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INTRODUCTION 
 

Cardiovascular disease (CVD) is one of the leading 

causes of mortality and morbidity worldwide. It has 

been reported that cardiovascular diseases caused 18.6 

million deaths in 2019, accounting for about 30% of 

global deaths and imposing a huge economic burden  

on society [1, 2]. The major cardiovascular system 

diseases include myocardial infarction, heart failure, 

cardiomyopathy, atrial fibrillation, and valvular disease. 

Diabetes mellitus is an independent risk factor for  

the development of coronary heart disease. Long- 

term blood glucose abnormality leads to metabolic 

dysregulation, systemic inflammation, oxidative stress, 

and other risk factors, accelerating the development  

of atherosclerosis and cardiovascular disease [3, 4]. 
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ABSTRACT 
 

Background: The cardiovascular effects of metformin continue to be a subject of debate within the medical 
community. 
Methods: The Mendelian randomization (MR) study used data from genome-wide association studies (GWAS) 
to explore the causal association with six diseases that are associated with bimatoprost treatment and 
myocardial infarction, chronic heart failure, atrial fibrillation, hypertrophic and dilated cardiomyopathy, and 
valvular disease. Genome-wide significant single nucleotide polymorphisms (SNPs), that are associated with 
metformin use were selected as the instrumental variables. To determine the causal relationship between 
metformin use and various cardiovascular diseases, MR analysis was conducted, employing methods such as 
Instrumental Variable Weighting (IVW). 
Results: The IVW analysis demonstrated a positive association between metformin treatment and the risk of 
myocardial infarction (OR = 22.67, 95% CI 3.22–34.01; P = 0.002). Conversely, metformin treatment exhibited a 
negative association with the risk of developing valvular disease (OR = 0.98, 95% CI 0.95–1.00; P = 0.046) and 
hypertrophic cardiomyopathy (OR = 0.01, 95% CI 0.00–0.22; P = 0.016). Multiple test correction found that 
metformin treatment was causally associated with the risk of both hypertrophic cardiomyopathy (PFDR = 0.048) 
and myocardial infarction (PFDR = 0.012). The analysis revealed limited heterogeneity in the individual results, 
absence of pleiotropy evidence, and indications of stability in the findings. 
Conclusion: The MR study discovered from a genetic standpoint that metformin may lower the risk of 
hypertrophic cardiomyopathy and valvular heart disease, yet it could elevate the risk of myocardial infarction. 
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Diabetic patients often suffer from a combination  

of cardiovascular disease, so finding more drugs  

like Dagliflozin, a class of drugs that can both lower 

blood sugar and protect the cardiovascular system,  

has become the preferred choice [5–7]. Metformin, 

known as an AMP-activated protein kinase (AMPK) 

agonist, is a first-line drug for the treatment of type 2 

diabetes [8, 9]. Although some existing studies have 

demonstrated a reduction in the incidence of heart 

failure and heart attacks in diabetic patients, there is 

still much uncertainty as to whether a direct reduction 

in the risk of cardiovascular disease can be achieved 

[10, 11]. The main reason for this is the inability to 

conduct a definitive placebo-controlled trial in diabetic 

patients with cardiovascular disease as an endpoint, 

especially in studies related to common valvular  

and cardiomyopathies, there is still a lack of clinical 

research trials to validate them [12]. 

 

Mendelian randomization (MR) studies use genetic 

variants that are strongly correlated with exposure 

factors as instrumental variables to assess causality 

between exposure factors and outcomes, are less 

susceptible to confounding and time-related bias, and 

are now increasingly used in studies of drug use and 

disease risk [13–15]. 

 

A two-sample Mendelian randomization analysis  

was used to elucidate the causal relationship between 

metformin treatment and common cardiovascular 

disease, providing new insights into the treatment of 

patients with diabetes combined with cardiovascular 

disease in clinical practice. To our knowledge, this is 

the first study to comprehensively explore metformin 

treatment and the risk of common cardiovascular 

disease disorders using Mendelian randomization 

analysis. 
 

MATERIALS AND METHODS 
 

Study design 

 

This study utilized metformin treatment as an  

exposure factor, single nucleotide polymorphisms 

(SNPs) with significant correlation with metformin as 

instrumental variables (IVs). Myocardial Infarction, 

Chronic Heart Failure, Atrial Fibrillation, Hypertrophic 

Cardiomyopathy, Dilated Cardiomyopathy, and 

valvular disease as outcome variables (Figure 1A). The 

two-sample MR applied in the present study was  

based on the genetic data obtained from the genome-

wide association studies, which relied on three core 

assumptions: first, the SNPs used as IVs should be 

strongly associated with exposure; second, the selected 

SNPs must be independent of confounders; and finally, 

IVs are associated with the six diseases mentioned 

above only through metformin use (exposure) and  

not through direct association (Figure 1B) [16]. 

Meanwhile, the studies included in our analysis were 

approved by the relevant institutional review boards, 

and participants provided informed consent. 

 

Data sources and SNPs selection 

 

All data covered in this study are available  

from genome-wide association studies (GWAS) 

(https://gwas.mrcieu.ac.uk/). Information related to the 

data can be found in Table 1. Data for metformin (ukb-

b-14609) were derived from publicly available GWAS 

statistical outcomes data from 2018, which included

 

 
 

Figure 1. (A) Workflow of the study. (B) Diagram for Mendelian randomization (MR). MR is based on three hypotheses. The SNPs used as 

IVs should be strongly associated with exposure; second, the SNPs selected must be independent of confounders; and finally, IVs are 
associated with the six diseases mentioned above only through metformin use (exposure) and not through direct association. 
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Table 1. Source of the GWAS data. 

Exposure/Outcome Database Year Author Participants 
Number  
of SNPs 

Web Source if public 

Metformin  
(ukb-b-14609) 

UKB 2018 
Ben 
Elsworth 

462,933 individuals 
(11,552 use cases and 
451,381 controls) of 
European ancestry 

9,851,867 
https://gwas.mrcieu.ac.uk/datase
ts/ukb-b-14609/ (Access time: 
October 11, 2023) 

Myocardial infarction  
(ebi-a-GCST90018877) 

EBI 2021 Sakaue S 

461,823 individuals 
(20,917 use cases and 
440,906 controls) of 
European ancestry 

24,172,914 
https://gwas.mrcieu.ac.uk/datase
ts/ebi-a-GCST90018877/ 
(Access time: October 11, 2023) 

Chronic heart failure  
(ebi-a-GCST90018586) 

EBI 2021 Sakaue S 

178,726 individuals 
(10,540 cases and 168,186 
controls) of European 
ancestry 

12,454,705 
https://gwas.mrcieu.ac.uk/datase
ts/ebi-a-GCST90018586/ 
(Access time: October 11, 2023) 

Atrial fibrillation  
(/ebi-a-GCST006414) 

EBI 2018 
Nielsen 
JB 

1,030,836 individuals 
(60,620 cases and 970,216 
controls) of European 
ancestry 

33,519,037 
https://gwas.mrcieu.ac.uk/datase
ts/ebi-a-GCST006414/ (Access 
time: October 11, 2023) 

Hypertrophic 
cardiomyopathy  
(ebi-a-GCST90018861) 

EBI 2021 Sakaue S 
489,727 individuals (507 
cases and 489,220 controls) 
of European ancestry 

24,199,797 
https://gwas.mrcieu.ac.uk/datase
ts/ebi-a-GCST90018861/ 
(Access time: October 11, 2023) 

Dilated cardiomyopathy  
(ebi-a-GCST90018834) 

EBI 2021 Sakaue S 

1,030,836 individuals 
(1,444 cases and 353,937 
controls) of European 
ancestry 

19,080,278 
https://gwas.mrcieu.ac.uk/datase
ts/ebi-a-GCST90018834/ 
(Access time: October 11, 2023) 

Heart valve problem 
or heart murmur  
(/ebi-a-GCST90038612) 

EBI 2021 NA 
484,598 individuals (3,742 
cases and 480,856 controls) 
of European ancestry 

9,587,836 
https://gwas.mrcieu.ac.uk/datase
ts/ebi-a-GCST90038612/ 
(Access time: October 11, 2023) 

 
462,933 individuals, of whom 11,552 were cases  

and 451,381 were controls, with 9,851,867 SNPs. 

Myocardial Infarction (ebi-a-GCST90018877) data 

included 461,823 people, of whom 20,917 were  

cases and 440,906 controls, with 24,172,914 SNPs. 

Chronic Heart Failure (ebi-a-GCST90018586) data 

included 178,726 people, of whom 10,540 were  

cases and 168,186 controls, with 12,454,705 SNPs. 

Atrial Fibrillation (ebi-a-GCST006414) data included 

1,030,836 people, of whom 11,552 were cases and 

451,381 controls, with 33,519,037 SNPs. Data for 

Hypertrophic Cardiomyopathy (ukb-b-14609) included 

489,727 people, of whom 507 were cases, 489,220 

were biased people, of whom 1,444 were cases and 

353,937 were controls, with 19,080,278 SNPs. The data 

for valvular disease (ebi-a-GCST90038612) included 

484,598 people, of whom 3,742 were cases and 480,856 

were controls, with 9,587,836 SNPs. The diagnostic 

criteria for all the diseases included in this study 

followed the International Classification of Diseases 

tenth version. The above databases include European 

populations and include both males and females. 

 

Instrumental variables 

 

To avoid analysis bias caused by strong linkage 

disequilibrium among SNPs, the screening criteria 

were: (1) P < 5 × 10−8; (2) physical distance M > 10 000 

kb between every two genes; (3) r2 threshold of LD 

between genes < 0.001. R2 is the proportion of variance 

in the exposure variable explained by the instrumental 

variable in the regression model. The R2 was calculated 

using the formula: R2 = β2(1−EAF) × 2EAF. EAF is the 

frequency of mutated genes. SNPs with F statistics >10 

was defined as reliable and valid IVs. The F-statistic is 

calculated as: F = R2(N−K−1)/(K(1−R2)), K is the 

number of SNP-exposure association, and N is the 

sample size of the GWAS for the SNP-exposure 

association [17, 18]. 

 

Mendelian randomization analysis 

 

In this study, the inverse variance weighting (IVW), 

MR-Egger regression, and weighted mode from the 

two-sample MR package were used for the analyses. 

IVW is the most commonly used test for calculating  

the weighted average of the effect values of all the 

instrumental variables, which provides similar estimation 

and precision as two-stage least squares, and therefore 

the results of the IVW analysis were the main focus. 

 

Multi check calibration 

 

This study performed multiple MR analyses, therefore 

Benjamini-Hochberg (BH) was chosen for multiple test 

correction. The BH method for multiple test correction 

was chosen to control the False Discovery Rate (FDR) 

and to be able to better maintain the efficacy of the 
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statistical test, especially when dealing with a large 

number of comparisons. 

 

Sensitivity analysis 

 

This study used Cochran's Q statistic to test for 

heterogeneity. MR Egger intercept test and Mendelian 

randomization residual and outlier (MR-PRESSO) test 

were used to detect pleiotropy and remove outlier 

correction level pleiotropy. Leave-one-out analysis was 

used to assess whether the MR results were altered by a 

particular SNP. 

 
Statistical analysis 

 

All data analyses were performed using R software 

(version 4.3.1) and the R packages “TwosampleMR” 

(version 0.5.6, Mount Sinai, New York, NY, USA). 

MR-PRESSO test was accessed on October 8, 2023. 

Differences were considered statistically significant 

only when the p-value < 0.05. 

 
Data availability statement 

 

The original contributions presented in the study are 

included in the article, and further inquiries can be 

directed to the corresponding author. 

RESULTS 
 

Genetic variant selection 

 

Metformin was used as an exposure factor, and a total 

of 44 SNPs were obtained as instrumental variables  

by using R software to screen SNPs loci of genome-

wide significance according to the screening criteria 

(Supplementary Table 1). 

 

Causal effects of metformin treatment on 

cardiovascular diseases 

 

IVW analysis showed a positive association between 

metformin treatment and myocardial infarction (OR = 

22.67, 95% CI 3.22–34.01; P = 0.002). Meanwhile, 

IVW analysis showed that metformin treatment was 

positively associated with valvular disease (OR = 0.98, 

95% CI 0.95–1.00; P = 0.046), whereas chronic heart 

failure (OR = 0.05, 95% CI 0.00–0.83; P = 0.037) and 

hypertrophic cardiomyopathy (OR = 0.01, 95% CI 

0.00–0.22; P = 0.016) were negatively associated. The 

IVW also showed that metformin treatment was not 

significantly associated with the risk of developing 

atrial fibrillation (OR = 0.83, 95% CI 0.20–3.49; P = 

0.798) and dilated cardiomyopathy (OR = 0.20, 95% CI 

0.00–12.41; P = 0. 447) (Figure 2). 

 

 
 

Figure 2. MR results of the causal association between metformin treatment and cardiovascular disease using three methods. 
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Table 2. Benjamini-Hochberg corrected. 

Outcome P-value Benjamini-Hochberg (PFDR) 

Hypertrophic cardiomyopathy 0.016 0.048 

Myocardial infarction 0.002 0.012 

Heart valve problem or heart murmur 0.046 0.069 

Chronic heart failure 0.037 0.069 

Atrial fibrillation 0.798 0.798 

Dilated cardiomyopathy 0.447 0.536 

 

Table 3. Sensitivity analyses of the causal effect of metformin treatment on cardiovascular disease. 

Outcome 

Test for directional 
horizontal pleiotropy 

Cochran’s  
Q-Test MR-

PRESSO 
Egger-intercept SE P-value Q Q-pval 

Myocardial infarction (id: ebi-a-GCST90018877) −0.003 0.008 0.745 125 0.001 0.121 

Chronic heart failure (id: ebi-a-GCST90018586) 0.008 0.014 0.556 60.6 0.011 0.001 

Heart valve problem or heart murmur  
(id: ebi-a-GCST90038612) 

0 0 0.057 51.8 0.168 0.111 

Atrial fibrillation (id: ebi-a-GCST006414) −0.003 0.005 0.647 130 0.001 0.001 

Hypertrophic cardiomyopathy  
(id: ebi-a-GCST90018861) 

0 0.026 0.993 27.3 0.962 0.990 

Dilated cardiomyopathy (id: ebi-a-GCST90018834) −0.009 0.016 0.57 39.4 0.584 0.760 

 

Results of multiple testing correction 

 

After correction using the Benjamini-Hochberg method, 

treatment with metformin was found to have a causal 

relationship with the risk of developing hypertrophic 

cardiomyopathy (PFDR = 0.048) and myocardial infarction 

(PFDR = 0.012). However, there was no significant causal 

relationship between metformin treatment and the risk  

of heart failure, atrial fibrillation, valvular disease, and 

dilated cardiomyopathy (Table 2). 

 

Sensitivity analysis 

 

The results of Cochran’s Q-test for heterogeneity  

are presented in Table 3. The analysis showed some 

heterogeneity between SNPs in metformin treatment 

and myocardial infarction (Q = 125, P = 0.001), chronic 

heart failure (Q = 60.6, P = 0.011), and atrial fibrillation 

(Q = 130, P = 0.001). P-value > 0.05 for all Test for 

directional horizontal pleiotropy. Meanwhile, in the 

analysis results of MR-PRESSO, it was found that  

there were multiple outliers when heart failure was the 

outcome variable, so this analysis result was excluded. 

 

The Fixed-effect IVW analysis of the causal association 

of metformin treatment and cardiovascular diseases was 

also presented (Figure 3). The black dots and bars 
indicate the causal estimate and 95% CI using each 

SNP. Scatter plot of the effects of genetic variants on 

the metformin treatment and cardiovascular diseases is 

shown. The slopes of the solid lines denote the 

magnitudes of the associations estimated from the MR 

analysis (Figure 4). The symmetry of the funnel plot 

also indicated the same result (Figure 5). Furthermore, 

leave-one-out sensitivity testing showed that the causal 

effect of metformin treatment on cardiovascular diseases 

was not significantly affected by the omission of any 

single SNP (Figure 6). The results of the causal effect of 

metformin treatment on cardiovascular diseases can be 

shown to be stable and reliable. 
 

DISCUSSION 
 

In practice, even though metformin can cause  

side effects such as acidosis, nausea, abdominal 

discomfort, and diarrhea, it is still worthwhile to study 

its mechanism of action in depth, as opposed to the 

“beneficial” effects of metformin [19]. In a series of 

studies such as the prevention of rheumatoid arthritis, 

metformin has been shown to not only lower blood 

glucose, but also reduce body weight and indirectly 

inhibit inflammation by altering the intestinal flora,  

thus reducing the risk of developing a number of 

diseases [20–24]. Available studies have demonstrated 

that metformin acts not only through AMP-activated 

protein kinase, but also through mitochondrial complex 

1, growth differentiation factor 15, and glucagon-like 
peptide 1/glucagon [25–28]. At the same time, many 

basic studies have demonstrated that metformin can play 

a cardiovascular protective role by reducing endothelial 
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dysfunction and reducing oxidative stress to improve 

inflammation [29]. Unfortunately, however, metformin 

is still not classified as a cardiovascular drug [30– 

34]. Meanwhile, most clinical studies have focused  

on studying the incidence of heart attack and heart 

failure with metformin, and there have been more 

studies demonstrating that metformin reduces mortality 

in patients with heart failure and heart attack, but 

relatively few studies have been done on other common 

heart diseases [35–37]. 

 

This study conducted a MR analysis utilizing the 

GWAS database. The endpoints of our research 

encompassed not only myocardial infarction and  

heart failure, but also four commonly seen clinical  

diseases: atrial fibrillation, valvular disease, hyper- 

trophic cardiomyopathy, and dilated cardiomyopathy. 

Unexpectedly, this study revealed that metformin 

increased the incidence of myocardial infarction, 

contradicting the majority of existing studies. Currently, 

most research suggests that metformin can reduce 

endothelial inflammation and lower total cholesterol 

and LDL levels in the blood, playing a crucial role  

in mitigating the risk of myocardial infarction [38]. 

However, some studies argue that metformin, by 

activating AMP-activated protein kinase, affects energy 

metabolism, potentially leading to insufficient energy in 

cardiac cells, thereby increasing the risk of myocardial

 

 
 

Figure 3. (A–F) show the fixed-effect IVW analysis of the causal association of metformin with Myocardial Infarction, Chronic Heart Failure, 

Atrial Fibrillation, Hypertrophic Cardiomyopathy, Dilated Cardiomyopathy, and valvular disease. 
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infarction. Additionally, this study indicates that 

metformin might affect blood viscosity or the de-

formability of red blood cells, and indicates changes that 

could lead to microcirculatory disorders and increased  

risk of cardiac tissue ischemia [39, 40]. This study offers 

 a genetic variant perspective on why metformin might 

increase the risk of myocardial infarction, identifying  

44 significant SNPs, though further research is required  

to understand the underlying mechanisms. This study 

found that metformin treatment may reduce the risk  

of heart failure. However, due to the existence of 

horizontal pleiotropy, the results of this analysis can 

 

 
 

Figure 4. (A–F) show scatter plots of the effect of genetic variation on the effect of metformin treatment on Myocardial Infarction, Chronic 

Heart Failure, Atrial Fibrillation, Hypertrophic Cardiomyopathy, Dilated Cardiomyopathy, and valvular disease. 
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only be excluded. Even so, there are still studies  

that have found that metformin can reduce the 

cardiovascular risk associated with insulin resistance,  

so new data need to be collected for MR analysis in  

the future [41]. 

Interestingly, the MR analysis introduced a novel 

perspective: metformin usage can reduce the risk of 

hypertrophic cardiomyopathy and valvular disease but 

shows no causal relationship with the risk of dilated 

cardiomyopathy. This is an unprecedented conclusion in 

 

 
 

Figure 5. (A–F) show funnel plots of the causal effects of metformin on Myocardial Infarction, Chronic Heart Failure, Atrial Fibrillation, 

Hypertrophic Cardiomyopathy, Dilated Cardiomyopathy, and valvular disease. 
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research. The risk of developing hypertrophic 

cardiomyopathy, apart from genetic factors, is closely 

associated with high blood pressure, valvular disease, 

and cardiac remodeling. Thus, we hypothesize that 

metformin’s anti-inflammatory and anti-oxidative stress 

effects may protect blood vessels, indirectly reducing 

blood pressure and valvular damage. The mechanisms 

might relate to metformin’s activation of the AMPK and 

β-catenin pathways, with exact mechanisms awaiting 

further exploration, but undoubtedly closely connected 

with the 44 identified SNPs [42, 43]. 

 

After Benjamini-Hochberg adjustment, treatment with 

metformin remains significantly associated with the 

risk of myocardial infarction and hypertrophic 

cardiomyopathy, further indicating strong genetic 

evidence supporting the potential impact of metformin 

on myocardial infarction and hypertrophic cardio-

myopathy. However, post-adjustment, no significant 

causal relationship was found between metformin  

and heart failure, valvular disease, or hypertrophic 

cardiomyopathy, which may be due to the relatively 

weaker effects on these diseases or the genetic 

instrumental variables not being strongly associated 

with these conditions, so that these causal relationships 

could not be established after adjusting for the risk of 

multiple comparisons. In addition, although the results 

changed after adjustment, the outcomes obtained after 

 

 
 

Figure 6. (A–F) show leave-one-out analysis plots of metformin on Myocardial Infarction, Chronic Heart Failure, Atrial Fibrillation, 
Hypertrophic Cardiomyopathy, Dilated Cardiomyopathy, and valvular disease. 

7676



www.aging-us.com 10 AGING 

multiple corrections are generally more conservative. 

This also suggests that future studies may require larger 

sample sizes or stronger genetic instrumental variables 

for validation. 

 
The strengths of the study lie in its basis on a large-

scale MR analysis from a public database, reducing 

susceptibility to confounding factors. Additionally, 

robust estimations of each instrumental variable effect 

(with F-statistics greater than 10) prevent potential 

weak instrument bias. Furthermore, relevant hetero-

geneity and sensitivity analyses have been conducted, 

all affirming the reliability of the results. Additionally, 

this study sheds light on the protective effects of 

metformin against hypertrophic cardiomyopathy and 

valvular disease, adding a new dimension to the 

therapeutic implications of this widely used diabetes 

medication. These findings highlight the need for 

further investigation into the nuanced and multifaceted 

impact of metformin on cardiovascular health. 

 
Limitations of the study 

 
The present study still has some limitations. First,  

MR-PRESSO analysis of atrial fibrillation and heart 

failure revealed possible horizontal multi directionality 

of SNPs, which may be due to factors such as the 

composition of the control group and the time period 

of sample collection. Second, although our study  

was groundbreaking in suggesting a protective effect 

of metformin against hypertrophic cardiomyopathy 

and valvular disease, no causal relationship was found 

between metformin and dilated cardiomyopathy. 

Dilated cardiomyopathy is also strongly influenced  

by genetic factors, which warrants further research. 

Third, genetic variation exists between populations  

on different continents, and our study participants 

were all European, so the applicability of our findings 

to all ethnic groups may be limited. Finally, because 

the exposure factor in this study was a drug treatment, 

meaningful bidirectional MR analyses could not be 

performed. 

 
Future directions for clinical research 

 
First, this study screened 44 SNPs associated  

with metformin treatment, providing a genetic  

variant perspective for understanding how metformin 

affects cardiovascular disease risk. These findings may 

contribute to the future development of genetically 

based risk assessment tools to guide metformin use, 

particularly in patients with a genetic predisposition  

to CVD. Second, given that metformin may have 

different effects on different cardiovascular diseases, 

future studies should conduct more detailed long-term 

observations while expanding the study population to 

better understand the effects of long-term metformin 

use on cardiovascular health. 

 

CONCLUSIONS 

 
This study reveals the complex effects of metformin 

treatment on common cardiovascular diseases from a 

genetic perspective. While it is consistent with previous 

research in reducing the risk of heart failure, surprisingly, 

the use of metformin may increase the incidence risk of 

myocardial infarction, a finding that deviates from the 

established understanding of metformin’s cardiovascular 

impacts. Furthermore, the study found that the use of 

metformin could potentially lower the incidence risk  

of hypertrophic cardiomyopathy and valvular disease, 

but further verification is needed. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Table 
 

Supplementary Table 1. The characteristics of SNPs and their genetic associations with metformin and 
cardiovascular disease. 

SNP SD R2 F 

rs17513135 0.262478827 7.51E-05 34.76479383 

rs62106258 0.511951964 6.69E-05 30.9532236 

rs1515096 0.242452174 0.000110077 50.96389706 

rs10195252 0.224271425 7.30E-05 33.81789047 

rs780093 0.225902324 8.34E-05 38.62203695 

rs76675804 0.367084303 0.000129919 60.15124163 

rs11708067 0.256680528 7.12E-05 32.94766208 

rs17036160 0.342626259 8.38E-05 38.79153567 

rs1496653 0.27314669 0.000114218 52.8812319 

rs6769511 0.23680084 0.000180562 83.60269029 

rs4686471 0.226642591 6.95E-05 32.16554861 

rs10001190 0.228376909 0.000133339 61.73519549 

rs7376543 0.264590763 7.70E-05 35.65491448 

rs459193 0.252502922 8.76E-05 40.57668785 

rs74567345 0.510535388 0.000121646 56.32073875 

rs17250977 0.560322378 6.70E-05 31.02535276 

rs9273268 0.281355617 6.53E-05 30.24787197 

rs7756992 0.248743757 0.000165208 76.4924493 

rs987237 0.286649065 7.17E-05 33.17300638 

rs849142 0.21999108 0.000118609 54.91427422 

rs13266634 0.238229663 0.000113923 52.74462392 

rs2796441 0.222704483 6.72E-05 31.08989641 

rs10965246 0.288978046 0.000221363 102.4984437 

rs34872471 0.242369847 0.001246825 577.9144681 

rs34744311 0.22747539 0.000156736 72.56942325 

rs1613295 0.223005896 0.000115949 53.68247685 

rs11257655 0.270950385 0.00010188 47.1682845 

rs4752792 0.220698688 8.98E-05 41.58554008 

rs67232546 0.270897314 7.05E-05 32.62157615 

rs947791 0.267029287 7.35E-05 34.01578906 

rs7482891 0.227379455 9.14E-05 42.30375764 

rs4930011 0.226457524 0.000125825 58.25572105 

rs76550717 0.3023736 8.50E-05 39.36548692 

rs8756 0.220456468 7.33E-05 33.92337861 

rs1215468 0.243457793 0.000144695 66.99346099 

rs7177055 0.244168803 8.49E-05 39.28866867 
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rs4932264 0.24821033 7.98E-05 36.94925556 

rs72802357 0.412502497 9.62E-05 44.54955654 

rs1421085 0.224289796 0.000246742 114.2529394 

rs11658063 0.226810647 0.000136224 63.07109823 

rs9957264 0.296168427 7.87E-05 36.42313317 

rs2009222 0.227842121 6.94E-05 32.13917398 

rs10420309 0.222913363 7.22E-05 33.4368981 

rs1800961 0.635128734 7.14E-05 33.04536264 

rs73188924 0.265171137 6.72E-05 31.1091987 
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