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INTRODUCTION 
 

Lung cancer is one of the malignant tumors with the 

highest case fatality rate in the world. The incidence 

rate and mortality of lung cancer have been ascended 

globally, especially in a number of developing countries 

[1]. Non-small-cell lung cancer (NSCLC) is the most 
common histopathological type, accounting for about 

85% of lung cancer. Lung adenocarcinoma (LUAD)  

and squamous cell carcinoma (LUSC) are two primary 

subtypes of NSCLC [2]. NSCLC begins with 

concealment and progresses rapidly. Most patients are 

diagnosed in local late stage or advanced stage, often 

losing the opportunity of the first radical resection. Due 

to the progress of comprehensive treatment methods  

for NSCLC, in addition to traditional radiotherapy, 

chemotherapy and other treatment methods, targeted 
therapy, immunotherapy and a variety of combined 

treatment modes have flourished. These strategies 

demonstrate extensive and significant clinical efficacy. 
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ABSTRACT 
 

Non-small cell lung cancer (NSCLC) is the most common histopathological type, and it is purposeful for 
screening potential prognostic biomarkers for NSCLC. This study aims to identify the lncRNAs and mRNAs 
related to survival of non-small cell lung cancer (NSCLC). The expression profile data of lung adenocarcinoma 
and lung squamous cell carcinoma were downloaded in The Cancer Genome Atlas (TCGA) and Gene Expression 
Omnibus (GEO) dataset. A total of eight survival related long non-coding RNAs (lncRNAs) and 262 survival 
related mRNAs were filtered. By gene set enrichment analysis, 17 significantly correlated Gene Ontology signal 
pathways and 14 Kyoto Encyclopedia of Genes and Genomes signal pathways were screened. Based on the 
clinical survival and prognosis information of the samples, we screened eight lncRNAs and 193 mRNAs by single 
factor Cox regression analysis. Further single and multifactor Cox regression analysis were performed, 30 
independent prognostication-related mRNAs were obtained. The PPI network was further constructed. We 
then performed the machine learning algorithms (Least absolute shrinkage and selection operator, Recursive 
feature elimination, and Random forest) to screen the optimized DEGs combination, and a total of 17 
overlapping mRNAs were obtained. Based on the 17 characteristic mRNAs obtained, we firstly built a 
Nomogram prediction model, and the ROC values of training set and testing set were 0.835 and 0.767, 
respectively. By overlapping the 17 characteristic mRNAs and PPI network hub genes, three genes were 
obtained: CDC6, CEP55, TYMS, which were considered as key factors associated with survival of NSCLC. The in 
vitro experiments were performed to examine the effect of CDC6, CEP55, and TYMS on NSCLC cells. Finally, the 
lncRNAs-mRNAs networks were constructed. 
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However, the survival rate of NSCLC is still at a 

relatively low level. It has been reported that from  

2012 to 2015, the survival rate of NSCLC in Chinese 

male patients was only 16.8%, 62.5% lower than that  

of thyroid cancer with the highest survival rate [3].  

The survival rate of Chinese women with NSCLC is 

25.1%, which is also classified as low survival rate [4]. 

Therefore, it is urgent to explore new strategies that can 

improve the clinical therapeutic effect of NSCLC. 

 

Machine learning is a multi-disciplinary and inter-

disciplinary discipline, covering knowledge of 

probability theory, statistics, approximate theory and 

complex algorithms [5]. It uses computers as tools and 

is committed to simulating human learning methods, 

dividing existing content into knowledge structures to 

effectively improve learning efficiency, and integrating 

computer science and statistics into medical problems 

[6]. By improving algorithms, absorbing input data, 

applying computer analysis to predict the output value 

within the acceptable accuracy range, identifying the 

patterns and trends in the data, and finally learning  

from previous experience, the development of machine 

learning brings a new direction to the diagnosis and 

treatment of lung cancer [7]. Nomogram is the RMS 

package in the R statistical software, based on the LNR 

settings [8, 9]. The consistency index (C-index) and the 

calibration map were used to measure the performance 

of the model [10]. The consistency index is generally 

between 0.5-1. When the C index value is closer to 1,  

it is larger, but also indicates that the consistency of  

the model is better, that is, the prediction performance 

of the model is better. 

 

In this study, we synthesized the expression profile data 

of LUAD and LUSC samples, screened the lncRNAs 

and mRNAs that are significantly related to survival, 

further screened the characteristic genes through 

different machine learning algorithms, and constructed 

the survival status classification model of the samples.  

 

MATERIALS AND METHODS 
 

Data processing 

 

The LUAD and LUSC gene expression level data were 

downloaded from Xena Database (https://xenabrowser. 

net/datapages/), including 585 and 550 samples, 

respectively. The detection platform was Illumina 

HiSeq 2000 RNA Sequencing. According to the sample 

clinical information downloaded at the same time, the 

LUAD and LUSC samples with survival and prognosis 

information were retained. A total of 994 NSCLC tumor 

samples and 107 normal control samples were included 

in this analysis. Data from TCGA samples were used 

for training data sets. Since LUAD and LUSC are gene 

expression level data from different batches, we first  

use the R3.6.1 sva package [11] version 3.38.0 

(http://www.bioconductor.org/packages/release/bioc/ht

ml/sva.html) to remove the batch effect of LUAD and 

LUSC expression profile data. 

 

At the same time, data in GSE37745 [12, 13] of  

NSCLC expression profile were downloaded from the 

NCBI GEO database (https://www.ncbi.nlm.nih.gov/), 

including 196 NSCLC tumor samples with clinical 

prognosis information. The detection platform is 

GPL570 Affinemetrix Human Genome U133 Plus 2.0 

Array. This data set was used as a validation set. 

 

After downloading and obtaining the expression profile 

data, we annotated the detected lncRNAs and mRNAs 

according to the Transcript ID in the Illumina HiSeq 2000 

RNA sequencing annotation platform for the TCGA 

platform detection data. For the NCBI GEO dataset, we 

download the detailed annotation information (including 

probe, gene symbol, RNA type and other information)  

of the platform involved in the corresponding platform 

from the Ensemble gene browser 96 database Biomart 

[14] (http://asia.ensembl.org/index.html), and then re-

annotated the detection probe to obtain the corresponding 

expression level of the detected lncRNA and mRNA. 

 

Screening of differentially expressed RNAs (DERs) 

 

In the expression profile data set after combining LUAD 

and LUSC, the samples were first divided into Tumor  

vs. Control comparison groups according to the sample 

source, and then in the tumor samples, the samples  

were divided into Dead vs. Alive comparison groups  

according to the survival status of the samples [15– 

17]. Later, we used the limma package Version 3.34.7 

(https://bioconductor.org/packages/release/bioc/html/lim

ma.html) to screen DERs in the two comparison groups 

by R3.6.1 language, and FDR<0.05 and | log2FC |>0.5 

were selected as the threshold for screening significant 

factors. 

 

Finally, we compared the DERs filtered in the 

comparison groups of Tumor vs. Control and Dead vs. 

Alive, and overlapping part was obtained. Based on 

DAVID version 6.8 [18, 19] (https://david.ncifcrf.gov/), 

GO Biological Process and KEGG signal pathway 

enrichment analysis was performed, and FDR<0.05 was 

selected as the threshold of enrichment significance. 

 
Identifying DERs with a significant association of 

prognosis 

 

For the selected DERs, combined with the clinical 

survival and prognosis information of the samples,  

the single-factor Cox regression analysis of the  
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survival package Version 2.41-1 in R3.6.1 

(http://bioconductor.org/packages/survivalr/) was used 

to screen the significantly different expressions of 

lncRNAs and mRNAs that were significantly related to 

the survival and prognosis of NSCLC [20]. The NSCLC 

prognosis-related mRNAs were further analyzed by 

multivariate Cox regression, and the independent 

prognostic related mRNAs were selected. P-value less 

than 0.05 was selected as the threshold for screening 

significant correlation. 

 

Construction of protein-protein interaction (PPI) 

network and analysis of network topology 

 

The STRING database [21] (Version:11.0, http://string-

db.org/) was used to search for the interaction 

relationship between mRNAs gene product proteins that 

were significantly related to survival and prognosis, and 

the interaction network was constructed. The network 

was visualized and the network topology structure  

was analyzed through Cytoscape Version 3.6.1 [22] 

(http://www.cytoscape.org/). 

 

Optimal mRNAs screening and nomogram 

diagnostic model construction 

 

Based on the expression level of mRNAs that were 

significantly related to the independent prognosis 

obtained from the previous screening, three different 

optimization algorithms [LASSO (least absolute 

shrinkage and selection operator) [23], RFE (recursive 

feature elimination) [24], and RF (random forest)  

[25]] were used to screen the characteristic factors.  

We subsequently compared the results of the three 

algorithms and selected the overlapping part as the final 

feature mRNAs combination. 

 

Construction and verification of nomogram 

diagnostic model 

 

We used R3.6.1 rms package (https://cran.r-

project.org/web/packages/rms/index.html) Version 5.1-

2 to build the Nomogram model [26], and analyzed the 

model with a line chart, using C index as a parameter to 

measure the fit between the model and the actual. Based 

on the selected characteristic mRNA factors, we used 

the R3.6.1 language rmda package [27] (https://cran.r-

project.org/web/packages/rmda/index.html) Version 1.6 

to observe the model yield. Finally, in the validation 

data from GSE37745, the Nomogram model was  

also constructed based on the characteristic mRNA 

factors obtained as previously screened to validate the 

diagnostic model efficacy. The ROC curves of the 
Nomogram model were assessed by R3.6.1 pROC 

v1.18.0 package [28] (https://cran.r-project.org/web/ 

packages/pROC/index.html). 

Screening of the key mRNAs 

 

We compared the selected characteristic genes for 

constructing survival diagnosis model with the important 

link hub genes in PPI network, and selected the 

overlapping part as the important factor. In the combined 

TCGA training set and GSE37745 validation data set, the 

Kaplan-Meier curve method in the survival package 

Version 2.41-1 in R3.6.1 [20] was used to analyze and 

display the correlation between the expression level of 

important genes and survival prognosis. 

 

Co-expression network of lncRNAs-mRNAs 

 

Based on the characteristic factors in the diagnosis model 

of lncRNAs and Nomogram, which were significantly 

correlated with independent prognosis, the Pearson 

correlation coefficient between them was calculated  

by using the cor function (http://77.66.12.57/R-help/ 

cor.test.html) in R3.6.1, and the co-expression network 

of lncRNAs-mRNAs with independent prognosis was 

constructed. The network was displayed through 

Cytoscape Version 3.6.1. 

 

Cell lines 

 

The NSCLC cell lines (A549 and H1299) were 

purchased from the Cell Bank of Chinese Academy  

of Medical Science (Shanghai, China). A549 and 

H1299 cells were separately cultured in the Dulbecco’s 

modified eagle medium (DMEM) supplemented with 

10% fetal bovine serum (FBS), 100 U/mL penicillin and 

100 mg/mL streptomycin and incubated in an incubator 

at 37° C and 5% CO2 conditions.  

 

Cell transfection 

 

A549 and H1299 cells were harvested to prepare cell 

suspension with the serum-free DMEM, with the final 

cell concentration of 1 × 106 cells/mL. Thereafter, the cell 

suspension (1 ml/well) was added into the 6-well plates. 

Then, the siRNAs targeted CDC6 (siCDC6-1, siCDC6-

2), CEP55 (siCEP55-1, siCEP55-2), TYMS (siTYMS- 

1, siTYMS-2), and negative control (NC, Genechem, 

Shanghai, China) were transfected into A549 and H1299 

cells, respectively, following the manuals. Lipofectamine 

2000 (Thermo Fisher Scientific, Waltham, MA, USA) 

was used in cell transfection, and all cells were 

transfected for 8 h under 37° C and 5% CO2 conditions. 

Afterwards, DMEM supplemented with 10% FBS was 

added into each well to culture cells.  

 

RT-PCR 

 

The extraction of total RNA in A549 and H1299  

cells was performed by using the Trizol Reagent  
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(Life Technologies, Shanghai, China) according to the 

instructions. The total RNA was reverse transcribed  

into the cDNA template by using the PrimeScript™ 

RTreagent kit (Takara, Beijing, China). The expression 

of CDC6, CEP55, and TYMS mRNA was scrutinized by 

qPCR with the SYBR Premix Ex Taq™ kit (Takara, 

Dalian, China) on the ABI 7900HT Real-Time PCR 

system (Applied Biosystems, Foster City, CA, USA). 

The relative mRNA expression of CDC6, CEP55,  

and TYMS was estimated by the 2-ΔΔCt method and 

normalized to GAPDH.  

 

Western blot 

 

The total proteins in A549 and H1299 cells were extracted 

by applying the RIPA lysis buffer (Beyotime, Shanghai, 

China) in the light of the instructions. The concentration 

of total protein samples was scrutinized by using the BCA 

kit (Beyotime, Shanghai, China). A weight of 20 μg of the 

total protein sample were collected and separated with 

10% SDS-PAGE. After the blockage by 5% skimmed 

milk for 1 h at 25° C, the proteins were transferred to  

the polyvinylidene difluoride (PVDF) membranes. Rabbit 

anti-primary antibodies were then dropped onto the  

PVDF membranes to probe the proteins for 12 h at  

4° C, including anti-CDC6 (1:1000, ab109315, Abcam, 

Shanghai, China), anti-CEP55 (1:1000, ab170414, 

Abcam), anti-TYMS (1:1000, CSB-PA025393GA01HU, 

CUSABIO, Wuhan, China) and anti-GAPDH (1:1000, 

CSB-MA000071, CUSABIO). Followed by this, goat 

anti-rabbit secondary antibody (1:2000, A21020, AmyJet 

Scientific, Wuhan, China) was utilized for 2 h treatment 

of the proteins at room temperature. The enhanced 

chemiluminescent (ECL) kit (AmyJet Scientific, Wuhan, 

China) was applied for the visualization of the  

specific protein blots according to the directions. The 

quantification of proteins was determined by Image Lab 

software 3.0 (Bio-Rad Laboratories, Hercules, CA, USA). 

 

Cell counting kit-8 (CCK-8) assay 

 

CCK-8 assay was performed to estimate cell viability of 

A549 and H1299 cells. In brief, 1 × 104 A549 and H1299 

cells were respectively seeded into the 96-well plates 

containing 100 μL DMEM supplemented with 10% FBS, 

and maintained under 37° C and 5% CO2 conditions. 

After 24, 48, 72 and 96 h of culture, the 96-well plates 

were taken out from the incubator. Then, CCK-8 solution 

(10 μL/well) was added into each well to incubate cells 

for 4 h at 37° C. The absorbance (OD) value of each well 

was measured at 450 nm using a microplate reader.  

 
Cell migration and invasion 

 

The 24-well Transwell chambers (Litchi Biotechnology, 

Shanghai, China) were purchased for evaluating cell 

migration and invasion. A549 and H1299 cells were 

suspended into 300 μL non-serum DMEM, followed  

by being seeded into the upper chambers. DMEM 

containing 10% FBS was added into the lower 

chambers. After 24 h of incubation, the migration cells 

were sequentially fixed by 4% paraformaldehyde and 

stained by 1% crystal violet for 10 min. The number of 

migration cells was counted under the microscope 

(IX81, Olympus, Tokyo, Japan). For cell invasion, 100 

μL Matrigel (Litchi Biotechnology) was pre-coated into 

the upper chambers before cell seeding. 

 

Cell apoptosis 

 

A549 and H1299 cells were harvested and washed by 

PBS twice. A549 and H1299 cells were subsequently 

resuspended into 100 μL 1× Binding Buffer. Then 5 μL 

FITC and 10 μL propidium iodide solution were added 

and gently mixed. Cells were placed at 25° C for 15 

min. A total of 400 μL 1× Binding Buffer was then 

added to treated cells for 15 min on ice. Cell apoptosis 

was analyzed by the FACSCalibur flow cytometer (BD 

Biosciences, San Jose, CA, USA). 

 

Statistical analysis 

 

The experiments in the present study were carried out in 

triplicates. Statistical analysis was implemented using 

GraphPad Prism 10 software. The data were displayed 

as mean ± standard deviation. Paired Student’s t-test 

was executed to analyze the difference between the  

two groups. One-way analysis of variance and Tukey’s 

post hoc test were employed for the data comparison in 

more than two groups. P < 0.05 revealed a statistically 

significant difference.  

 

Availability of data and material 

 

The datasets generated and/or analysed during the 

current study are available from the corresponding 

author on reasonable request. 

 

RESULTS 
 

Screening of factors with a significant association of 

prognosis  

 

We downloaded the expression profile data corresponding 

to LUAD and LUSC in TCGA, and then combined them 

into a data set. The sample relationship before and after 

batch effect removal was shown in Figure 1A. In the 

expression profile data set after combining LUAD and 

LUSC, we first divided the samples into Tumor (n = 994) 

vs Control (n = 107) comparison group, and then divided 

the samples into Dead (n = 394) vs Alive (n = 600) 

comparison group. In the comparison group of Tumor  
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vs. Control, 55 significantly differentially expressed  

lncRNAs and 2287 significantly differentially expressed 

mRNAs were screened (Figure 1B). In the Dead vs.  

Alive comparison group, 22 significantly differentially 

expressed lncRNAs and 459 significantly differentially 

expressed mRNAs were screened (Figure 1B). We further 

compared the DERs filtered in Tumor vs. Control and 

Dead vs. Alive, and a total of eight overlapping lncRNAs 

and 262 mRNAs were filtered (Figure 1C). The 

information list was shown in Supplementary Table 1. 

Finally, the enrichment analysis of GO function and 

KEGG signal pathway based on DAVID was carried out 

for the overlapped mRNAs with significant differential 

expression. A total of 17 significantly correlated GO 

signal pathways and 14 KEGG signal pathways were 

screened, which were displayed in Figure 1D–1F. 

 

Identifying of DERs with a significant association of 

prognosis and PPI network construction 

 

Based on the clinical survival and prognosis information 

of the samples, eight lncRNAs and 262 mRNAs by single 

factor Cox regression analysis were screened. Eight 

lncRNAs and 193 mRNAs that were significantly related 

to survival and prognosis were obtained. The eight 

lncRNAs were: FEZF1-AS1, SNHG12, BANCR, SNHG3, 

HLA-DQB1-AS1, SH3BP5-AS1, VIM-AS1, and FAM83A-

AS1. Further multifactor Cox regression analysis was 

performed on 193 prognostication-related mRNAs, and 

the independent prognostication-related mRNAs were 

selected. A total of 30 independent prognostication-

related mRNAs were obtained, which was shown in 

Supplementary Table 2. The STRING database was  

used to search for the interaction relationship between 

262 mRNAs product proteins that are significantly 

related to survival and prognosis. The PPI network was 

constructed, as shown in Figure 2. The network contained 

145 gene nodes in total. 

 

Optimal mRNA marker excavation and nomogram 

diagnostic model construction 

 

Based on the expression level of 30 independent 

prognosis significantly correlated mRNAs obtained in 

 

 
 

Figure 1. Screening prognosis-related mRNAs and lncRNAs based on TCGA data. (A) The sample relationship before and after batch 
effect removal. (B) Heatmap of differentially expressed mRNAs and lncRNAs in Tumor (994) vs Control (107) comparison group and Dead 
(394) vs Alive (600) comparison group. (C) A total of eight overlapping lncRNAs and 262 mRNAs were filtered. (D–E) The enrichment analysis 
of GO function and KEGG signal pathway based on DAVID was carried out for the overlapped mRNAs with significant differential expression.  
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the previous step in the TCGA combined data set, the 

LASSO, RFE and RF algorithms were used to screen 

the optimized DEGs combination, and the parameter 

diagram of algorithm filtering is shown in Figure 3A–

3C). In LASSO, RFE and RF algorithms, we screened 

22, 27 and 25 mRNAs respectively. Comparing these 

three mRNAs sets, a total of 17 overlapping mRNAs 

were obtained (Figure 3D). The 17 mRNAs obtained as 

the final optimized mRNAs combination: ADRB2, 

ATP13A4, CDC6, CEP55, CLIC6, COL4A3, CPED1, 

DEPDC1B, DNASE1L3, E2F7, FAM83A, FSTL3, 

IER5L, LAMC2, SFTA3, TOX, TYMS. 

 

The diagnostic nomogram model construction and 

validation 

 

Based on the 17 characteristic mRNAs obtained by 

screening, we constructed a Nomogram prediction 

model according to the expression level of each factor, 

as shown in Figure 4A. Then, the Nomogram diagnostic 

model was analyzed by line graph, as shown in Figure 

4B, from which the Cindex value was 0.765. After  

that, the decision curve analysis was carried out on the 

model to observe the net return rate of the sample 

diagnosis results of the model, as shown in Figure 4D. 

In addition, the ROC curve of the model was analyzed, 

and the results are shown in Figure 4C. Finally, in the 

validation data set GSE37745, the Nomogram model 

was also built based on the 17 mRNAs factors screened 

previously to verify the effectiveness of the diagnostic 

model. The results were shown in Figure 5A–5D). The 

ROC values of training set and testing set were 0.835 

and 0.767, respectively. 

 

We visualized the expression level of 17 genes in the 

combined TCGA training data set and validation  

data set (GSE37745). As displayed in Figure 6A, 6B), 

the expression level of 17 genes in the GSE37745 

validation data set was completely consistent with the 

direction of the expression difference in the combined 

TCGA training data set. The expression level of 13 

genes, including ADRB2, ATP13A4, CDC6, CEP55, 

CLIC6, COL4A3, CPED1, DEPDC1B, FAM83A, FSTL3, 

SFTA3, TOX, TYMS, was significantly different in the 

group comparison. 

 

Screening of key genes 

 

By comparing the 17 characteristic genes selected  

to construct the survival diagnosis model with the 

important link hub genes in the PPI network, the 

overlapping part was selected as an important factor, 

and a total of 3 genes were obtained: CDC6, CEP55, 

TYMS. In the combined TCGA training set and 

GSE37745 validation data set, the samples were divided 

into low-volume (expression level lower than the 

median value) and high-volume expression group 

(expression level higher than or equal to the median 

value) according to the respective expression level of 

the three genes. The Kaplan-Meier curve method was 

used to analyze and display the correlation between the 

expression level of important genes and survival and 

 

 
 

Figure 2. PPI network construction. The network contained 145 gene nodes in total. 
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prognosis. The results are shown in Figure 7A, 7B), 

high expression of CDC6, CEP55, and TYMS predicted 

poor prognosis.  

 

Construction of a co-expression network based on 

characteristic mRNAs and lncRNAs 

 

Based on the expression level of eight lncRNAs that are 

significantly related to independent prognosis and 17 

important characteristic genes related to survival status 

diagnosis, the expression correlation between them was 

calculated. After retaining the action pairs with 

significant correlation P < 0.05, a total of 79 pairs of 

relationship pairs were screened, and the relationship 

connection network is shown in Figure 8.  
 

CDC6, CEP55, and TYMS affected cell activities in 

NSCLC cells 
 

NSCLC cells were transfected with siCDC6, siCEP55, 

and siTYMS, and the efficiency of transfection  

was examined by RT-PCR and western blot 

 

 
 

Figure 3. Optimal mRNA marker excavation and nomogram diagnostic model construction. (A–C) Filter characteristic mRNAs 

parameter diagram of RFE, RF, and LASSO. (D) Comparison chart of characteristic mRNAs combinations filtered by RFE, RF, and LASSO.  
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Figure 4. Nomogram diagnostic model construction and evaluation. (A) Nomogram model diagram based on the expression level of 
17 characteristic mRNAs in the combined training data set. (B) Nomogram diagnostic model line chart. (C) The ROC value was calculated.  
(D) Model decision line diagram.  

 

 
 

Figure 5. Evaluation of nomogram diagnostic model in GSE37745 dataset. (A) Nomogram model diagram of expression level of 
mRNAs in GSE37745 validation data set based on 17 features. (B) Nomogram diagnostic model line chart. (C) The ROC value was calculated. 
(D) Model decision line diagram.  
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Figure 6. The expression of 17 mRNAs in combined TCGA training set and GSE37745 testing dataset. (A) The expression of 17 

mRNAs in combined TCGA training set. (B) The expression of 17 mRNAs in GSE37745 dataset. 0.01<*P<0.05; 0.005< **P<0.01; ***P<0.005. 
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(Supplementary Figure 1). The siCDC6-1 (siCDC6), 

siCEP55-1 (siCEP55), and siTYMS-1 (siTYMS) 

showed favorable transfection efficiency, which were 

used for the further experiments. CCK8, Transwell  

and FCM were employed to test cell proliferation, 

migration, invasion and cell apoptosis. The result 

showed that siCDC6, siCEP55, and siTYMS inhibited 

cell proliferation, migration, and invasion in NSCLC 

cells, and promoted cell apoptosis in NSCLC cells 

(Supplementary Figures 2–4).  
 

DISCUSSION 
 

The prognosis of lung cancer is poor, and the 5-year 

survival rate after diagnosis is only 16.2% [29]. Because 

of the lack of clinical symptoms in the early stage of  

the disease, when symptoms appear, the preferably 

treatment opportunity has been missed. In China, on the 

account of economic conditions and national awareness, 

there are very few lung cancer patients who can be 

diagnosed in the early stage [30, 31]. Therefore, early 

screening of NSCLC has great scientific significance. 

How to improve the accurate diagnosis, treatment and 

survival prognosis of NSCLC is particularly important. 

The TCGA project was started in 2006 by National 

Cancer Institute and National Human Genome Research 

Institute. It is an epoch-making project in the field  

of cancer genomics, which contains research data  

from different disciplines and institutions. TCGA has 

identified more than 20000 primary cancers at the 

 

 
 

Figure 7. The prognostic analysis of CDC6, CEP55, and TYMS in TCGA and GSE37745. (A) Kaplan-Meier used for prognostic analysis 

of CDC6, CEP55, and TYMS in combined TCGA training set. (B) Kaplan-Meier used for prognostic analysis of CDC6, CEP55, and TYMS in 
GSE37745 validation data set. 
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molecular level and matched 33 normal tissue samples 

of cancer [32, 33]. Through the comprehensive analysis 

of genome, transcriptome and proteome data, valuable 

biological information about tumor molecular changes 

can be obtained.  

 

We downloaded the RNA sequence data of LUAD and 

LUSC from TCGA database. By preliminary analysis,  

a total of eight survival related long non-coding  

RNAs (lncRNAs) and 262 survival related mRNAs 

were filtered. By gene set enrichment analysis, 17 

significantly correlated GO pathways and 14 KEGG 

signal pathways were screened. The GO pathways like 

GO:0051301-cell division [34], GO:0006468-protein 

phosphorylation [35], and GO:0000278-mitotic cell 

cycle [36], which have been reported to exhibit an 

important role in the occurrence, development, drug 

resistance and metastasis of NSCLC. The KEGG 

pathways including hsa05200-Pathways in cancer [37], 

hsa04110-Cell cycle [38], and hsa04151-PI3K-Akt [39] 

signaling pathways are also reported to regulate the 

occurrence and development of NSCLC. 

 

In view of the clinical survival and prognosis 

information of the samples, we screened eight  

lncRNAs and 193 mRNAs by single factor Cox 

regression analysis. Further single and multifactor Cox 

regression analysis were performed, 30 independent 

prognostication-related mRNAs were obtained. The PPI 
network was further constructed. The top ten hub genes 

were CDK1, CCNB1, UBE2C, RRM2, CCNA2, AURKA, 

PLK1, CDC6, and CDC20, most mRNAs of which  

have been reported to be involved in the regulation of 

cell cycle in lung cancer cells [40–43]. The machine 

learning algorithms (LASSO, RFE, and RF) were 

employed to screen the optimized DEGs combination, 

and a total of 17 overlapping mRNAs were obtained. 

Based on the 17 characteristic mRNAs obtained, we 

firstly built a Nomogram prediction model. The ROC 

values of training set and testing set were 0.835 and 

0.767 respectively, which suggested that Nomogram 

prediction model represented favourable performance. 

By overlapping the 17 characteristic mRNAs and PPI 

network hub genes, three genes were obtained: CDC6, 

CEP55, TYMS, which was considered as key factors 

associated with survival of NSCLC. Allera-Moreau et 

al. reported that CDC6 was associated with overall, 

disease-free and relapse-free survival in NSCLC [44]. 

Another study indicated that CDC6 was involved in the 

replication licensing and the proliferation, migration, 

and invasion of lung cancer cells mediated by miR-26a 

and miR-26b, and CDC6 represented potential cancer 

diagnostic and prognostic markers as well as anti- 

cancer targets [45]. Centrosome-associated protein 55 

kDa (CEP55) is a member of the coiled-coil protein  

family. Its main function is to anchor microtubule 

polymerization-associated protein, participate in spindle 

formation, and then regulate cell proliferation [46]. The 

protein is expressed in normal tissues and tumor cells, 

and CEP55 can be coupled with the centrosome and 

intermediates in the cell cycle. After phosphorylation,  

it plays a role in regulating the cell cycle. The 

 

 
 

Figure 8. Construction of a co-expression network based on characteristic mRNAs and lncRNAs. A total of 79 pairs of relationship 

pairs were screened, and the relationship connection network was constructed.  
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overexpression of CEP55 is significantly correlated 

with the tumor stage, invasion and metastasis of many 

malignant tumors [47]. Jiang et al. found that CEP55 

expression was commonly elevated in NSCLC tissues 

and overexpression of CEP55 was correlated with 

unfavorable prognosis in the patients with NSCLC [48]. 

Fan et al. reported that CEP55 expression affected  

the survival and prognosis of patients with NSCLC,  

and participated in the process of tumor immune 

response [49]. Moreover, thymidylate synthetase 

(TYMS) silencing was reported to increase the 

pemetrexed sensitivity of NSCLC cells [50]. Zhang  

et al. demonstrated that significant correlation was 

observed in TYMS expression and clinical features, 

especially histology in NSCLC [51]. Tsyganov et al. 

demonstrated that exploring TYMS expression could 

contribute to the personalized chemotherapy, which can 

improve treatment efficacy and reduce unnecessary 

toxicity [52]. In the present study, A549 and H1299 

cells were transfected with siCDC6, siCEP55, and 

siTYMS, respectively. Cell proliferation, migration, 

invasion and apoptosis were examined. The results 

presented that silencing of CDC6, CEP55, TYMS 

showed carcinostatic effect on NSCLC cells. Finally, 

the lncRNAs-mRNAs networks were constructed, and a 

total of 79 pairs of relationship pairs were screened. 

There are some limitations in the present study.  

The relationship between lncRNAs and mRNAs and 

immune cells, the analysis of drug sensitivity data, and 

the analysis of microRNAs data based on public 

databases are not studied in the present study. These 

works can be part of our future work.  

 

In conclusion, this study explored the lncRNAs and 

mRNAs related to survival of NSCLC based on 

bioinformatic analysis and machine learning. We firstly 

built a Nomogram prediction model, which exhibited 

favourable performance. CDC6, CEP55, and TYMS are 

considered as key factors associated with survival of 

NSCLC. This paper provides a new idea for the early 

screening of NSCLC. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Transfection efficiency was examined by PCR and western blot. (A, B) RT-PCR and western blot were 
performed to examine the transfection efficiency of CDC6 knockdown. (C, D) RT-PCR and western blot were performed to examine the 
transfection efficiency of CEP55 knockdown. (E, F) RT-PCR and western blot were performed to examine the transfection efficiency of TYMS 
knockdown. *P<0.05, **P<0.01 vs NC group.  
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Supplementary Figure 2. Effect of CDC6 knockdown on malignant oncology phenotype in NSCLC cells. (A) Cell proliferation was 

examined by CCK8. (B, C) Cell migration and invasion were tested by Transwell assay. (D) Cell apoptosis was evaluated by FITC. *P<0.05, 
**P<0.01 vs NC group.  

 

 
 

Supplementary Figure 3. Effect of CEP55 knockdown on malignant oncology phenotype in NSCLC cells. (A) Cell proliferation was 

examined by CCK8. (B, C) Cell migration and invasion were tested by Transwell assay. (D) Cell apoptosis was evaluated by FITC. *P<0.05, 
**P<0.01 vs NC group.  
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Supplementary Figure 4. Effect of TYMS knockdown on malignant oncology phenotype in NSCLC cells. (A) Cell proliferation was 

examined by CCK8. (B, C) Cell migration and invasion were tested by Transwell assay. (D) Cell apoptosis was evaluated by FITC. *P<0.05, 
**P<0.01 vs NC group.  
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Supplementary Tables 
 

Please browse the Full Text version to see the data of Supplementary Tables 1, 2. 

 

Supplementary Table 1. DERs filtered in tumor vs. control and dead vs. alive. 

 

Supplementary Table 2. 30 independent prognostication-related mRNAs. 
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