG report may lead to confusion.  

A comprehensive clinical application analysis to 

simultaneously consider multiple valvular heart diseases 

should be conducted before using Al-ECG in real-world 

clinical practice. 

 

This study has three objectives: (i) to extensively 

explore the ability of AI-ECG to detect more valvular 

heart diseases; (ii) to develop a strategy to interpret  

the AI-ECG results with multiple predictions for  

further intervention recommendations; and (iii) to assess  

the prognostic performance of AI-ECG in individuals 

without significant valvular heart diseases. 

 

RESULTS 
 

Table 1 shows the patient characteristics in the 

development set, tuning set, internal validation set  

and external validation set. The prevalence rates of 

moderate-to-severe aortic stenosis, aortic regurgitation, 

pulmonary regurgitation, tricuspid regurgitation, and 

mitral regurgitation in the internal/external validation 

sets were 0.6%/0.9%, 4.8%/5.5%, 1.9%/2.1%, 12.6%/ 

13.6%, and 10.8%/11.1%, respectively. In summary,  

the patients in the external validation set were older  

and had more comorbidities than those in the internal 

validation set. 

 

The algorithms performed well in identifying each 

valvular disease in the validation datasets (Table 2).  

The DLM using ECG alone achieved AUCs of  

0.768–0.847 in internal validation and 0.763–0.827 in 

external validation. The AUCs were 0.002 to 0.034 

higher using age and sex. Using the operating point with 

equal sensitivity and specificity for the integration of 

age, sex, and ECG, Figure 1 shows sensitivities of 63.1–

71.4% and specificities of 84.3–85.5% for detecting 

moderate-to-severe aortic stenosis; sensitivities of  

58.1–63.5% and specificities of 79.1–82.4% for 

detecting aortic regurgitation; sensitivities of 54.6–

58.2% and specificities of 82.0–82.9% for detecting 

pulmonary regurgitation; sensitivities of 62.2–63.3% 

and specificities of 85.3–86.6% for detecting tricuspid 

regurgitation; and sensitivities of 59.5–63.5% and 

specificities of 84.1–85.5% for detecting mitral 

regurgitation. Compared with the near perfect negative 

predictive values of more than 94.3% in each analysis, 

the related low positive predictive values ranging  

from 3.1% to 40.6% may be the major concern in AI-

ECG for screening valvular diseases. 

 

Table 3 presents the analysis results for different levels 

of disease severity. We found that AI-ECG exhibits 

higher sensitivities in detecting 5 severe valvular 

diseases compared to moderate valvular diseases, 

ranging from 5.2% to 31.4%. After incorporating sex 
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Table 1. Baseline characteristics. 

 Development set Tuning set Internal validation set 
External validation 

set 

Valvular diseases     

Aortic stenosis     

minimal 99,097 (97.1%) 19,677 (95.3%) 7,461 (97.7%) 11,419 (96.8%) 

mild 1,877 (1.8%) 637 (3.1%) 126 (1.7%) 270 (2.3%) 

moderate 684 (0.7%) 224 (1.1%) 30 (0.4%) 73 (0.6%) 

severe 427 (0.4%) 105 (0.5%) 19 (0.2%) 38 (0.3%) 

Aortic regurgitation     

minimal 69,538 (68.1%) 12,250 (59.3%) 5,310 (69.5%) 7,921 (67.1%) 

mild 26,859 (26.3%) 6,811 (33.0%) 1,954 (25.6%) 3,236 (27.4%) 

moderate 5,146 (5.0%) 1,382 (6.7%) 331 (4.3%) 600 (5.1%) 

severe 542 (0.5%) 200 (1.0%) 41 (0.5%) 43 (0.4%) 

Pulmonary regurgitation     

minimal 77,466 (75.9%) 14,702 (71.2%) 5,857 (76.7%) 8,957 (75.9%) 

mild 22,346 (21.9%) 5,267 (25.5%) 1,638 (21.5%) 2,594 (22.0%) 

moderate 2,105 (2.1%) 643 (3.1%) 137 (1.8%) 230 (1.9%) 

severe 168 (0.2%) 31 (0.2%) 4 (0.1%) 19 (0.2%) 

Tricuspid regurgitation     

minimal 3,8902 (38.1%) 6,556 (31.8%) 3,194 (41.8%) 4,768 (40.4%) 

mild 4,7831 (46.9%) 9,933 (48.1%) 3,481 (45.6%) 5,417 (45.9%) 

moderate 1,1962 (11.7%) 3,075 (14.9%) 781 (10.2%) 1,267 (10.7%) 

severe 3,390 (3.3%) 1,079 (5.2%) 180 (2.4%) 348 (2.9%) 

Mitral regurgitation     

minimal 48,860 (47.9%) 8,419 (40.8%) 3,921 (51.3%) 5,867 (49.7%) 

mild 39,748 (38.9%) 8,570 (41.5%) 2,890 (37.8%) 4,625 (39.2%) 

moderate 10,817 (10.6%) 2,899 (14.0%) 680 (8.9%) 1,104 (9.4%) 

severe 2,660 (2.6%) 755 (3.7%) 145 (1.9%) 204 (1.7%) 

Demography     

Sex (male) 52,421 (53.8%) 10,913 (52.9%) 3,871 (50.7%) 5,861 (49.7%) 

Age (years) 64.0 ± 17.4 68.1 ± 16.3 63.4 ± 16.6 65.8 ± 18.1 

BMI (kg/m2) 24.6 ± 4.4 24.3 ± 4.4 24.5 ± 4.4 24.4 ± 4.3 

Disease history     

DM 23,111 (23.7%) 7,394 (35.8%) 2,259 (29.6%) 3,654 (31.0%) 

HTN 39,229 (40.3%) 12,018 (58.2%) 3,964 (51.9%) 6,506 (55.1%) 

HLP 29,152 (29.9%) 9,256 (44.8%) 3,129 (41.0%) 5,198 (44.1%) 

CKD 23,473 (24.1%) 9,036 (43.8%) 1,835 (24.0%) 2,892 (24.5%) 

CAD 27,043 (27.8%) 8,429 (40.8%) 2,351 (30.8%) 3,649 (30.9%) 

HF 12,830 (13.2%) 4,865 (23.6%) 934 (12.2%) 1,476 (12.5%) 

Afib 6,550 (6.7%) 2,628 (12.7%) 491 (6.4%) 752 (6.4%) 

COPD 12,296 (12.6%) 4,513 (21.9%) 1,503 (19.7%) 2,777 (23.5%) 

Echocardiography data     

EF (%) 63.4 ± 12.7 61.0 ± 14.3 65.2 ± 11.4 65.4 ± 10.8 

LV-D (mm) 47.5 ± 7.1 47.9 ± 7.8 47.3 ± 7.1 47.1 ± 6.8 

LV-S (mm) 30.3 ± 6.9 31.2 ± 7.8 29.8 ± 6.8 29.6 ± 6.3 

IVS (mm) 11.2 ± 2.7 11.6 ± 2.7 11.2 ± 2.8 11.1 ± 2.8 

LVPW (mm) 9.3 ± 1.7 9.5 ± 1.8 9.3 ± 1.7 9.1 ± 1.7 
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LA (mm) 38.4 ± 7.5 39.6 ± 8.1 38.5 ± 7.6 38.7 ± 7.3 

AO (mm) 32.7 ± 4.4 33.1 ± 4.4 32.9 ± 4.5 32.8 ± 4.3 

RV (mm) 23.8 ± 5.0 24.2 ± 5.1 24.2 ± 5.0 24.0 ± 4.9 

PASP (mmHg) 33.2 ± 11.1 34.6 ± 12.4 32.1 ± 10.4 33.0 ± 10.7 

PE (mm) 0.5 ± 2.1 0.6 ± 2.1 0.3 ± 1.8 0.4 ± 1.7 

Abbreviations: BMI: body mass index; DM: diabetes mellitus; HTN: hypertension; HLP: hyperlipidemia; CKD: chronic kidney 
disease; CAD: coronary artery disease; HF: heart failure; Afib: atrial fibrillation; COPD: chronic obstructive pulmonary disease; 
EF: ejection fraction; LV-D: left ventricle (end-diastole); LV-S: left ventricle (end-systole); IVS: inter-ventricular septum; LVPW: 
left ventricular posterior wall; LA: left atrium; AO: aortic root; RV: right ventricle; PASP: pulmonary artery systolic pressure; 
PE: pericardial effusion. 

 

 

Table 2. Detailed model performance for detecting each valvular disease. 

 Sensitivity Specificity PPV NPV AUC 

Aortic stenosis 

ECG alone (internal) 0.714 (0.588–0.841) 0.798 (0.705–0.807) 0.022 (0.015–0.030) 0.998 (0.996–0.999) 0.847 (0.796–0.898) 

ECG alone (external) 0.613 (0.522–0.703) 0.796 (0.605–0.803) 0.028 (0.021–0.034) 0.995 (0.994–0.997) 0.812 (0.775–0.848) 

Age, sex + ECG (internal) 0.714 (0.588–0.841) 0.855 (0.706–0.863) 0.031 (0.021–0.041) 0.998 (0.997–0.999) 0.874 (0.834–0.915) 

Age, sex + ECG (external) 0.631 (0.541–0.720) 0.834 (0.624–0.841) 0.035 (0.027–0.043) 0.996 (0.995–0.997) 0.840 (0.808–0.872) 

Aortic regurgitation 

ECG alone (internal) 0.616 (0.566–0.665) 0.754 (0.606–0.764) 0.114 (0.100–0.128) 0.975 (0.970–0.979) 0.768 (0.745–0.791) 

ECG alone (external) 0.642 (0.605–0.679) 0.752 (0.634–0.760) 0.130 (0.118–0.141) 0.973 (0.970–0.977) 0.773 (0.756–0.790) 

Age, sex + ECG (internal) 0.570 (0.520–0.620) 0.828 (0.561–0.836) 0.145 (0.127–0.163) 0.974 (0.970–0.978) 0.802 (0.781–0.824) 

Age, sex + ECG (external) 0.627 (0.589–0.664) 0.794 (0.619–0.802) 0.149 (0.136–0.163) 0.974 (0.970–0.977) 0.802 (0.787–0.817) 

Pulmonary regurgitation 

ECG alone (internal) 0.511 (0.428–0.593) 0.866 (0.503–0.873) 0.067 (0.052–0.082) 0.989 (0.987–0.992) 0.774 (0.736–0.812) 

ECG alone (external) 0.478 (0.416–0.540) 0.863 (0.472–0.869) 0.070 (0.058–0.082) 0.987 (0.985–0.989) 0.763 (0.733–0.793) 

Age, sex + ECG (internal) 0.539 (0.457–0.621) 0.862 (0.531–0.870) 0.068 (0.054–0.083) 0.990 (0.988–0.992) 0.793 (0.758–0.828) 

Age, sex + ECG (external) 0.526 (0.464–0.588) 0.846 (0.520–0.852) 0.068 (0.057–0.080) 0.988 (0.986–0.990) 0.775 (0.746–0.804) 

Tricuspid regurgitation 

ECG alone (internal) 0.656 (0.626–0.686) 0.838 (0.647–0.847) 0.368 (0.345–0.391) 0.944 (0.938–0.950) 0.833 (0.819–0.847) 

ECG alone (external) 0.652 (0.629–0.675) 0.826 (0.645–0.833) 0.373 (0.355–0.391) 0.937 (0.932–0.942) 0.827 (0.817–0.838) 

Age, sex + ECG (internal) 0.634 (0.603–0.664) 0.859 (0.625–0.867) 0.392 (0.368–0.416) 0.942 (0.936–0.948) 0.841 (0.828–0.855) 

Age, sex + ECG (external) 0.643 (0.619–0.666) 0.846 (0.636–0.853) 0.399 (0.380–0.418) 0.937 (0.932–0.942) 0.835 (0.825–0.845) 

Mitral regurgitation 

ECG alone (internal) 0.611 (0.578–0.644) 0.864 (0.603–0.872) 0.352 (0.327–0.377) 0.948 (0.943–0.954) 0.824 (0.809–0.840) 

ECG alone (external) 0.563 (0.537–0.590) 0.855 (0.557–0.861) 0.326 (0.307–0.345) 0.940 (0.935–0.945) 0.811 (0.799–0.823) 

Age, sex + ECG (internal) 0.624 (0.591–0.657) 0.859 (0.616–0.867) 0.349 (0.325–0.373) 0.950 (0.944–0.955) 0.828 (0.813–0.843) 

Age, sex + ECG (external) 0.584 (0.557–0.611) 0.845 (0.577–0.852) 0.320 (0.301–0.338) 0.942 (0.937–0.947) 0.813 (0.802–0.825) 

Abbreviations: PPV: positive predictive value; NPV: negative predictive value; AUC: area under receiver operating characteristic curve. 

 

and age information, this increased range of sensitivities 

from −5.6% to 47.4%. All AUCs for detecting severe 

cases are higher compared to detecting moderate cases, 

indicating that AI-ECG is less likely to miss severe 

cases. The results of the stratified analysis based on 

demography and disease history are presented in Table 
4. We found that AI-ECG exhibits a reduction of over 

10% in AUC for detecting aortic stenosis in individuals 

with a history of chronic kidney disease (CKD) and 

atrial fibrillation (Afib). Additionally, there is a  

10% decrease in AUC for aortic regurgitation and  

mitral regurgitation in patients over 65 years old. This 

stratified analysis reveals limitations in the application 

of AI-ECG for elderly with those histories. 

 
Figure 2A shows the relationship between ECG-

screened valvular diseases and ECG rhythms. Positive 

ECGs had a lower prevalence of sinus rhythm and a 
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higher prevalence of atrial fibrillation/flutter, 

atrioventricular block, left bundle branch block, right 

bundle branch block, left atrial enlargement, left 

ventricular hypertrophy, prolonged QT interval, atrial 

premature complex, and ventricular premature complex 

than those classified as negative by each DLM. High 

consistency in the rhythm difference in the DLM  

for detecting each valvular disease revealed similar 

components to identify positive ECGs, which implies 

that these positive predictions may be related to other 

valvular diseases. Figure 2B validated the hypothesis 

that predictions between DLMs for detecting each 

valvular disease were highly correlated (ranging from 

0.584 to 0.836), although the correlation was low in 

actual valvular diseases (ranging from 0.057 to 0.486). 

Moreover, more abnormal ECG rhythms in positive 

cases may also be related to other cardiac comorbidities 

and complications. 

 

We further analyzed echocardiographic abnormalities 

in false-positive cases compared to the true negative 

cases in Figure 3. For the patients without aortic 

stenosis in the internal validation set, the false-positive 

cases had a 2.9-to-3.9-fold risk of presenting other 

valvular diseases, and there were 41.5% false-positive 

cases with at least 1 other valvular disease. Moreover, 

these false-positive cases also presented worse cardiac 

function and more anomalies: 8.7-fold risk of low 

ejection fraction, 4.7-fold risk of high pulmonary 

artery systolic pressure, 4.4-fold risk of left atrial 

enlargement, 5.5-fold risk of larger left ventricular 

end-diastolic diameter, and 3.2-fold risk of significant 

pericardial effusion. In summary, more than 50% of 

false-positive cases presented at least 1 significant 

echocardiographic abnormality, and this phenomenon 

was also validated in external validation. Similar trends 

were shown in all false-positive ECGs by DLM for 

detecting aortic regurgitation, pulmonary regurgitation, 

tricuspid regurgitation, and mitral regurgitation. False-

positive cases had a higher risk of every kind of 

echocardiographic abnormality, and more than 37.5% 

of them had more than 1 significant echocardiographic 

abnormality, which revealed the importance of con-

ducting echocardiography for AI-identified positive 

cases. 

 

We followed more than 3,300/4,300 initially echo-

negative patients with ≥2 ECG–TTE pairs in the internal/ 

external validation sets (Figure 4). For patients in the 

internal validation sets without corresponding valvular 

diseases initially and more than 9 years of follow- 

up, the cumulative incidence rates in positive/negative 

cases for new-onset aortic stenosis, aortic regurgitation, 

pulmonary regurgitation, tricuspid regurgitation, and 

mitral regurgitation were 4.6%/1.0%, 16.6%/4.1%, 

13.9%/2.4%, 44.9%/12.8%, and 34.2%/11.3% at 3  

years; 8.0%/3.3%, 30.6%/8.9%, 25.9%/6.0%, 71.2%/ 

27.5%, and 60.7%/24.8% at 6 years; and 17.4%/7.6%, 

35.5%/18.1%, 46.4%/10.7%, 88.5%/47.1%, and 87.6%/ 

46.0% at 9 years, respectively. The false-positive group 

had a significantly higher risk for the development  

of moderate or severe aortic stenosis (HR 1.86, 95%

 

 
 

Figure 1. ROC curve analysis for VHD from a DLM based on age, sex, and ECG voltage–time traces. The receiver operating 

characteristic (ROC) curve (x-axis = specificity and y-axis = sensitivity) and area under the ROC curve (AUC) were calculated using the 
internal validation set (A) and external validation set (B). The operating point was selected based on the maximum Youden’s index in the 
tuning set, which was used for calculating the corresponding sensitivities and specificities in the two validation sets. 
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Table 3. Stratified analysis of disease severity for detecting each valvular disease. 

 
ECG alone Specificity AUC Age, sex + ECG 

Sensitivity Specificity AUC Sensitivity Specificity AUC 

Aortic stenosis 

Moderate (internal) 0.667 (0.498–0.835) 0.798 (0.658–0.807) 0.811 (0.734–0.888) 0.667 (0.498–0.835) 0.855 (0.659–0.863) 0.852 (0.791–0.912) 

Moderate (external) 0.562 (0.448–0.675) 0.796 (0.554–0.803) 0.783 (0.736–0.830) 0.562 (0.448–0.675) 0.834 (0.555–0.841) 0.816 (0.778–0.855) 

Severe (internal) 0.789 (0.606–0.973) 0.798 (0.780–0.807) 0.904 (0.863–0.945) 0.789 (0.606–0.973) 0.855 (0.782–0.863) 0.909 (0.870–0.948) 

Severe (external) 0.711 (0.566–0.855) 0.796 (0.703–0.803) 0.867 (0.813–0.920) 0.763 (0.628–0.898) 0.834 (0.756–0.841) 0.885 (0.833–0.937) 

Aortic regurgitation 

Moderate (internal) 0.604 (0.552–0.657) 0.754 (0.594–0.764) 0.759 (0.735–0.783) 0.547 (0.493–0.600) 0.828 (0.538–0.836) 0.799 (0.777–0.821) 

Moderate (external) 0.625 (0.586–0.664) 0.752 (0.617–0.760) 0.765 (0.747–0.782) 0.613 (0.574–0.652) 0.794 (0.606–0.802) 0.797 (0.781–0.813) 

Severe (internal) 0.707 (0.568–0.847) 0.754 (0.697–0.764) 0.843 (0.783–0.903) 0.756 (0.625–0.888) 0.828 (0.747–0.836) 0.831 (0.763–0.900) 

Severe (external) 0.884 (0.788–0.980) 0.752 (0.876–0.760) 0.885 (0.837–0.932) 0.814 (0.698–0.930) 0.794 (0.806–0.802) 0.874 (0.821–0.927) 

Pulmonary regurgitation 

Moderate (internal) 0.504 (0.420–0.587) 0.866 (0.496–0.873) 0.771 (0.732–0.810) 0.526 (0.442–0.609) 0.862 (0.518–0.870) 0.788 (0.753–0.824) 

Moderate (external) 0.474 (0.409–0.538) 0.863 (0.468–0.869) 0.760 (0.729–0.792) 0.530 (0.466–0.595) 0.846 (0.524–0.852) 0.772 (0.741–0.802) 

Severe (internal) 0.750 (0.326–1.174) 0.866 (0.742–0.873) 0.896 (0.822–0.971) 1.000 (1.000–1.000) 0.862 (0.992–0.870) 0.940 (0.886–0.994) 

Severe (external) 0.526 (0.302–0.751) 0.863 (0.520–0.869) 0.802 (0.713–0.892) 0.474 (0.249–0.698) 0.846 (0.467–0.852) 0.814 (0.729–0.900) 

Tricuspid regurgitation 

Moderate (internal) 0.597 (0.562–0.631) 0.838 (0.588–0.847) 0.807 (0.791–0.823) 0.576 (0.542–0.611) 0.859 (0.568–0.867) 0.817 (0.801–0.832) 

Moderate (external) 0.589 (0.562–0.616) 0.826 (0.581–0.833) 0.800 (0.787–0.812) 0.576 (0.549–0.603) 0.846 (0.569–0.853) 0.808 (0.796–0.820) 

Severe (internal) 0.911 (0.870–0.953) 0.838 (0.902–0.847) 0.946 (0.932–0.960) 0.883 (0.836–0.930) 0.859 (0.875–0.867) 0.949 (0.936–0.962) 

Severe (external) 0.882 (0.848–0.916) 0.826 (0.875–0.833) 0.929 (0.916–0.942) 0.885 (0.852–0.919) 0.846 (0.878–0.853) 0.933 (0.921–0.945) 

Mitral regurgitation 

Moderate (internal) 0.565 (0.527–0.602) 0.864 (0.557–0.872) 0.804 (0.786–0.821) 0.579 (0.542–0.617) 0.859 (0.571–0.867) 0.808 (0.791–0.825) 

Moderate (external) 0.523 (0.493–0.552) 0.855 (0.516–0.861) 0.795 (0.782–0.808) 0.541 (0.511–0.570) 0.845 (0.534–0.852) 0.798 (0.785–0.810) 

Severe (internal) 0.828 (0.766–0.889) 0.864 (0.819–0.872) 0.920 (0.901–0.940) 0.834 (0.774–0.895) 0.859 (0.826–0.867) 0.920 (0.899–0.940) 

Severe (external) 0.784 (0.728–0.841) 0.855 (0.778–0.861) 0.899 (0.878–0.921) 0.819 (0.766–0.872) 0.845 (0.812–0.852) 0.899 (0.877–0.920) 

All analyses shared the same control group (minimal to mild) for each valvular disease. It is important to emphasize that due to the exclusion of certain 
severity cases, the positive predictive value and negative predictive value hold no significance in this analysis. Abbreviations: AUC: area under receiver 
operating characteristic curve. 

 

CI 1.19–2.90), aortic regurgitation (HR 2.14, 95% CI 

1.68–2.74), pulmonary regurgitation (HR 4.08, 95% CI 

3.06–5.45), tricuspid regurgitation (HR 3.21, 95% CI 

2.75–3.75), and mitral regurgitation (HR 2.69, 95% CI 

2.29–3.16) than the true-negative group. Of note, this 

trend was also presented in the external validation  

set, and HRs of 1.76 to 3.15 were presented for each 

valvular heart disease. 
 

DISCUSSION 
 

This was the first study to simultaneously develop 

DLMs for detecting multiple valvular diseases, and 

we found that these DLMs shared similar components 

to establish predictions. Therefore, they should be 

considered for integration into a single report for AI-
ECG analysis. The sum of the positive prediction 

value and proportion of at least 1 significant echo-

cardiographic finding was more than 50% in each 

DLM, which revealed the importance of an 

echocardiographic examination in those with any 

positive predictions by AI-ECG. Moreover, the 

significantly high risk of new-onset valvular diseases 

also reminds physicians to intensively monitor 

progression. These results emphasize the importance 

of AI-ECG as an initial screening test for managing 

valvular diseases. 

 

This study achieved state-of-the-art performance in 

detecting aortic stenosis, [8, 9] aortic regurgitation, 

[10] and mitral regurgitation [11] compared to  

recently published retrospective studies using the  

same conditions. Moreover, we also demonstrated the 

feasibility of using AI-ECG for detecting pulmonary 

regurgitation (AUC >0.77) and tricuspid regurgitation 
(AUC >0.83), and all DLMs were not worse than the 

screening tests already implemented on a large scale, 

such as breast cancer screening (AUC = 0.78) [12] and 
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Table 4. Stratified analysis of demography and disease history for detecting each valvular disease using ECG 
alone. 

 Aortic stenosis Aortic regurgitation Pulmonary regurgitation Tricuspid regurgitation Mitral regurgitation 

Demography 

Female 0.820 (0.772–0.869) 0.763 (0.736–0.790) 0.760 (0.717–0.804) 0.805 (0.789–0.820) 0.802 (0.785–0.818) 

Male 0.802 (0.745–0.859) 0.778 (0.756–0.800) 0.768 (0.728–0.808) 0.853 (0.839–0.867) 0.825 (0.807–0.843) 

Age <65 years 0.892 (0.844–0.939) 0.810 (0.764–0.855) 0.707 (0.623–0.790) 0.850 (0.829–0.872) 0.853 (0.831–0.875) 

Age ≥65 years 0.751 (0.700–0.802) 0.707 (0.686–0.729) 0.723 (0.688–0.759) 0.778 (0.763–0.792) 0.757 (0.741–0.773) 

BMI <24.0 kg/m2 0.795 (0.742–0.849) 0.783 (0.761–0.805) 0.759 (0.720–0.799) 0.812 (0.798–0.827) 0.810 (0.793–0.826) 

BMI ≥24.0 kg/m2 0.829 (0.778–0.879) 0.758 (0.732–0.784) 0.764 (0.718–0.810) 0.843 (0.828–0.858) 0.812 (0.795–0.829) 

Disease history 

Without DM 0.815 (0.774–0.856) 0.800 (0.781–0.818) 0.764 (0.729–0.800) 0.835 (0.823–0.848) 0.822 (0.808–0.836) 

With DM 0.814 (0.740–0.888) 0.703 (0.665–0.742) 0.771 (0.717–0.824) 0.813 (0.794–0.833) 0.788 (0.767–0.810) 

Without HTN 0.814 (0.739–0.888) 0.795 (0.766–0.823) 0.752 (0.698–0.806) 0.835 (0.818–0.852) 0.823 (0.803–0.842) 

With HTN 0.789 (0.745–0.834) 0.747 (0.725–0.770) 0.758 (0.721–0.794) 0.817 (0.803–0.831) 0.795 (0.779–0.810) 

Without HLP 0.824 (0.778–0.869) 0.789 (0.768–0.809) 0.772 (0.736–0.809) 0.835 (0.822–0.848) 0.824 (0.809–0.839) 

With HLP 0.796 (0.735–0.857) 0.744 (0.715–0.774) 0.748 (0.696–0.800) 0.816 (0.798–0.833) 0.794 (0.774–0.813) 

Without CKD 0.837 (0.791–0.883) 0.781 (0.759–0.802) 0.759 (0.720–0.798) 0.832 (0.819–0.845) 0.822 (0.807–0.837) 

With CKD 0.718 (0.648–0.788) 0.720 (0.689–0.751) 0.730 (0.678–0.781) 0.783 (0.763–0.803) 0.747 (0.725–0.770) 

Without CAD 0.836 (0.793–0.879) 0.776 (0.756–0.797) 0.788 (0.754–0.822) 0.827 (0.814–0.840) 0.822 (0.808–0.836) 

With CAD 0.764 (0.697–0.830) 0.765 (0.734–0.795) 0.705 (0.646–0.764) 0.829 (0.810–0.848) 0.787 (0.765–0.809) 

Without HF 0.813 (0.770–0.856) 0.765 (0.745–0.785) 0.744 (0.709–0.780) 0.813 (0.800–0.825) 0.791 (0.777–0.806) 

With HF 0.737 (0.648–0.827) 0.728 (0.692–0.765) 0.760 (0.702–0.818) 0.817 (0.793–0.840) 0.786 (0.761–0.811) 

Without Afib 0.815 (0.774–0.855) 0.770 (0.751–0.788) 0.742 (0.708–0.776) 0.810 (0.798–0.822) 0.804 (0.791–0.817) 

With Afib 0.665 (0.533–0.797) 0.690 (0.637–0.743) 0.747 (0.677–0.818) 0.762 (0.728–0.796) 0.707 (0.667–0.747) 

Without COPD 0.834 (0.795–0.873) 0.786 (0.767–0.806) 0.763 (0.728–0.799) 0.835 (0.822–0.847) 0.827 (0.814–0.841) 

With COPD 0.753 (0.669–0.837) 0.728 (0.694–0.761) 0.760 (0.706–0.814) 0.800 (0.778–0.821) 0.759 (0.732–0.785) 

All results were presented using area under receiver operating characteristic curve (AUC). Abbreviations: BMI: body mass index; DM: diabetes mellitus; HTN: 
hypertension; HLP: hyperlipidemia; CKD: chronic kidney disease; CAD: coronary artery disease; HF: heart failure; Afib: atrial fibrillation; COPD: chronic 
obstructive pulmonary disease. 

 

fecal occult blood tests (AUC = 0.71) [13]. Since the 

characteristics of ECG are inexpensive, ubiquitous, and 

commonly used, asymptomatic valvular diseases may 

be detected early by AI-ECG with acceptable accuracy. 

In current clinical practice, patients are usually under 

the management of valvular heart disease when they 

become symptomatic. However, the symptoms are 

subjective, and a lack of symptoms is not benign. For 

example, sudden death without preceding symptoms 

occurred in 4.1% of patients with aortic stenosis [14]. 

Since the long-term results of prompt intervention in the 

asymptomatic stage are excellent, [15] AI-ECG may 

become popular for application in the early diagnosis of 

potential valvular diseases. 

 

Our results emphasized that false-positives of  

valvular diseases by AI-ECG may be related  
to other echocardiographic abnormalities, and the 

correlation between predictions of each DLM was 

highly correlated. This correlation may not be sourced 

from the original relationship between each valvular 

disease, but it may be sourced by the similar ECG 

presentation in each valvular disease. The ECG 

findings may be nonspecific in valvular diseases. Due 

to the chronic pressure overload of the left ventricle, 

left ventricular hypertrophy secondary to aortic stenosis 

may be present on ECG [16]. Moreover, signs of  

left ventricular hypertrophy were also observed  

in aortic regurgitation and mitral regurgitation [17]. 

Right ventricular hypertrophy was also demonstrated 

on ECG in patients with tricuspid regurgitation  

and pulmonic regurgitation [18]. Moreover, because 

chronic valvular diseases are usually accompanied  

by cardiomyopathy, low ejection fraction or heart 

conduction abnormalities, [19] AI-ECG might use this 

information to construct valvular disease predictions. 

AI-ECG has already been validated to accurately 
detect echocardiographic abnormalities, such as left 

atrium enlargement, [6] low ejection fraction, [20] 

high left ventricle diameter, [21] and pulmonary 
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hypertension [22]. Since the appropriate features may 

be learned by DLM on the basis of data rather than 

manual engineering, our AI-ECG maximally discovered 

the indirect relationship between ECG and valvular 

diseases. We can utilize this indirect relationship to 

identify patients with worse cardiac function and 

abnormal heart structure, and an echocardiography 

examination for positive cases may be cost-effective. 

 

Previous studies have shown that AI-ECG has  

the ability to identify disease predictors [4]. This 

phenomenon was also observed in DLMs for detecting

 

 
 

Figure 2. The components of AI predictions for detecting each valvular disease. (A) Relationship between ECG-screened valvular 

diseases and ECG rhythms. The plots display two groups, positive (AI-positive) and negative (AI-negative) findings, by the ECG networks 
using ECG alone. Sinus rhythm is associated with AI-negative (green bar), and other abnormal rhythms are associated with AI-positive (red 
bar). Abbreviations: *p < 0.05; **p < 0.01; ***p < 0.001. The +/− demonstrates the positive/negative relationship. (B) The relationship 
between each valvular disease in actual status and prediction. The values in each cell are the Spearman correlation coefficients. 
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Figure 3. Prevalence (p) of echocardiographic abnormalities in patients stratified by each AI classification using ECG alone. 
The plots display the abnormal prevalence in the two groups, including positive and negative findings based on ECG. The ≥1 of valvular 
diseases was defined as at least 1 moderate-to-severe valvular disease, and the ≥1 of significant findings was defined as at least 1 abnormal 
echocardiographic finding. The relative risk (RR) was calculated as (pAI-positive/pAI-negative) and is presented with the associated 95% confidence 
interval. 
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aortic stenosis [8] and mitral regurgitation, [11] and  

this study validated those findings and expanded the  

use of DLMs to more valvular diseases. We also  

further recognized that the positive predictions of our 

AI-ECG were based on a series of ECG changes, and 

patients with abnormal ECGs tended to have a higher 

risk of future cardiovascular events. A previous study 

mentioned that false-positive predictions of dyskalemia 

were formed by the combination of abnormal ECG 

rhythms, which led to a higher risk of mortality and 

hospitalization [23]. Therefore, even without considering 

the underlying heart structural changes implied by the 

abnormal ECG, these ECG rhythms might also need 

further intervention. For example, atrial fibrillation was 

associated with an increased risk of stroke and should 

be treated [24]. Moreover, left atrium enlargement  

has been found to be an independent risk factor for  

new-onset mitral regurgitation [25], and left atrium 

enlargement-related rhythms were also recognized to  

be related to stroke and prehypertension. Considering 

that screen-detected atrial fibrillation might have the 

same results as incidentally detected atrial fibrillation  

in regards to reducing the risk of stroke and death [26], 

physicians should attach importance to positive AI-ECG 

predictions to provide active management and not  

limit the use of Al-ECG to only identifying new-onset 

valvular diseases. 

 

One of the most potentially impactful applications of 

AI-ECG in valvular heart diseases is opportunistic 

screening, which primarily originates from radiology. 

This refers to instances where patients occasionally 

benefit from radiologic imaging tests conducted for 

other reasons, thereby discovering potential signs of 

illness [27]. Previous cost-effectiveness study has found 

the advantages of using AI-ECG for opportunistic 

screening of asymptomatic left ventricular dysfunction 

[28], and it is plausible that valvular heart diseases 

could also be suitable for opportunistic screening. 

Considering the daily performance of up to three 

million ECG examinations worldwide [29], reanalyzing 

these already conducted tests with an AI model  

could potentially reduce the cost of screening for 

valvular heart diseases. Therefore, hospitals or clinics 

that routinely perform many ECG examinations should 

consider implementing AI-ECG to identify patients with 

 

 
 

Figure 4. Long-term incidence of developing severity stratified by AI classification using ECG alone. Long-term incidence of 

developing each moderate-to-severe valvular disease in patients with initially minimal-to-mild valvular diseases stratified by AI 
classification using ECG alone. Long-term outcome of patients with echocardiographic minimal-to-mild valvular diseases at the time of 
initial classification, stratified by the initial network classification. The ordinate shows the cumulative incidence of developing moderate-to-
severe valvular diseases, and the abscissa indicates years from the time of index ECG–TTE evaluation. A significantly higher risk of future 
moderate-to-severe valvular diseases was present when the AI algorithm defined the ECG as positive compared with patients with minimal-
to-mild valvular diseases who were classified as having a negative finding by the ECG network. The analyses were conducted in both 
internal and external validation sets. The table shows the at-risk population and cumulative risk for the given time intervals in each risk 
stratification. 
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valvular heart diseases, which may also contribute to 

delivering a higher standard of patient care. 

 

Several limitations in this study should be mentioned. 

First, moderate and severe mitral stenosis was also 

present in more than 0.1% of patients. However, our 

echocardiographic database did not record it using 

structure format. Second, echocardiography was only 

conducted in patients with evidence of cardiovascular 

diseases in current clinical practice, and the prevalence 

of echocardiographic abnormalities in this study might 

be overestimated compared to the prevalence in 

asymptomatic people. However, this may not matter 

because positive ECGs still presented a higher risk of 

cardiovascular diseases and progression than negative 

ECGs. Third, some important clinical information, such 

as cardiac murmur, is lacking in this large-scale study 

due to the difficulty of reviewing all medical records. 

The performance of AI-ECG in asymptomatic people 

was unclear. Finally, there was still no clinical impact 

analysis of how many people may benefit from this 

screening system. An additional randomized controlled 

trial of our AI-ECG is currently planned. 

 

CONCLUSION 
 

The AI-enabled 12-lead ECG may become a powerful 

screening tool for the detection of patients with moderate 

to severe valvular diseases. According to the existing 

evidence, an additional echocardiography examination 

for patients with a positive prediction by AI-ECG may 

be important. An appropriate treatment should be 

initiated once the true positive finding is validated, and 

unexpected significant echocardiographic findings may 

also remind physicians to manage the potential risk of 

cardiovascular diseases. The higher risk of new-onset 

valvular diseases should also be emphasized in patients 

with positive AI-ECG results to manage the related 

adverse events. 

 

METHODS 
 

Data source and population 

 

This research was a retrospective study with ethics 

approval by the institutional review board without 

individual consent in the Tri-Service General Hospital, 

Taipei, Taiwan (IRB No. C202105049). Two separate 

institutions in the Tri-Service General Hospital system 

provided research data from Jan 2010 to Sep 2021. An 

academic medical center (Nei-Hu General Hospital) was 

named hospital A, and a community general hospital 

(Ting-Zhou Branch Hospital) was named hospital B  

in this study. Patients who had at least one ECG  

and echocardiography examination within 7 days were 

included. 

 

Figure 5 shows the generation process of the 

development, tuning, and validation sets. There  

were 77,047 patients with ECGs and corresponding 

transthoracic echocardiography (TTE) annotations in 

this study period from hospital A. The 77,047 patients

 

 
 

Figure 5. Development, tuning, internal validation, and external validation set generation and ECG labeling of VHD. 
Schematic of the dataset creation and analysis strategy, which was devised to assure a robust and reliable dataset for training, validating, 
and testing of the network. Once a patient’s data were placed in one of the datasets, that individual’s data were used only in that set, 
avoiding ‘cross-contamination’ among the training, validation, and test datasets. The details of the flow chart and how each of the datasets 
was used are described in the Methods. 
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were divided into three groups: 102,085 ECG records 

from 61,734 patients as the development set, 20,643 

ECG records from 7,676 patients as the tuning set, and 

7,637 ECG records from 7,637 patients as the internal 

validation set. Importantly, we only used the first ECG 

in the validation sets to avoid patient dependency.  

The external validation set included 11,800 ECGs from 

11,800 patients from hospital B. These validation sets 

were used to validate the performance of the DLM for 

predicting valvular diseases. 

 

Electrocardiographic signal 

 

All 12-lead ECGs were recorded at the time of the 

acquisition in a Philips system®. There were 5,000 

voltage–time trace signals for each lead (500 Hz 

sampling frequency for 10 seconds) to establish a 12 by 

5,000 matrix as the DLM input. The Philips system® 

also provided an automatic analysis for each ECG, and 

the statements were extracted by the basis of the key 

phrases as follows: sinus rhythm, atrial fibrillation/ 

flutter, atrioventricular block, left bundle branch block, 

right bundle branch block, left atrial enlargement, left 

ventricular hypertrophy, prolonged QT interval, atrial 

premature complex, and ventricular premature complex. 

 

Present and new-onset valvular heart diseases 

 

Comprehensive 2D echocardiograms were recorded at 

the date of the acquisition in a Philips image system®. 

TTE data were used to grade patients with minimal, 

mild, moderate, and severe valvular diseases using 

published guidelines [30]. The definition of moderate 

aortic stenosis was a jet velocity of 3.0–4.0 m/s, a mean 

gradient of 20–49 mmHg, or an aortic valve area 

(AVA) of 1.1–1.5 cm2, and severe aortic stenosis was 

defined as a jet velocity ≥4.0 m/s, a mean gradient ≥40 

mmHg, a DVI ≤0.25, or an AVA ≤1.0 cm2. The 

definition of moderate aortic regurgitation was a jet 

width of 25–64% of the left ventricular outflow tract 

(LVOT), a vena contracta of 0.3–0.6 cm, a regurgitant 

volume (RVol) of 30–59 mL/beat, a regurgitant fraction 

(RF) of 30–49% or an effective regurgitant orifice 

(ERO) of 0.10–0.29 cm2, and severe aortic regurgitation 

was defined as a jet width ≥65% of the LVOT, a vena 

contracta >0.6 cm, a RVol ≥60 mL/beat, a RF ≥50%,  

or an ERO ≥0.3 cm2. The definition of moderate 

pulmonary regurgitation was a regurgitant fraction  

of 20–39%, and the definition of severe pulmonary 

regurgitation was a ratio of PR jet width >0.7, a 

pressure half-time of PR jet <100 msec, or a regurgitant 

fraction >40%. The definition of moderate tricuspid 

regurgitation was a vena contracta width of 0.3–0.69 
cm, a proximal isovelocity surface area (PISA) radius  

of 6–9 mm, an ERO of 0.2–0.39 cm2, a regurgitant 

volume of 30–44 mL, or hepatic vein systolic flow 

blunting, and the definition of severe tricuspid 

regurgitation was a central jet ≥50% right atrial, a vena 

contracta width ≥0.7 cm, a PISA radius >9 mm, an ERO 

≥0.40 cm2, a regurgitant volume ≥45 mL, or hepatic 

vein systolic flow reversal. The definition of moderate 

mitral regurgitation was a central jet MR of 20–39%,  

a vena contracta of 0.3–0.69 cm, a regurgitant volume 

of 30–59 mL, a regurgitant fraction of 30–49%, or  

an ERO 0.2–0.39 cm2, and the definition of severe 

mitral regurgitation was a central jet MR >40%, a vena 

contracta ≥0.7 cm, a regurgitant volume ≥60 mL,  

a regurgitant fraction ≥50%, or an ERO ≥0.40 cm2 [30]. 

 

We followed patients with more than or equal to 2 TTE 

examinations for AI-ECG previvor analysis. For each 

analysis only patients with an initially minimal-to-mild 

corresponding valvular disease were used. This did not 

ensure that the included patients were completely normal; 

they may still have presented certain echocardiographic 

abnormalities, including other valvular diseases. The 

follow-up periods were started from the index TTE date 

to the corresponding events or the end of this study. 

Moreover, the follow-up data were censored at the last 

known TTE examination to limit bias from incomplete 

records. 

 

Study covariates 

 

Patient characteristics, including demographics and 

medical comorbidities, were obtained from the 

electronic medical records. We used the International 

Classification of Diseases, Ninth Revision and Tenth 

Revision to define diabetes mellitus (DM), hypertension 

(HTN), hyperlipidemia (HLP), CKD, coronary artery 

disease (CAD), heart failure (HF), Afib, and chronic 

obstruction pulmonary disease (COPD), and the look-up 

tables were reported previously [31]. We also extracted 

echocardiography data, including ejection fraction (EF), 

left ventricle (end-diastole) (LV-D), left ventricle (end-

systole) (LV-S), interventricular septum (IVS), left 

ventricular posterior wall (LVPW), left atrium (LA), 

aortic root (AO), right ventricle (RV), pulmonary artery 

systolic pressure (PASP), and pericardial effusion (PE), 

from TTE reports corresponding to the index ECG. The 

significant echocardiographic findings were defined by 

these parameters with appropriate clinical value. 

 

Deep learning and integration model 

 

The architectures were consistent in DLMs for detecting 

each valvular disease developed previously [32]. In 

summary, it is a convolutional neural network using the 

12 by 5,000 matrix of raw ECG signals as the input, and 
the output was a sigmoid output ranging from 0 to 1 to 

describe the binary outcomes. The training details were 

also mentioned previously. A batch size of 32, a weight 
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decay of 10−4, and an initial learning rate of 0.001 with 

the Adam optimizer and standard hyperparameters were 

used, which decayed by a factor of ten each time the 

loss on the tuning set plateaued after an epoch. Early 

stopping was performed by saving the network after 

every epoch and selecting the saved network with the 

lowest loss on the tuning set. In this study, we trained 5 

DLMs for detecting moderate-to-severe aortic stenosis, 

aortic regurgitation, pulmonary regurgitation, tricuspid 

regurgitation, and mitral regurgitation. To add age and 

sex to enhance the DLM performance, we used the 

XGB model to integrate DLM prediction and the 

training process mentioned previously [33]. We only 

performed prediction once using the best model based 

on the tuning set in the internal and external validation 

sets. 

 
Statistical analysis 

 
Patient characteristics were expressed as numbers of 

patients, percentages, means, and standard deviations 

where appropriate. DLM performance for detecting 

each valvular disease was tested by receiver operating 

characteristic (ROC) curve analysis, and the outcome 

was defined as the moderate-to-severe group compared 

to the minimal-to-mild group. Indicators including the 

area under the ROC curve (AUC), sensitivity, specificity, 

positive predictive value (PPV), and negative predictive 

value (NPV) with 95% confidence interval (95% CI) 

were used to express the DLM accuracy. We also added 

age and sex as additional input features of the DLM to 

compare with previous studies. 

 
We explored differences in ECG features of AI- 

identified positive and negative ECGs. The differences in 

echocardiographic characteristics were also compared in 

those two groups. We performed Kaplan–Meier survival 

analysis with the follow-up data for each valvular disease 

stratified by the DLM prediction. The data were censored 

on the basis of the most recent echocardiography. Cox 

proportional hazards models were also fit, and hazard 

ratios (HRs) with 95% CIs were used to compare the 

prognostic performances. All statistical analyses were 

carried out using the R language (version 3.4.4). 
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