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INTRODUCTION 
 

Breast cancer stands as the most prevalent malignant 

tumor in women worldwide. According to the latest 

statistics, it is projected that in 2023 there will be 

297,790 new cases accounting for 31% of female 

cancers and 43,170 deaths accounting for 15% of 

female deaths [1, 2]. All these data underscore an 

urgent need to establish new and effective strategies 

for the diagnosis and treatment of breast cancer. Due 

to the significant heterogeneity of breast cancer, there 

is a growing interest in the clinical realm towards 

personalized and precise treatment approaches [3, 4]. 

The pursuit of identifying novel prognostic biomarkers 
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ABSTRACT 
 

Background: Cancer-associated fibroblasts (CAFs) are one of the most predominant cellular subpopulations in 
the tumor stroma and play an integral role in cancer occurrence and progression. However, the prognostic role 
of CAFs in breast cancer remains poorly understood. 
Methods: We identified a number of CAF-related biomarkers in breast cancer by combining single-cell and bulk 
RNA-seq analyses. Based on univariate Cox regression as well as Least Absolute Shrinkage and Selection 
Operator (LASSO) regression analysis, a novel CAF-associated prognostic model was developed. Breast cancer 
patients were grouped according to the median risk score and further analyzed for outcome, clinical 
characteristic, pathway activity, genomic feature, immune landscape, and drug sensitivity. 
Results: A total of 341 CAF-related biomarkers were identified from single-cell and bulk RNA-seq analyses. We 
eventually screened eight candidate prognostic genes, including CERCAM, EMP1, SDC1, PRKG1, XG, TNN, WLS, 
and PDLIM4, and constructed the novel CAF-related prognostic model. Grouped by the median risk score, high-
risk patients showed a significantly worse prognosis and exhibited distinct pathway activities such as 
uncontrolled cell cycle progression, angiogenesis, and activation of glycolysis. In addition, the combined risk 
score and tumor mutation burden significantly improved the ability to predict patient prognosis. Importantly, 
patients in the high-risk group had a higher infiltration of M2 macrophages and a lower infiltration of CD8+ T 
cells and activated NK cells. Finally, we calculated the IC50 for a range of anticancer drugs and personalized the 
treatment regimen for each patient. 
Conclusion: Integrating single-cell and bulk RNA-seq analyses, we identified a list of compositive CAF-associated 
biomarkers and developed a novel CAF-related prognostic model for breast cancer. This robust CAF-derived 
gene signature acts as an excellent predictor of patient outcomes and treatment responses in breast cancer. 
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and promising therapeutic targets is recognized as a 

crucial avenue to address this imperative. 

 
The tumor microenvironment (TME) is an intricate 

ecosystem composed of malignant cells, a variety of 

infiltrating immune cells (lymphocytes and myeloid 

cells), and stromal cells intertwined with noncellular 

components [5]. Cancer-associated fibroblasts (CAFs) 

play a pivotal role in the progression of tumors [6]. As a 

major component of the stroma, CAFs enhance cancer 

cell proliferation, immune rejection, and treatment 

resistance by secreting growth factors and inflammatory 

ligands [7]. For example, CAFs could secrete vascular 

endothelial growth factor (VEGF) to regulate the tumor 

vascular network [8], and interleukin 6 (IL-6) to  

foster the differentiation of myeloid-derived suppressor 

cells (MDSCs) and suppress cytotoxic T cells [9]. 

Furthermore, the secretion of CXCL12 by CAFs up-

regulates the anti-apoptotic proteins Bcl-2 and Survivin, 

potentially contributing to therapy resistance in breast 

cancer [10]. CAFs can also shape the extra cellular 

matrix by secreting collagen, fibrinolytic proteins, 

hyaluronic acid, and laminin, forming a barrier to  

drugs or therapeutic immune cell penetration. This 

impediment prevents deep penetration of drugs and 

immune cells into tumor tissues, thereby diminishing 

the efficacy of tumor therapy. The modulation of CAFs 

or overcoming their barrier effect represents a novel 

approach in tumor therapy [11, 12]. Nevertheless,  

there is still a deficiency of breast cancer prognostic 

models based on CAF-specific gene markers to  

date. 

 
Phenomenal advances in single-cell RNA sequencing 

(scRNA-seq) technologies have allowed us to deeply 

analyze the complex cellular composition inside tumors. 

Here, we conducted a reanalysis a publicly available 

breast cancer single-cell RNA-seq cohort containing 

26 samples [13]. The specific gene markers of CAFs in 

breast cancer were interrogated by Wilcoxon rank-sum 

test algorithm at single-cell resolution. Additionally, 

combining multiple deconvolution algorithms and 

Weighted Gene Co-expression Network Analysis 

(WGCNA), we also identified a group of CAFs marker 

genes. The overlapped compartment of above markers 

was selected as the final CAF-associated marker 

genes. Next, we performed univariate Cox regression 

and least absolute shrinkage and selection operator 

(LASSO) regression analyses in The Cancer Genome 

Atlas (TCGA) breast cancer cohort to build a CAF-

related prognostic model. Based on the median risk 

score, the breast cancer samples were classified into 

high and low-risk groups. Reasonably, patients in the 

high-risk group showed markedly inferior outcomes. 

In addition, the potential predictive power of the 

prognostic model was validated in several separate 

validation sets. More importantly, pathway activity, 

mutational profile, and immune status exhibited 

dramatic differences between high- and low-risk 

groups. High-risk patients have disturbed cell cycle 

progression and demonstrate epithelial mesenchymal 

transition. In addition, high-risk patients were 

characterized by more M2 macrophage infiltration and 

less CD8+ T cell. Finally, we focused on the response 

to chemotherapeutic agents of patients in different risk 

groups and interrogated the sensitivities of several 

anti-cancer drugs among diverse risk group patients. 

To summarize, we combined scRNA-seq and bulk 

RNA-seq to construct a robust CAF-related prognostic 

model, which can be used to guide the prognosis and 

treatment of breast cancer patients. 

 

MATERIALS AND METHODS 
 

Single-cell transcriptome analysis 

 

In our study, we initially obtained scRNA-seq data 

from 26 breast cancer samples from the GEO data-

base (GSE176078) [13]. We performed unsupervised 

clustering of the individual cells using the read count 

matrix as input, employing the Seurat package (v4.1.1) 

in R (v4.1.3) [14]. Stringent quality control criteria 

were implemented, primarily focusing on the number 

of detected genes and the proportion of mitochondrial 

gene counts per cell. 

 

Initially, we filtered out cells with fewer than 200 

detected genes and cells with more than 15% 

mitochondrial gene counts. We used the Harmony 

algorithm to integrate the multi-sample data and 

correct batch effects [15]. Subsequently, dimension 

reduction clustering and differential expression 

analysis were performed following the Seurat-guided 

tutorial. Principal component analysis (PCA) and 

uniform manifold approximation and projection 

(UMAP) dimension reduction were carried out  

using the top 20 principal components. Cell cluster 

annotations were based on canonical gene markers. 

 

Weighted gene co-expression network analysis 

 

We used the WGCNA package to obtain genes  

most related to CAFs content [16]. Samples were 

clustered to ascertain the overall relevance of all 

samples in the dataset, and outliers were excluded.  

The soft thresholding power β was chosen based on 

the lowest power for which the scale-free topology  

fit index reached a high value. The minimum gene 

number/module was set to 50 and, finally, 11 modules 

were generated. Next, we undertook correlation 

analyses between modules and traits to find the most 

relevant modules for CAFs content. 
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Collection of public datasets 

 

RNA-sequencing expression matrix and clinical 

information of breast cancer samples and para 

cancerous tissues from The Cancer Genome Atlas 

(TCGA) database were downloaded from UCSC  

Xena (https://xena.ucsc.edu/). Three additional 

independent datasets (GSE20685, GSE37751 and 

GSE58812) were obtained from the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/) [17–19]. We 

downloaded somatic mutation data from Genomic 

Data Commons (GDC, https://portal.gdc.cancer.gov/). 

Somatic mutation data sorted in the form of Mutation 

Annotation Format (MAF) were analyzed and then 

used to calculate Tumor mutation burden (TMB) using 

the R package maftools [20]. 

 

Construction and validation of a CAF-related 

prognostic signature 

 

First, 1205 genes related to CAFs were collected from 

single-cell transcriptome analysis and 487 yellow 

module genes from WGCNA. Taking the intersection  

of the two yielded 341 candidate CAF-related genes  

for breast cancer. To obtain CAF-related genes that 

could construct a prognostic signature, univariate Cox 

regression and least absolute shrinkage and selection 

operator (LASSO) regression analyses were carried out. 

We eventually obtained 8 genes, including CERCAM, 

EMP1, SDC1, PRKG1, XG, TNN, WLS, and PDLIM4, 

and constructed a CAF-related prognostic model based 

on these genes. To group the breast cancer patients, the 

risk score of each breast cancer patient in the training 

set was calculated according to the following formula: 
 

Risk score ni (Coefi xi)= =    

 

The breast cancer patients were then categorized into the 

high-risk and low-risk groups according to the median  

of risk score. The predictive sensitivity of the risk  

score was painted via the R package survival ROC for 

estimation [21]. The model effectiveness was evaluated 

in the validation set using the same coefficient and cutoff 

values that were used in the training set. 

 

Biological functional analysis between high/low-risk 

group patients 

 

The DESeq2 R package was used to perform 

differentially expressed genes (DEGs) analysis. DEGs 

were determined with a cutoff of an adjust p-value  

of less than 0.05 and |Log2 fold change| greater than  

1 [22]. The clusterProfiler R package was used to 
perform gene set enrichment analysis (GSEA) [23]. 

With the use of Fisher’s exact test, those with false 

discovery rate FDR-corrected p-values of less than 0.05 

were regarded as marked indicators. Single sample 

gene set enrichment analysis was performed via the  

R package GSVA [24]. Gene signatures of recurrent 

cancer cell states were collected from the previous 

study. The ITH score was calculated using the DEPTH 

R package [25]. 

 

Tumor immune microenvironment in breast cancer 

patients 

 

To study the infiltration of immune cells, we used 

TIMER2.0, an efficient algorithm for predicting immune 

cell infiltration of bulk tumor gene expression data 

(http://timer.cistrome.org/). In addition, we collected 

series of tumor immunomodulators from the literatures 

and calculated the correlation of risk score with them. 

 

Predicting drug responses and immunotherapy 

sensitivity 

 

We used the R package oncoPredict to assess the 

predictive ability of risk score chemotherapeutic agents 

by calculating patients IC50 for various common 

chemotherapeutic agents. The Wilcoxon rank test was 

then used to compare the difference in IC50 between 

the high/low-risk groups. 

 
Univariate and multivariable Cox regression 

 

We performed univariate Cox regression on breast 

cancer patients with gene expression and overall 

survival. Multivariate Cox regression was used to 

evaluate independent risk factors in the same cohort. 

Genes and factors with a false discovery rate (FDR) 

<0.05 were considered statistically associated with 

patient survival. The results of univariate and multi-

variate Cox regression were acquired and visualized  

by using the R package forestplot. 

 
Establishment of the nomogram 

 

This study used the Cox regression model along with 

the R package rms to build an OS prediction nomogram 

that set 1-, 2-, 3-, and 5-year OS as the endpoints. 

 
Statistical analysis 

 

All statistical analyses were performed using R version 

4.1.3 (https://www.r-project.org/) and its adequate 

packages. Statistical significance was set at p ≤ 0.05. 

 
Availability of data and materials 

 
The datasets used and/or analyzed during the current 

study are available from the corresponding author on 

reasonable request. 
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RESULTS 
 

Interrogating the cellular constitution of breast 

cancer at single-cell resolution 
 

In order to meticulously investigate the cellular 

constitution of breast cancer at single-cell resolution 

and identify cell markers of CAFs, we re-analyzed the 

scRNA-seq data of tumors from 26 breast cancer 

samples. Firstly, we integrated these data and corrected 

the potential batch effects through Harmony algorithm. 

Following rigorous quality control and data filtering, 

data of 29733 genes within 85408 cells was obtained. 

Three major compartments in the TME of breast cancer, 

including the immune subset, the stromal subset,  

and the epithelial subset were identified (Figure 1A). 

UMAP visualization showed that scRNA-seq data from 

different samples were integrated and mixed uniformly 

(Figure 1B). Using canonical lineage markers, we 

annotated each cell subpopulation among three main 

cellular subsets as epithelial cells, T cells, B cells, 

plasma cells, myeloid cells, endothelial cells, pericytes, 

cycling cells, and CAFs (Figure 1C, Supplementary 

Table 1). For instance, the immune subset consisted of 

T cells which were identified by expressions of CD2, 

CD3D and CD3E, B cells with high MS4A1, CD79A, 

and CD79B expressions, plasma cells with high IGHG1, 

IGKC, and JCHAIN expressions, and myeloid cells 

which were identified by significant expressions of LYZ, 

C1QA and C1QB (Figure 1C). Additionally, we found 

several stromal subpopulations including endothelial 

cells, pericytes, and CAFs. We annotated the endothelial 

cells due to the unique expression of ACKR1, PLVAP 

and PECAM1, as well as pericytes with expressions of 

RGS5, ACTA2, TAGLN (Figure 1C, 1D). Moreover, 

with a special focus on the CAFs, we observed CAFs 

 

 
 

Figure 1. Interrogating the cellular constitution of breast cancer at single-cell resolution. (A, B) UMAP plot showing the major 

cell subpopulations in breast cancer. (C) Bubble heatmap showing expression levels of selected signature genes in breast cancer. Dot size 
indicates fraction of expressing cells, colored based on normalized expression levels. (D) Feature plots to further identify various CAFs, 
based on the expression levels of marker genes. (E) GO enrichment of CAFs signature genes. 
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showed significant expressions of DCN, COL1A1 and 

LUM, which were believed to be uniquely expressed 

proteins on the surface of CAFs and played a role in  

the development and function of CAFs. As expected, 

the Gene Ontology (GO) enrichment analysis exhibited 

that CAFs gene markers were enriched in pathways 

including extracellular matrix organization, extracellular 

structure organization and collagen fibril organization 

(Figure 1E). Collectively, we interrogated the cellular 

constitution of breast cancer in detail at single-cell 

resolution and identified cellular marker genes of each 

subpopulation, especially for CAFs. 

 

Screening for CAF-related genes by WGCNA in 

breast cancer 

 

To comprehensively anatomize CAF-related biomarkers, 

we implemented WGCNA in the bulk RNA-seq dataset 

of breast cancer. Initially, following the removal of 

outliers from the TCGA samples, five were selected  

as the optimal soft-threshold power and 11 modules 

were identified by WGCNA algorithm (Figure 2A  

and Supplementary Figure 1A–1C). We compared data 

from three immune infiltration algorithms, including 

MCPCOUNTER, EPIC, and XCELL, as we expected, 

there was excellent congruity on the percentage of 

CAFs among these data (Figure 2B and Supplementary 

Figure 1D, 1E). In order to pinpoint the key modules  

of WGCNA associated with CAFs, we separately 

calculated the correlation of the three types of immune 

infiltration data with the modules. As shown in  

Figure 2C, the yellow module exhibited the highest 

correlation to the deconvolution result according to the 

MCPCOUNTER and EPIC, and equal importance in the 

XCELL result (Supplementary Table 2). Collectively, 

we designated the gene in the yellow module as a 

potential biomarker for CAFs in breast cancer (Figure 

2D and Supplementary Figure 1F, 1G). In addition, 

astonishingly, the results of the GO enrichment analysis 

of the yellow module genes were highly consistent with 

the enrichment analysis of the CAFs marker genes 

identified by scRNA-seq data (Figure 2E). In conclusion, 

our analysis revealed a significant correlation between 

the yellow module and CAFs in breast cancer through 

the application of WGCNA. 

 

Construction of a CAF-related prognostic signature 

in breast cancer 

 

By intersecting the 1205 CAFs marker genes with the 

487 yellow module genes for fetching, 341 candidate 

CAF-related genes were obtained to be included in the 

downstream analysis (Figure 3A). Initially, univariate 
Cox regression analysis revealed that 12 genes were 

associated with the prognosis of breast cancer, followed 

by LASSO analysis to derive a prognostic signature 

composed of 8 genes (Figure 3B, 3C), including 

CERCAM, EMP1, SDC1, PRKG1, XG, TNN, WLS,  

and PDLIM4 (Supplementary Table 3). The TCGA 

breast cancer cohort was used as the training dataset, 

and risk score for each sample were computed using the 

coefficients and expression levels of the prognostic 

signature genes. We then categorized breast cancer 

patients into high/low-risk groups in the TCGA training 

cohort based on median risk score and discovered that 

patients in the low-risk group had markedly superior 

outcomes (Figure 3D–3F). Following this, the area 

under the receiver operating characteristic (ROC) curve 

(AUC) values for 1, 2, 3, and 5 years were 0.76, 0.69, 

0.67, and 0.69 respectively (Figure 3G), which fully 

demonstrated the excellent performance of our risk 

model. In order to confirm the reliability and stability of 

the CAF-related prognostic signature, we validated it in 

several other additional independent validation datasets. 

Similarly, consistent with the training set, the breast 

cancer patients in the validation dataset were stratified 

based on the median risk score, revealing significantly 

worse outcomes for patients in the high-risk group 

(Figure 3H–3J). The AUC values for risk score in the 

GSE20685 dataset were 0.70 for 1 year, 0.73 for 2 years, 

0.76 for 3 years and 0.74 for 5 years respectively 

(Figure 3K). In addition, breast cancer patients with 

higher risk score also had significantly shorter survival 

in the GSE37751 and GSE58812 datasets (Supplementary 

Figure 2). Overall, we have established and validated an 

innovative and robust CAF-related prognostic signature for 

predicting breast cancer prognosis. 

 

Analyses of clinicopathological characteristics based 

on the CAF-associated prognostic signature 

 

Besides the distinct survival outcomes observed 

between high/low-risk populations, notable variances 

were also observed in their clinicopathologic features. 

An incremental rise in the risk score was noted  

with advancing clinical stages, implying a potential 

correlation between the risk score and the progression 

of tumors (Figure 4A). Subsequently, we investigated 

the prognostic role of risk score in patients within tumor 

stage I-IV. Patients with lower risk score exhibited 

significantly better prognoses in stages II and III, while 

outcomes in stages I and IV did not show a similar 

improvement (Supplementary Figure 3A–3D). This 

phenomenon might be attributed to the limited number 

of patients with stage I and IV breast cancer and the 

growing emphasis on early breast cancer prevention. 

Among the different PAM50 molecular subtypes, the 

risk score exhibited a notable elevation in the LumB 

subtype and minimal in the normal-like subtype, which 
accounts for only a small fraction of breast cancers 

(Figure 4B). Similarly, we investigated the prognostic 

implications of risk score in patients within different 
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PAM50 subtypes. Analysis revealed that patients with 

elevated risk score experienced poorer prognose in the 

Lum A/B and Basal-like subtypes, but not significantly 

in the Her2 and normal-like subtypes (Supplementary 

Figure 3E–3I). Furthermore, elderly patients had higher 

risk score, which may indicate that it played a role in 

 

 
 

Figure 2. Screening for CAF-related genes by WGCNA in breast cancer. (A) The cluster dendrogram constructing the gene modules 

and module merging. (B) Correlation plot of infiltration of CAFs by EPIC and MCPCOUNTER. (C) Correlation analysis of modules with traits 
yielded 11 modules, with the yellow module considered to be the most relevant module for CAFs. (D) Scatter plot between the yellow 
module and MCPCOUNTER. (E) GO enrichment of yellow module genes. 
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Figure 3. Screening of CAF-related genes and construction a CAF-related prognostic signature in breast cancer. (A) The Venn 

graph of the CAF signature genes and yellow module genes. (B) Coefficient profiles in the LASSO regression model. (C) Cross-validation for 
tuning parameter selection in the LASSO regression. (D) Kaplan-Meier survival analysis was performed on the relationship between the risk 
score and OS using the TCGA training cohort. (E) The rank of risk score in the TCGA training cohort. (F) Survival status in the TCGA training 
cohort. (G) Time-dependent ROC curve analysis of the prognostic model (1, 2, 3, and 5 years) in the TCGA training cohort. (H) Kaplan-Meier 
survival analysis was performed on the relationship between the risk score and OS using the GSE20685 validation cohort. (I) The rank of risk 
score in the GSE20685 validation cohort. (J) Survival status in the GSE20685 validation cohort. (K) Time-dependent ROC curve analysis of 
the prognostic model (1, 2, 3, and 5 years) in the GSE20685 validation cohort. 
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the aging process (Figure 4C). Intra-tumor 

heterogeneity (ITH) is one of the crucial ingredients 

contributing to the failure of cancer therapies and 

patient mortality, higher ITH levels are associated  

with the development of therapeutic resistance [26]. 

Conspicuously, patients in high-risk group displayed 

 

 
 

Figure 4. Functional and genomic features of CAF-related risk score-based classification. (A) Levels of risk score in different tumor 
stages of breast cancer. (B) Levels of risk score in different molecular subtypes of breast cancer. (C) Levels of risk score in different age groups 
of breast cancer. (D) Boxplot showing the levels of ITH in high/low-risk groups. Paired two-sided Wilcoxon test. (E) Scatter plot showing the 
correlation between the risk score and ITH score. (F) Bar plot showing different pathways enriched in high/low-risk groups of breast cancer 
calculated by GSEA. (G) Boxplots showing the signature score of 16 cancer cell states in high/low-risk groups of breast cancer scored by GSVA. 
Paired two-sided Wilcoxon test. The asterisks represent the statistical P-value (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; nsp > 0.05). 
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elevated levels of ITH (Figure 4D). Risk score was 

positively correlated with ITH score, implying that high-

risk patients were more resistant to single treatment 

(Figure 4E). Summarily, above results showed us high/ 

low-risk breast cancer patients presented with unique 

clinicopathological profiles. 

 

Functional analyses of the CAF-related prognostic 

signature 

 

In order to investigate the underlying mechanisms 

explaining differences in outcomes and clinical 

characteristics between risk subgroups, we dissected  

the differences between subgroups in several ways. 

Initially, Gene set enrichment analysis (GSEA) analysis 

(Figure 4F) highlighted that breast cancer patients in the 

high-risk group showed a considerably enrichment in 

E2F targets, epithelial-mesenchymal transition (EMT) 

and angiogenesis (Supplementary Figure 4A–4C). 

Conversely, allograft rejection, pancreas beta cells and 

KRAS signaling DN were observed in the low-risk 

group patients (Supplementary Figure 4D–4F). Barkley 

D and colleagues innovatively developed multiple gene 

sets containing 16 recurrent cancer cell states which 

interacted with the TME to form organizational systems 

capable of promoting tumor progression, metastasis, 

and treatment failure [27]. To comprehensively gain 

insight into transcriptional heterogeneity between high 

and low risk groups, we calculated 16 recurrent cancer 

cell states using single sample gene set enrichment 

analysis (ssGSEA). As depicted in Figure 4G, low-risk 

patients demonstrated elevated score in astrocyte (AC)-

like, alveolar, basic, ciliated, and glandular. Nevertheless, 

the cycle and hypoxia modules were enriched in high-

risk patients. These data may illuminate the potential 

rationales for the poorer prognosis of high-risk patients. 

 

Mutational features of the CAF-related prognostic 

signature 

 

One of the most fundamental characteristics of cancer  

is preternatural and uncontrolled cell growth caused  

by genome-driven mutations, which in turn affects  

the homeostatic development of a range of essential 

cellular functions [28]. We described and compared the 

mutational features of patients in the high/low-risk 

groups. Somatic mutations were observed in 88.15%  

of patients, with a higher frequency of TP53 mutation, 

but lower frequency of PIK3CA and CDH1 mutations in 

the high-risk group (Figure 5A). TMB refers to the 

aggregate number of substitutions, insertion or deletion 

mutations per megabase in the exon coding region of a 

gene in the genome of a tumor cell [29]. Additionally, 
as an indicator of tumor mutations, TMB is frequently 

used to predict the efficacy of immunotherapy [30]. 

Apparently, patients in the high-risk group exhibited 

higher TMB levels (Figure 5B), with TMB showing  

a positively correlated with risk score (Figure 5C). 

Surprisingly, breast cancer patients stratified by the 

median TMB level did not show significant differences 

in overall survival expectancies (Figure 5D). Therefore, 

we investigated how the combination of TMB and 

CAF-related risk score could jointly categorize breast 

cancer patients into groups with significantly different 

prognoses (Figure 5E). To sum up, frequency of 

somatic mutation was higher in the high-risk group, and 

integration of CAF-related risk score and TMB could 

further refine the prediction of prognosis in breast 

cancer patients. 

 

Tumor immune microenvironment of the CAF-

related prognostic signature 

 

In this section, we aimed to investigate the disparities in 

the tumor immune microenvironment (TIME) between 

the two risk groups. First, we assessed the distribution 

of immunocyte percentage in each patient by the 

CIBERSORT algorithm (Figure 6A). Apparently, M2 

macrophages were more prevalent in high-risk patients, 

and correlation analysis showed a significant positive 

correlation between the percentage of M2 macrophages 

and the risk score (Figure 6B). In addition, CD8+ T 

cells, M1 macrophages, and activated NK cells were 

more enriched in patients in the low-risk group, with 

their infiltrations were negatively correlated with risk 

score (Figure 6C–6E). We also calculated immune cell 

infiltration utilizing additional algorithms, including 

CIBERSORT. ABS and MCPCOUNTER, and rightfully 

so these results are consistent with CIBERSORT 

(Supplementary Figure 5). Subsequently, we collected 

65 immunomodulators from various sources in the 

literature, and as depicted in Figure 6F we calculated 

the correlation between these immunomodulators and 

the CAF-associated risk score. In particular, risk  

score was significantly positively correlated with the 

immunosuppressive molecules CD276, TNFSF9, and 

HAVCR2, and significantly negatively correlated with 

the stimulatory immune checkpoint markers SLEP and 

TNFRSF14. 

 

In addition, we capitalized on the previously 

mentioned scRNA-seq data which contains 24 paired 

breast cancer bulk RNA-seq data. According to the 

median risk score calculated by bulk RNA-seq  

data, these 24 samples were stratified into high/low-

risk group (Figure 7A). Patients in High/low-risk 

group displayed contrasting cellular subpopulation 

compositions (Figure 7B). Notably, myeloid cells, 

known for typically exerted an immunosuppressive 
effect, were more abundant in high-risk samples 

(Figure 7B). This finding corresponded with our 

CIBERSORT classification of immune cell infiltration 
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analysis described above. To comprehensively  

gain an understanding of myeloid cells, we  

further re-clustered myeloid cells and distinguished 

macrophages, monocytes, dendritic cells (DCs) and 

cycling cells based on multiple cellular markers 

(Figure 7C, 7D). The results showed us that patients  

in the high-risk group had significantly higher 

composition of macrophages, which predominantly 

contribute to suppressing anti-cancer immunity  

(Figure 7E). Overall, these data illustrated distinct 

differences in the immune features of the two groups, 

with patients in the high-risk group demonstrating an 

immunosuppressive phenotype. 

 

Correlation between anti-cancer drug sensitivities 

and the CAF-related prognostic signature score 

 

In order to delve deeper into the clinical implications  

of risk score and prognostic genes, we calculated the 

half-maximal inhibitory concentration (IC50) values for 

various drugs in breast cancer patients in TCGA using 

the GDSC database. Figure 8A showed the correlation

 

 
 

Figure 5. Mutational feature of the CAF-related prognostic signature. (A) Waterfall plot represents the mutation distribution of 
the most frequently mutated genes in high/low-risk groups. (B) Boxplot showing the levels of TMB in high/low-risk groups. Paired two-
sided Wilcoxon test. (C) Scatter plot showing the correlation between the risk score and TMB in TCGA cohort. (D) Kaplan-Meier survival 
analysis was performed on the relationship between TMB and OS. (E) Kaplan-Meier survival analysis was performed on the relationship 
between combination of TMB and the risk score and OS. The asterisks represent the statistical P-value (*p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001). 
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between drug sensitivities and the risk score as  

well as prognostic genes. A notable positive correlation 

was observed between the risk score and IC50 of 

Oxaliplatin, Sabutoclax, and Irinotecan. However, the 

IC50 of BI.2536, a potent highly selective PLK1 

inhibitor, negatively correlated with the CAF-associated 

 

 
 

Figure 6. Dissection of tumor immune microenvironment features between high/low-risk group. (A) Boxplots showing the 

proportion of 22 immune cells in high/low-risk groups of breast cancer estimated by CIBERSORT. Paired two-sided Wilcoxon test. (B–E) 
Scatter plots showing the correlation between the risk score and the proportion of M2 macrophages, CD8+ T cells, M1 macrophages, and 
activated NK cells. (F) Bar plot of the correlation between immunomodulators and the risk score in TCGA cohort. The asterisks represent 
the statistical P-value (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; nsp > 0.05). 
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risk score. Interestingly, the prognostic gene PRKG1 

was highly correlated with the IC50 of Leflunomide 

(Supplementary Figure 6A), and TNN was negatively 

correlated with the IC50 of Nutlin.3a .... _1047, a  

potent MDM2 inhibitor (Supplementary Figure 6B). 

Additionally, we compared the IC50 levels of a series of 

Food and Drug Administration (FDA)-approved breast 

cancer treatments, and the IC50 levels were higher  

in the high-risk group for Palbociclib, Oxaliplatin, 

Camptothecin, Irinotecan, Mitoxantrone, and Sorafenib. 

These results suggested that breast cancer patients  

with lower risk score might be sensitive to these  

FDA-approved drugs (Figure 8B–8G). The I-SPY2  

trial platform is a continuous, multicenter, Phase II 

neoadjuvant trial platform for high-risk, early-stage 

breast cancer [31]. We calculated the CAF-related risk 

score for each patient and found higher risk score for 

pathological complete response (pCR) patients in the 

Pertuzumab (Paclitaxel + Pertuzumab + Trastuzumab) 

and TMD1/P (T-DM1 + Pertuzumab) subgroups of the 

10 cancer treatment arms for which they were 

advertised (Supplementary Figure 6C). In the 

GSE123845 dataset, which was breast cancer data  

after standard neoadjuvant therapy, patients with  

higher risk score demonstrated a favorable prognosis 

(Supplementary Figure 6D). In summary, the above 

findings defined that the CAF-related risk score could 

serve as a reputable tool for predicting drug sensitivity 

and response to cancer therapy for breast cancer 

patients. 

 

Constructing a nomogram of the CAF-related 

prognostic signature 

 

Both univariate and multifactorial Cox analyses 

revealed that age, tumor stage, and CAF-related risk 

score were independent prognostic factors in breast 

cancer patients (Figure 9A, 9B). Therefore, a nomogram 

was developed incorporating the CAF-related risk  

score with additional clinical information on other

 

 
 

Figure 7. scRNA-seq analysis of the tumor immune microenvironment features between high/low-risk group. (A) UMAP plot 

showing the major cell subpopulations of high- and low-risk breast tumors. (B) Relative proportions of diverse cell types across high/low-
risk tumors. (C) UMAP plot showing the diverse subsets of myeloid cells in breast cancers. (D) Bubble heatmap showing expression levels of 
selected signature genes for myeloid cells in breast cancers. Dot size indicates fraction of expressing cells, colored based on normalized 
expression levels. (E) Relative proportions of diverse subpopulations of myeloid cells across high/low-risk tumors. 
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Figure 8. High- and low-risk group patients differ in drug sensitivity. (A) Bubble plot showing the relationship between IC50 of 

drugs, risk score, and model genes. (B) Boxplot showing the comparison of IC50 of Palbociclib between high/low-risk groups, and scatter 
plot showing the correlation between the IC50 of drug and risk score. (C) Boxplot showing the comparison of IC50 of Oxaliplatin between 
high/low-risk groups, and scatter plot showing the correlation between the IC50 of drug and risk score. (D) Boxplot showing the comparison 
of IC50 of Camptothecin between high/low-risk groups, and scatter plot showing the correlation between the IC50 of drug and risk score. 
(E) Boxplot showing the comparison of IC50 of Irinotecan between high/low-risk groups, and scatter plot showing the correlation between 
the IC50 of drug and risk score. (F) Boxplot showing the comparison of IC50 of Mitoxantrone between high/low-risk groups, and scatter plot 
showing the correlation between the IC50 of drug and risk score. (G) Boxplot showing the comparison of IC50 of Sorafenib between 
high/low-risk groups, and scatter plot showing the correlation between the IC50 of drug and risk score. The asterisks represent the 
statistical P-value (****p < 0.0001). 
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independent predictors proposed through multivariate 

Cox analysis. In the nomogram, CAF-related risk score 

contributed significantly to the prediction of survival 

probability, serving as a quantitative and visual tool  

for predicting 1-, 3-, and 5-year OS (Figure 9C). The 

AUCs for 1-, 2-, 3-, and 5-year OS in the nomogram 

were 0.847, 0.832, 0.763, and 0.758, respectively, 

suggesting a significantly better prognostic ability  

than the CAF-related risk score alone (Figure 9D). In 

addition, calibration curves were presented to assess the 

performance of the nomograms, which showed that the 

predicted curves of the model are close to the ideal ones 

 

 
 

Figure 9. Establishment and assessment of the nomogram survival model. (A) Univariate analysis for the clinicopathologic 

characteristics and the risk score in TCGA cohort. (B) Multivariate analysis for the clinicopathologic characteristics and the risk score in 
TCGA cohort. (C) A nomogram was established to predict the prognosis of breast cancer patients. (D) Time-dependent ROC curve analysis 
of the nomogram (1, 2, 3, and 5 years) in TCGA cohort. (E) Calibration plots showing the probability in TCGA cohort. The asterisks represent 
the statistical P-value (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001). 
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(Figure 9E). These results highlighted that significant 

predictive impact of the nomogram model on breast 

cancer patients. 

 

DISCUSSION 
 

Breast cancer, the gravest neoplastic affliction affecting 

women worldwide, is a multifaceted and exceedingly 

heterogeneous ailment [32]. Tumor heterogeneity refers 

to the variance in patients’ response to identical 

treatments [33]. The tumor microenvironment (TME) 

encompasses non-malignant cells and constituents 

within the tumor, as well as the molecules they generate 

and emit. It is widely recognized that the direct  

and indirect interactions between tumor cells and the 

TME are pivotal in the genesis, progression, metastasis, 

and therapy of the malignancy. CAFs occupy a central 

role in the TME, exercising indispensable roles in 

extracellular matrix remodeling, maintenance of  

stem cell characteristics, angiogenesis, regulation of 

tumor metabolism, immune response modulation, and 

facilitation of cancer cell proliferation, migration, 

invasion, and resistance to therapeutic interventions 

through manifold mechanisms. Literature reports 

outline that CAFs are capable of establishing inter-

active associations with other cells in TME, thereby 

establishing an immunosuppressive loop that further 

enhances immune inhibition in the TME. For instance, 

in triple-negative breast cancer (TNBC), CAFs lend 

support to immunosuppression by recruiting monocytes 

to the tumor via the CXCL12-CXCR4 axis, thereby 

inducing their transformation into tumor-promoting 

lipid-associated macrophages [34]. Furthermore, CAFs 

have been scientifically demonstrated to impede  

CD8+ T cell infiltration and bestow resistance against 

immune checkpoint blockades (ICBs) therapies [35]. 

The firmly established capability of CAFs to promote 

tumorigenesis designates them as promising targets for 

immunotherapeutic interventions [36]. Nonetheless, 

precise biomarkers specifically linked with CAFs in 

breast cancer remain ambiguous, presenting significant 

challenges in clinical management. We are steadfast  

in our resolve to explore novel markers associated  

with CAFs in breast cancer and contribute towards 

improving clinical treatment strategies. 
 

Bulk RNA-seq examines variations between tissue 

samples at the genomic, transcriptomic, and 

epigenomic levels. In contrast, single-cell RNA-seq is 

a sequencing analysis technique performed at the 

individual cell level, elucidating differences within 

tissue samples [37]. The combination of these two 

methodologies offers a comprehensive, multi-omics 
investigation into the heterogeneity of tumor tissue. 

The integration of scRNA-seq and bulk RNA-seq 

carries significant potential in revealing profound 

biological insights and represents the prevailing  

trend and future trajectory of histological analysis.  

In this study, we re-analyzed single cell sequencing 

data with 26 samples breast cancer and distinctly 

identified fibroblast subpopulations, defining 1,205 

CAFs markers. To explore biological markers of CAFs 

in bulk RNA-seq, we performed WGCNA. To ensure 

the robustness of the marker genes, we employed  

three bioinformatics methodologies to quantify the 

infiltration of CAFs in breast cancer tissue. Module 

correlation analysis revealed a robust association 

between the yellow module and all three methods, 

thereby establishing the yellow module as a marker for 

CAFs in bulk RNA-seq. The marker genes derived 

from scRNA-seq were intersected with the CAFs 

module genes in bulk RNA-seq, resulting in the 

identification of 341 genes pertaining to CAFs. 

Subsequently, univariate Cox and LASSO regression 

analyses were carried out to screen for eight candidate 

genes with prognostic relevance, comprising five risk 

genes (CERCAM, EMP1, SDC1, PRKG1, XG)  

and three protective genes (TNN, WLS, PDLIM4). 

While some of these eight candidate genes have 

already been investigated for their noteworthy roles in 

tumors, including breast cancer, others await more 

comprehensive examination. For instance, EMP1 has 

been recognized as a biomarker for gefitinib resistance 

in lung cancer and contributes to prednisolone 

resistance in patients with acute lymphoblastic leukemia 

[38]. SDC1 functions as a cell surface proteoglycan to 

attach the cytoskeleton to the mesenchymal matrix and 

regulates exosome biogenesis. Furthermore, SDC1 can 

promote the progression of triple-negative breast 

cancer by activating the c-src/FAK signaling pathway 

[39]. We consider SDC1 to be a focal point for our 

future research endeavors. Grounded on these eight 

prognostically relevant genes, we developed a CAF-

related prognostic model and calculated a CAF-related 

risk score for each breast cancer patient. Based on  

the median risk score, patients were categorized into 

high/low-risk groups, with individuals in the high- 

risk category exhibiting a notably poorer prognosis. 

Furthermore, to validate the stability of this prognostic 

model, we subjected it to verification using three 

independent validation sets. Intriguingly, the risk score 

exhibited a significant correlation with clinical stage, 

PAM50 staging, and age of the patients. Moreover, 

patients with higher risk score also displayed increased 

ITH, cancer gene mutations, and activation of pro-

cancer molecular pathways. Importantly, patients with 

lower risk score demonstrated significantly higher 

infiltration of immune cells, including CD8+ T cells, 

M1 macrophages, and NK cells, whereas high-risk 
patients showed elevated M2 macrophage infiltrates. 

Additionally, we delved into the TIME at the single-

cell level and noted increased infiltration of myeloid 

8293



www.aging-us.com 16 AGING 

cells, specifically macrophages and monocytes, in high-

risk patients, alongside decreased infiltration of DCs. 

Consequently, the elimination of M2 macrophages or 

their progenitors may serve as a promising therapeutic 

strategy for patients in high-risk populations. We further 

screened breast cancer patients in the high/low-risk 

groups for a variety of drugs and identified Palbociclib, 

Oxaliplatin, and Camptothecin as especially suitable 

options for individuals in the low-risk category. Most 

notably, we developed an effective prognostic marker 

based on CAF-related genes and presented a novel and 

accurate classification system, alongside therapeutic 

strategies, for breast cancer patients. 

 

Currently, the management of breast cancer pre-

dominantly still rely on clinical staging and pathologic 

staging [40]. In this study, we observed a progressive 

increase in the risk score corresponding to the clinical 

stage, with patients in stages III and IV displaying 

significantly higher risk score compared to patients in 

stages I and II. Furthermore, disparities in risk score 

across patients classified under different PAM50 

subtypes, with higher score observed in LumB and 

Her2 patients, and the lowest score in normal- 

like patients. Interestingly, we found that risk score 

tended to be higher in breast cancer patients aged  

65 and above, indicating a potential association with 

the aging process. Given the inherent heterogeneity  

of tumors, especially in breast cancer, it becomes 

crucial to investigate the underlying mechanisms and 

transcriptional differences that contribute to divergent 

survival outcomes between high and low-risk patient 

groups. ITH represents a source of genetic variation that 

can promote cancer progression and the development 

of drug resistance, consequently culminating in 

treatment failure. Higher levels of ITH indicate an 

increased propensity of acquiring drug resistance. Our 

findings revealed a markedly higher ITH score among 

high-risk patients, with a positive correlation between 

risk score and ITH score. The increased heterogeneity 

and resistance to treatment may contribute to the 

unfavorable prognosis observed in high-risk patients. 

Through GSEA enrichment analysis, we identified 

enrichment of E2F targets, G2M checkpoint, and 

MITOTIC spindle pathways in the high-risk group, 

pathways typically associated with cell cycle regulation 

[41]. This implies a disruption in the regulation of cell 

cycle progression within high-risk group. Additionally, 

we observed elevated score for EMT, glycolysis, 

angiogenesis, and hypoxia in the high-risk group, 

which aligns with well-established knowledge that 

CAFs can secrete VEGF to regulate tumor vascular 

networks, induce EMT in epithelial cells, and contribute 
to metabolic reprogramming in tumor cells [42]. Our 

findings further corroborate these associations. The 

observed heterogeneity in cancer cells can largely be 

attributed to the redeployment of modules typically 

expressed in different cellular and developmental 

contexts. In our investigation, we scrutinized unique 

attributes of two risk categories by elucidating recently 

defined cancer cell states that represent fundamental 

units of tumor transcriptional variability. Notably, the 

high-risk group exhibited higher characterization score 

for cycle and hypoxia, while displaying lower score 

for astrocyte (AC)-like, alveolar, basic, ciliated, and 

glandular states. TMB not only reflects the extent of 

genetic alterations within tumor but also provides insight 

into its immunogenicity. TMB has been identified as  

a predictive marker for ICB response in melanoma, 

reflecting its association with immunogenicity in this 

context [43]. Our study demonstrated elevated TMB in 

the high-risk group, positively correlating with the risk 

score. Furthermore, the combined assessment of TMB 

and CAF-related risk score exhibited strong prognostic 

performance in predicting patient survival. 

 

While previous research has emphasized the role of 

transcriptional and epigenetic variation within tumor 

cells in tumor development, recent attention has 

transitioned towards the TIME, which encompasses 

tumor cells, stromal cells, and infiltrating immune cells. 

Distinct immune microenvironments can influence the 

response of tumor cells to both the host’s immune 

system and external treatments, playing a crucial role 

in tumor immune evasion and drug resistance [44]. 

Macrophages typically function in phagocytosis and 

removal of cellular debris, whereas under specific 

circumstances they polarize into classically activated 

M1 macrophages and alternatively activated M2 

macrophages [45, 46]. Polarization of M1-polarized 

macrophages can be stimulated by Th1 cytokines such 

as interferon-gamma (IFN-γ), tumor necrosis factor-α 

(TNF-α), and bacterial lipopolysaccharide (LPS), 

whereas M2-polarized macrophages can be triggered 

by interleukin 4 (IL-4), interleukin 13 (IL-13), and 

transforming growth factor-β (TGF-β) [47, 48]. 

Classically activated M1 macrophages have potent 

anti-infective, anti-tumor, and removal of apoptotic 

cells and necrotic tissues, whereas selectively activated 

M2 macrophages are mainly involved in their healing, 

angiogenesis, and immunosuppression [49]. Within  

the TIME, macrophages can be induced by CAFs to 

differentiate predominantly into M2 macrophages, 

which are known to promote tumor growth and 

metastasis. Furthermore, CAFs possess the ability to 

attract infiltration and aggregation of M2 macrophages 

through the secretion of various growth factors and 

cytokines. Our findings revealed significantly elevated 

levels of M2 macrophage infiltration, accompanied  
by decreased levels of M1 macrophages, in patients 

classified as high-risk. Furthermore, both CD8+ T cells 

and activated NK cells, which are critical subsets of 

8294



www.aging-us.com 17 AGING 

the immune system with anti-tumor effects, displayed 

reduced infiltration levels in the high-risk group. 

Additionally, our analysis at the single-cell level 

demonstrated that the high-risk population exhibited 

higher levels of macrophage infiltration and lower 

levels of DCs. Consequently, the elimination of M2 

macrophages or their progenitors presents itself as a 

potential therapeutic strategy for individuals within 

high-risk populations. 

 
After exploring the differences between the 

transcriptional, genetic, and immune microenvironments 

between high/low-risk risk groups, we worked to screen 

several anticancer medications for different breast 

cancer patients. The IC50 of drugs such as Palbociclib, 

Oxaliplatin, and Camptothecin was significantly lower 

in the low-risk group. Refreshingly, in the I-SPY2 data, 

patients with non-responding Her2-positive metastatic 

breast cancer treated with patuximab had lower risk 

score. It has been shown that PDPN-positive CAF  

can promote resistance to trastuzumab in Her2-positive 

breast cancer by secreting the immunosuppressive 

factors indoleamine 2,3-dioxygenase 1 (IDO1) as well 

as tryptophan 2,3-dioxygenase 2 (TDO2) [50]. This 

could potentially provide a framework for guiding the 

treatment of breast cancer patients. The nomogram 

enables integration of our model with standard clinical 

variables of the patient, including age, pathological 

staging, etc., thereby offering clinical guidance for 

personalized treatment. However, the exact function of 

the above treatments remains to be further confirmed  

in future prospective studies. 

 
While our prognostic model for breast cancer,  

based on cancer-associated fibroblasts, demonstrated 

commendable performance in both the training and 

validation cohorts, it is imperative to acknowledge 

certain constraints. Primarily, it is essential to sub-

stantiate the expression and prognostic significance of 

marker genes associated with candidate CAFs at the 

protein level through further examination. Moreover, 

despite screening these prognostic genes based on 

CAFs markers, it should be noted that they are not 

exclusively expressed by CAFs. Lastly, we must be 

mindful of the potential presence of inherent bias 

resulting from the retrospective recruitment of breast 

cancer patients. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Screening for CAF-related genes by WGCNA in breast cancer. (A) Samples were clustered and outlier 

samples were not found. (B, C) According to the instructions of the WGCNA package, 5 was selected as the soft threshold power. (D) 
Correlation plot of infiltration of CAFs by XCELL and MCPCOUNTER. (E) Correlation plot of infiltration of CAFs by EPIC and XCELL. (F) Scatter 
plot between the yellow module and EPIC. (G) Scatter plot between the yellow module and XCELL. 
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Supplementary Figure 2. Validation of the CAF-related prognostic signature. (A) Kaplan-Meier survival analysis was performed on 

the relationship between the risk score and OS using the GSE37751 validation cohort. (B) The rank of risk score in the GSE37751 validation 
cohort. (C) Survival status in the GSE37751 validation cohort. (D) Time-dependent ROC curve analysis of the prognostic model (2, 3, and 5 
years) in the GSE37751 validation cohort. (E) Kaplan-Meier survival analysis was performed on the relationship between the risk score and 
OS using the GSE58812 validation cohort. (F) The rank of risk score in the GSE58812 validation cohort. (G) Survival status in the GSE58812 
validation cohort. (H) Time-dependent ROC curve analysis of the prognostic model (2, 3, and 5 years) in the GSE58812 validation cohort. 
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Supplementary Figure 3. Correlation between clinical characteristics and the risk score in breast cancer. (A–D) Kaplan-Meier 

survival analyses were performed on the relationship between the risk score and OS in the STAGE I, II, III and IV of breast cancer. (E–I) 
Kaplan-Meier survival analyses were performed on the relationship between the risk score and OS in the luminal A/B, HER2-enriched, 
basal-like and normal-like subtypes of breast cancer. 
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Supplementary Figure 4. Correlation between the risk score and pathway activities. (A–C) GSEA analysis showing the up-

regulated pathways in the high-risk group. (D–F) GSEA analysis showing the up-regulated pathways in the low-risk group. 
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Supplementary Figure 5. Dissection of tumor immune microenvironment features based on the CAF-related prognostic 
signature. (A) Boxplots showing the proportion of 22 immune cells in high/low-risk groups of breast cancer estimated by CIBERSORT.ABS. 
Paired two-sided Wilcoxon test. (B–E) Scatter plots showing the correlation between the risk score and the proportion of M2-like 
macrophages, CD8+ T cells, M1-like macrophages and activated NK cells. (F) Boxplots showing the proportion of 22 immune cells in 
high/low-risk groups of breast cancer estimated by MCPCOUNTER. Paired two-sided Wilcoxon test. The asterisks represent the statistical 
P-value (*p < 0.05; **p < 0.01; ***p < .001; ****p < 0.0001; nsp > 0.05). 
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Supplementary Figure 6. High/low-risk group patients differ in drug sensitivity. (A) Scatter plots showing the correlation between 

the expression of PRKG1 and the IC50 of Leflunomide. (B) Scatter plots showing the correlation between the expression of TNN and the IC50 
of Nutlin.3a .... _1047. (C) Boxplot showing the levels of risk score between CR/PR and SD/PD patients in I-SPY2. Paired two-sided Wilcoxon 
test. (D) Boxplot showing the levels of risk score between CR/PR and SD/PD patients in GSE123845. Paired two-sided Wilcoxon test. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 and 2. 

 

Supplementary Table 1. List of marker genes for each cell subpopulation of breast cancer. 
 

Supplementary Table 2. List of the top 5,000 gene modules of WGCNA. 
 

Supplementary Table 3. A list of significantly prognostic genes identified by univariate Cox regression analysis. 

Gene HR CI5 CI95 P-value 

CXCL14 0.92 0.86 0.98 0.008001475 

WLS 0.88 0.79 0.99 0.028963359 

SDC1 1.21 1.05 1.39 0.009853082 

TNN 0.89 0.82 0.96 0.001691972 

PDLIM4 0.87 0.77 0.99 0.030797728 

ITPRIPL2 1.15 1 1.32 0.047845533 

EMP1 1.23 1.05 1.43 0.009450169 

CERCAM 1.24 1.03 1.49 0.020515589 

MARVELD1 1.24 1.04 1.48 0.017340631 

CYTH3 1.23 1.02 1.49 0.027050121 

PRKG1 1.16 1.01 1.33 0.030374849 

XG 1.15 1.02 1.3 0.026768892 
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