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INTRODUCTION 
 

Sepsis, known as systemic infection, is a systemic 

inflammatory response syndrome with infection or 

highly suspected infection [1]. It is one of the common 

serious complications of trauma, burn, infection, and 

perioperative period of major surgical operations  

[2]. The disease progresses rapidly and is likely to  

turn into septic shock and multi-organ dysfunction 

syndrome (MODS). In recent years, continuous in-depth 

research on sepsis, and great progress in anti-infection 

treatment and organ function support technology have 

been achieved. Nevertheless, the high case fatality  

rate of sepsis (up to 30%-60%), the high treatment 

cost, and the large consumption of medical resources 

seriously affect the life quality of patients and pose a 

great threat to human health [3]. Therefore, it is urgent 

to establish a simple and efficient risk management 

strategy for septic patients. 

 
Although the exact pathogenesis of sepsis is not yet 

understood, growing research holds that immuno-

suppression is the central link in the pathogenesis  

of sepsis [4]. It was once believed that early sepsis-
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ABSTRACT 
 

This study is aimed to explore the value of lymphocyte subsets in evaluating the severity and prognosis of 
sepsis. The counts of lymphocytes, CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, and NK cells 
significantly decreased between day 1 and day 3 in both the survivor and the non-survivor groups. The 
peripheral lymphocyte subsets (PLS) at day 1 were not significantly different between the survivor and the non-
survivor groups. However, at day 3, the counts of lymphocytes, CD3+ T cells, CD4+ T cells, and NK cells were 
remarkably lower in the non-survivor group. No significant differences in CD8+ T cells, or CD19+ B cells were 
observed. The PLS index was independently and significantly associated with the 28-day mortality risk in septic 
patients (OR: 3.08, 95% CI: 1.18-9.67). Based on these clinical parameters and the PLS index, we developed a 
nomograph for evaluating the individual mortality risk in sepsis. The area under the curve of prediction with 
the PLS index was significantly higher than that from the model with only clinical parameters (0.912 vs. 0.817). 
Our study suggests that the decline of PLS occurred in the early stage of sepsis. The new novel PLS index can be 
an independent predictor of 28-day mortality in septic patients. The prediction model based on clinical 
parameters and the PLS index has relatively high predicting ability. 
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induced death was a multi-organ failure caused  

by immune damage due to excessive inflammatory 

response, and early death can occur within a few  

hours to a few days, or even shorter time [5]. Later 

death of sepsis is caused by organ failure due to 

compensatory anti-inflammatory response-mediated 

immune damage, or by secondary severe infection due 

to severe immunosuppression, which both can occur 

days to weeks later [6]. However, recent genetic 

analyses of tissue samples from septic patients reveal 

that innate immune system dysfunction and acquired 

immune system immunosuppression during sepsis  

can cause simultaneous imbalance and persistence  

of inflammatory and anti-inflammatory responses, 

resulting in persistent and/or repeated infections  

and lasting damage to organ functions and finally in 

death [7, 8]. Exploring the early-stage changes of 

immune status can help in evaluating the prognosis  

of septic patients and carrying out risk management. 

Immune dysfunction in sepsis is mainly manifested  

by lymphocyte subset imbalance and dysfunction. 

Specifically, NK cells, B cells and T cells can all show 

apoptosis to varying degrees, and the count of T 

lymphocytes significantly decreases, including changes 

in the ratios of CD4+, CD8+ and CD4+/CD8+ [9, 10]. 

Studies show that T lymphocyte subsets are important 

indicators for evaluating immune function. Sepsis is a 

clinical syndrome with heterogeneity, high morbidity, 

and high mortality [11]. Timely evaluation of immune 

status and severity of sepsis is the prerequisite for 

developing individualized strategies and reducing 

mortality. Therefore, this study is aimed to explore the 

value of lymphocyte subsets in evaluating the severity 

and prognosis of sepsis, establish a 28-day mortality 

risk prediction model based on early-stage peripheral 

lymphocyte subsets (PLS) and provide significant 

reference for guiding clinical practice. 

 

MATERIALS AND METHODS 
 

Study population 

 

A retrospective study design was utilized to collect 

information on septic patients admitted to the First 

Affiliated Hospital, Hengyang Medical School, between 

June 2021 and July 2023. We selected the septic 

patients below. Criteria for inclusion were: age >16 

years old; diagnosis with sepsis according to the two 

indicators of Sepsis 3.0 [12]. The first indicator is the 

presence of suspected infection, which is determined 

based on whether the patient has undergone blood 

culture examination and received antibiotic treatment. 

The second indicator is the Sequential Organ Failure 

Assessment (SOFA) score within 24 hours of admission 

to the intensive care unit (ICU) [13]. Based on these 

two indicators, diagnosis of sepsis was made. Six types 

of patients were excluded: (1) readmitted patients,  

so only those admitted to the ICU for the first time  

were included; (2) undergoing cardiac surgery; (3) 

diagnosed with sepsis either after spending more than 

24 hours in the ICU or diagnosed outside the ICU; (4) 

concurrent metastatic cancer; (5) ICU stay less than 24 

hours; (6) missing more than 20% of the laboratory test 

results. This study was approved by the Institutional 

Research Ethics Committee of Hengyang Medical 

School, University of South China (202103145). Written 

informed consent was obtained from all the patients. 

 

Data collection 

 

The following data were collected: (1) general 

characteristics: age, gender, body mass index  

(BMI = weight (kg)/height (m2)) [14]; (2) diagnosis at 

admission: pulmonary, cardiovascular disease, infectious 

disease, polytrauma, and gastrointestinal bleeding; (3) 

laboratory examination: venous blood collected within 

24 hours of admission; (4) co-morbidities: hypertension, 

diabetic mellitus, infection, chronic renal failure, and 

respiratory disease. The white blood cell (WBC), red 

blood cell (RBC), hemoglobin (Hb), red cell distribution 

width (RDW), platelet (Plt), neutrophil, fasting blood 

glucose, blood urea nitrogen, creatinine, uric acid,  

total bilirubin, direct bilirubin, albumin, lactate, serum 

sodium, serum potassium, and serum phosphorus (P) 

were detected using an automated biochemical analyzer. 

The SOFA scores at day 1, 3 and 7 were also collected. 

The primary follow-up outcomes were 28-day mortality 

and organ dysfunction, including kidney, liver, heart, 

respiratory, and septic shock. 

 
Peripheral lymphocyte subsets (PLS) 

 
We collected 3 ml of fasting venous blood from  

each patient using an EDTA-K2 anticoagulant at 1st  

and 3rd day after admission. A Mindray BriCyteE6 

flow cytometer and the reagents provided by Shenzhen 

Mindray Company were used: four-color flow cyto-

metry reagents CD3-FITC/CD8-PE/CD45-PerCP/CD4-

APC, CD3-FITC/CD16+56-PE/CD45-PerCP/CD19-

APC, flow-count standard fluorescence microspheres, 

and an FACS lysing solution (10×). Into 2 test tubes 

labeled as A and B, 20 μl of CD3-FITC/CD8-PE/CD45-

PerCP/CD4-APC antibodies was added to tube A, and 

20 μl of CD3-FITC/CD16+56-PE/CD45-PerCP/CD19-

APC antibodies was added to tube B. Then 50 μl of 

EDTA anticoagulated venous blood was added to the 

bottom of each tube. The tubes were gently vortex-

treated on a vortex mixer, and incubated at room 

temperature in the dark for 15 minutes. Then 1× lysing 

solution (450 μl) was put to each tube, which was gently 

vortex-treated again on the vortex mixer, and incubated 

at room temperature in the dark for 15 minutes. After 
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sufficient red blood cell lysis, the tubes were vortex-

treated and detected on the respective machine. 

 

Statistical analysis 

 

We used a standard excel sheet to collect data. Data 

conforming to normal distribution were represented by 

mean ± standard deviation, and compared between 

groups via t-test. Data not conforming to normal 

distribution were expressed as quartiles, and compared 

between groups with non-parametric test (Wilcoxon 

test). Counting data were expressed as percentages, and 

compared between groups with Chi-square test. We 

established a PLS index as follows [15]: the regression 

coefficient (β) was obtained from multivariate logistic 

regression, which only included PLS (lymphocytes, 

CD3, CD4, CD8, CD19, and NK cells). The PLS index 

was calculated as β1 × lymphocytes+β2 × CD3+ β3 × 

CD4+β4 × CD5+β5 × CD8+β1 × CD19+β6 × NK. Two 

28-day mortality prediction models were built using 

logistic regression with calculated odds ratio (OR) and 

95% confidence interval (CI). Model 1 only included 

clinical parameters. Model 2 included both clinical 

parameters and the PLS index. A nomograph was 

plotted to predict the individual risk probability. We 

drew a calibration plot to evaluate the association 

between the predicted value and the actual value. The 

receiver’s operating characteristic curve (ROC) was 

used to evaluate the predicting ability of the models, 

and area under the curve (AUC) was calculated. The 

decision curve analysis was used to evaluate cost-

benefits from the examination of PLS. 
 

RESULTS 
 

General characteristics of non-survivor and survivor 

groups 

 

According to the inclusion and exclusion criteria, 456 

septic patients were included in the final analyses. Figure 

1 presented the process of patient selection. There were 

114 non-survivor cases after 28-day follow-up. The 28-

day mortality rate was 25.0%. The general characteristics 

and laboratory examination results were presented in 

Table 1. There were no significant differences in age (P = 

0.800), gender rate (P = 0.132), and BMI (P = 0.247) 

between the two groups. The distributions of diagnosis at 

admission in the survivor and the non-survivor groups 

were not significantly different in pulmonary disease 

(47.1% vs. 48.2%, P = 0.829), cardiovascular diseases

 

 
 

Figure 1. Comparison of peripheral lymphocyte subsets between non-survivor and survivor groups on the third day after 
admission (*P < 0.05, **P < 0.01, ***P < 0.001; ****P < 0.0001). (A) Lymphocytes. (B) CD3+T cells. (C) CD4+ T cells. (D) CD8+ T cells. (E) CD19+ 

B cells. (F) NK cells. 
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Table 1. Clinical characteristics of survivor and non-survivor groups. 

Parameters Survivor group Non-survivor group P 

Age 68.3 ± 18.8 68.8 ± 20.2 0.800 

Gender (male, %) 207 (60.5%) 78 (68.4%) 0.132 

Body mass index (kg/m2) 22.4 ± 6.0 23.2 ± 8.0 0.247 

Diagnosis at admission 

Pulmonary (n, %) 161 (47.1%) 55 (48.2%) 0.829 

Cardiovascular (n, %) 92 (26.9%) 39 (34.2%) 0.135 

Infectious diseases (n, %) 87 (25.4%) 23 (20.2%) 0.255 

Polytrauma (n, %) 34 (9.9%) 17 (14.9%) 0.145 

Gastrointestinal bleeding (n, %) 24 (7.0%) 9 (7.9%) 0.754 

Laboratory examination (IQR) 

White blood cells (109/L) 13.0 ± 3.0 12.5 ± 3.0 0.102 

Red blood cells (109/L) 5.9 ± 1.4 5.6 ± 1.3 0.060 

Hemoglobin (g/dL) 10.4 ± 0.6 10.2 ± 0.8 0.021 

Red cell distribution width (%) 16.6 ± 0.9 17.2 ± 1.0 <0.001 

Platelets (109/L) 133.1 ± 30.6 120.4 ± 25.3 0.016 

Neutrophil (%) 85.3 ± 4.3 87.2 ± 8.2 0.002 

Blood glucose (mmol/L) 138.3 ± 21.0 145.4 ± 17.2 0.001 

Blood urea nitrogen (mg/dL) 28.7 ± 8.1 29.8 ± 5.6 0.179 

Creatinine (mg/dL) 130.1 ± 37.6 139.0 ± 34.3 0.026 

Uric acid (mg/dL) 365.2 ± 66.6 375.8 ± 87.9 0.176 

Total bilirubin (mg/dL) 0.95 ± 0.3 1.05 ± 0.3 0.006 

Direct bilirubin (mg/dL) 1.45 ± 0.5 1.56 ± 0.6 0.086 

Albumin (g/dL) 2.9 ± 0.3 3.0 ± 0.4 0.021 

Lactate (mmol/L) 2.3 ± 0.4 2.4 ± 0.4 0.008 

Serum sodium (mmol/L) 138.3 ± 3.7 138.7 ± 4.4 0.402 

Serum potassium (mmol/L) 4.1 ± 0.4 4.1 ± 0.3 0.100 

Serum phosphorus (mmol/L) 3.4 ± 0.5 3.7 ± 0.5 <0.001 

Risk score 

Sequential organ failure assessment 7.6 ± 1.8 7.6 ± 1.9 0.920 

SOFA at day 3 12.5 ± 1.4 13.0 ± 1.8 0.001 

SOFA at day 7 14.1 ± 1.1 15.0 ± 3.1 <0.001 

ICU stay time (days) 12.3 (6.0−18.9) 11.4 ± (6.2−18.1) 0.082 

Comorbidities 

Hypertension (%) 220 (64.3%) 78 (68.4%) 0.426 

Diabetic mellitus (%) 187 (54.7%) 72 (63.2%) 0.113 

Infection (%) 57 (16.7%) 24 (21.1%) 0.289 

Chronic renal failure (%) 73 (21.3%) 25 (21.9%) 0.895 

Respiratory disease (%) 206 (60.2%) 72 (63.2%) 0.579 

Organ dysfunction 

Kidney (%) 155 (45.3%) 62 (54.4%) 0.093 

Liver (%) 63 (18.4%) 27 (23.7%) 0.221 

Heart (%) 187 (54.7%) 66 (57.9%) 0.550 

Respiratory (%) 350 (89.2%) 103 (90.4%) 0.725 

Septic shock (n, %) 74 (21.6%) 65 (57.0%) <0.001 

 

  

7463



www.aging-us.com 5 AGING 

Table 2. Comparisons of early-stage changes of peripheral lymphocyte subsets between survivor group and 
non-survivor group (median and quartile). 

Parameters Stage Survivor group Non-survivor group P 

Lymphocytes 
Day 1 798.1 (369.4–1192.8) 799.9 (524.2–1083.9) 0.912 

Day 3 353.8 (166.1–566.2)* 287.9 (190.1–400.2)* <0.001 

CD3+ T cells 
Day 1 423.1 (391.2–467.0) 422.5 (392.7–451.4) 0.491 

Day 3 341.4 (318.2–361.6)* 321.2 (309.1–334.4)* <0.001 

CD4+ T cells 
Day 1 539.6 (218.5–783.8) 527.7 (287.5–751.0) 0.149 

Day 3 352.8 (1117.3–624.4) 298.1 (261.9–333.6)* <0.001 

CD8+ T cells 
Day 1 271.9 (155.8–403.2)* 269.2 (166.8–348.9) 0.531 

Day 3 222.3 (173.5–282.7) 220.5 (194.3–244.8)* 0.403 

CD19+ B cells 
Day 1 218.2 (95.5–333.9) 213.4 (155.8–320.9) 0.903 

Day 3 119.3 (34.1–226.0)* 124.3 (103–150.1)* 0.691 

NK cells 
Day 1 311.3 (178.6–432.6) 309.6 (231.2–388.9) 0.633 

Day 3 150.1 (88.8–211.6)* 121.4 (92.4–150.7)* 0.013 

*The numbers of lymphocyte subsets are lower at day 3 than day 1. 
 

(26.9% vs. 34.2%, P = 0.135), infectious disease 

(25.4% vs. 20.2%, P = 0.255), polytrauma (9.9% vs. 

14.9%, P = 0.145), no gastrointestinal bleeding (7.0% 

vs. 7.9%, P = 0.754). 

 

The non-survivor group had lower levels of Hb (P = 

0.021), RDW (P < 0.001), and Plt (P = 0.016) than in the 

survivor group. On the contrary, the levels of neutrophil 

(P = 0.002), blood glucose (P = 0.001), creatinine (P = 

0.026), total bilirubin (P = 0.006), albumin (P = 0.021), 

lactate (P = 0.008), and serum phosphorus (P < 0.001) 

were significantly elevated in the non-survivor group. 

No significance differences were observed in WBC (P = 

0.102), RBC (P = 0.060), blood urea nitrogen (P = 

0.179), uric acid (P = 0.176), direct bilirubin (P = 

0.086), serum sodium (P = 0.402), or serum potassium 

(P = 0.100) between groups. Neither the SOFA score nor 

ICU stay time at admission was significantly different. 

However, the SOFA scores at both day 3 and day 7 were 

significantly lower in the non-survivor group than in the 

survivor group (both P ≤ 0.001). The comorbidity rates 

of hypertension (P = 0.426), diabetic mellitus (P = 

0.113), infection (P = 0.289), chronic renal failure (P = 

0.895), and respiratory disease (P = 0.579) were also not 

different between the two groups. We also evaluated the 

organ dysfunction of patients after admission, and found 

no significant differences in kidney, liver, heart, and 

respiratory dysfunction between groups (P > 0.05). 

However, the septic shock occurrence rate was higher in 

the non-survivor group (P < 0.001). 

 

Changes of PLS at early stage 

 

To investigate the difference of PLS between survivors 

and non-survivors, we compared the number changes  

of PLS between groups at early stage. In both groups, 

the counts of lymphocytes, CD3+ T cells, CD4+ T cells, 

CD8+ T cells, CD19+ B cells, and NK cells significantly 

decreased between day 1 and day 3 (Table 2). There 

were no significant differences in the counts of 

lymphocytes (P = 0.912), CD3+ T cells (P = 0.491), 

CD4+ T cells (P = 0.149), CD8+ T cells (P = 0.531), 

CD19+ B cells (P = 0.903), or NK cells (P = 0.633) at 

day1 between the two groups. However, at day 3, the 

counts of lymphocytes, CD3+ T cells (P < 0.001), 

CD4+ T cells (P < 0.001), and NK cells (P = 0.013) 

were remarkedly lower in the non-survivor group 

(Figure 1). No significant differences in CD8+ T cells (P 

= 0.403) or CD19+ B cells (P = 0.691) were found. 

 

PLS index 

 

For PLS, we performed multivariate logistic regression 

using the enter method, and obtained the regression 

coefficient with significant level. Results showed the 

numbers of lymphocytes, CD3+ T cells, CD4+ T cells, 

and NK cells were significantly associated with the 

mortality of sepsis. Then we calculated the PLS index 

as follows: PLS index = −0.005 × lymphocyte −0.200 × 

CD3-0.006 × CD4-0.036 × NK3. 

 

Establishment of mortality risk prediction model in 

sepsis 

 

We further evaluated the association between PLS and 

sepsis prognosis. The 28-day mortality was considered 

as a dependent variable. We first performed univariate 

logistic regression (Supplementary Table 1). The PLS 

index was significantly associated with the 28-day 

mortality in sepsis. We also found the levels of Hb (P = 

0.022), Plt (P = 0.017), lymphocytes (P < 0.001), CD3+ 

T cells (P < 0.001), CD4+ T cells (P < 0.001), and NK 
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Table 3. Multivariate logistic regression for 28-day mortality in patients with sepsis. 

Variable Beta SE Wald P OR 95% CI 

Platelets −0.015 0.007 4.175 0.041 0.99 0.97 1.00 

Blood glucose 0.038 0.011 10.997 0.001 1.04 1.02 1.06 

Creatinine 0.011 0.006 3.788 0.052 1.01 1.00 1.02 

Total bilirubin 1.686 0.635 7.055 0.008 5.40 1.56 18.73 

Albumin 1.160 0.619 3.513 0.061 3.19 0.95 10.73 

Lactate 0.831 0.498 2.783 0.095 2.29 0.86 6.09 

Serum phosphorus 1.341 0.410 10.715 0.001 3.82 1.71 8.53 

PLS index 1.124 0.136 68.325 0.000 3.08 2.36 4.02 

Liver dysfunction 1.218 0.536 5.160 0.023 3.38 1.18 9.67 

Shock 1.216 0.410 8.790 0.003 3.37 1.51 7.53 

 

cells (P < 0.001) were negatively associated with the 

28-day mortality of sepsis. The RDW (P < 0.001), 

neutrophil (P = 0.002), FBG (P = 0.001), CR (P = 

0.026), TB (P = 0.006), ALB (P = 0.021), lactate (P = 

0.009), serum P (P < 0.001), SOFA at day 3 (P = 

0.001), SOFA at day 7 (P < 0.001), kidney (P = 0.020) 

and liver dysfunction (P = 0.007) were all positively 

associated with the 28-day mortality of sepsis. Other 

parameters were not associated with sepsis progression. 

 

Then we performed multivariate logistic regression 

including the significant variables in the univariate 

logistic regression. Results demonstrate a larger PLS 

index will increase the mortality risk in sepsis  

(OR (95% CI): 3.08 (1.18−9.67), P < 0.001). Besides, 

the Plt (0.99 (0.97−1.00), P = 0.041), FBG (1.04 

(1.02−1.06), P = 0.001), TB (5.40 (1.56−18.73),  

P = 0.008), serum P (3.82 (1.71−8.53), P = 0.001),  

liver (3.38 (1.18−9.67), P = 0.001) and shock (3.37 

(1.51−7.53), P = 0.003) were significantly associated 

with the 28-day mortality of sepsis (Table 3). Based  

on these clinical parameters and the PLS index, we 

developed a nomograph for evaluating the individual 

mortality risk in sepsis (Figure 2). 

 

 
 

Figure 2. Nomograph of 28-day mortality risk prediction based on clinical parameters and the peripheral lymphocyte subset 
index. 
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Assessment of mortality risk prediction models in 

sepsis 

 

We further evaluated the prediction ability of  

each model based on clinical parameters and the  

PLS index. Calibration curves were used to assess the 

relationship between nomogram-predicted probability 

of nonadherence and actual diagnosed nonadherence. 

Figure 3 showed the predicted probability basically 

fitted with the actual diagnosed probability. 

 

Then we estimated the ROC of prediction with or 

without the PLS index. Results show the AUC of 

prediction with the PLS index is 0.912 (95% CI: 0.857–

0.964), which is significantly higher than the AUC 

(0.817, 95% CI: 0.754–0.889) from the model with  

only clinical parameters (Figure 4A, 4B). Furthermore, 

decision curve analysis found the model with the PLS 

index outperformed the model with only clinical 

parameters when the threshold probability was not less 

than 0.3 (Figure 4C, 4D). Patients benefited from the 

nonadherence prediction nomogram when the threshold 

was between 0.3 to 0.9. 
 

DISCUSSION 
 

Our study had several findings. (1) PLS changed at 

early stage of sepsis. (2) The PLS index based on 

lymphocyte, CD3+ T cells, CD4+ T cells and NK cells 

was associated with the 28-day mortality in septic 

patients. (3) A 28-day mortality prediction model for 

septic patients was established using clinical parameters 

and the PLS index. This model has high prediction 

ability and brings benefits for risk management of septic 

patients. Our study provides new insights for evaluating 

the prognosis of septic patients and carrying out risk 

management. 

 

Sepsis is a high-risk factor for non-survivors in severe 

patients [16]. A study reviewing the mortality of septic 

patients in Europe, North America, and Australia from 

2009 to 2019 found that the average 30-day mortality 

rate of sepsis was 24.4% [17], which is consistent with 

our results that the 28-day mortality rate of septic 

patients is 25.0%. Early and accurate identification of 

septic patients at high risk of in-hospital death is helpful 

for ICU physicians to make the best clinical decision, 

thus improving clinical efficacy [18]. Reportedly, 

factors such as 24-hour mean serum lactate level and 

mean arterial pressure are independently correlated  

with ICU and hospital mortality [19]. Moreover, the use 

of vasopressors, the use of ventilators, urine volume, 

RBC distribution width, ICU type, malignant tumor, 

and metastatic solid tumor have significant predictive 

effects on 30-day death in elderly septic patients [20]. 

Additionally, FBG, CR, TB, ALB, lactate, serum 

phosphorus, liver dysfunction and shock are risk factors 

for death of septic patients. 

 

 
 

Figure 3. Calibration curves of 28-day mortality risk prediction in septic patients. 
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Impaired lymphocyte function and loss of immune 

function are among the immunosuppressive factors in 

septic patients [21]. Reportedly, the proportions of  

T lymphocyte subsets and dysfunction significantly 

decrease in septic patients. Furthermore, T lymphocytes 

not only clear target cells through specific killing,  

but also transmit signals by responding to antigens  

and assist B lymphocytes to participate in maintaining 

the homeostasis of the humoral immune system [22]. 

When sepsis occurs, both pro-inflammatory and anti-

inflammatory processes occur in the host immunity, and 

the balance between them determines the pathological 

progress and clinical outcome [23]. Previously, an 

uncontrolled and amplifying pro-inflammatory response 

was initially believed to be the major cause of mortality 

in sepsis [24]. However, recent studies show that 

validation response and immunosuppression may occur 

simultaneously during sepsis, implying that the early 

immune status of septic patients has been altered  

[25]. As helper T cells, CD4+T lymphocytes play  

an important role in the immune system of the body  

and maintain system stability. When pathogens invade 

the body, CD4+T lymphocytes are activated and  

can differentiate into different effector lymphocytes  

and produce corresponding cytokines according to  

their different functions, including cellular immunity 

involving T helper (Th) 1 [26]. Th1 can secrete 

interleukin (IL)-2 and tumor necrosis factor (TNF)-α. 

Th2 cells mediate humoral immunity, and secret IL-3, 

IL-4, and IL-13. Regulatory T lymphocytes (Tregs) 

 

 
 

Figure 4. Assessment of 28-day mortality risk prediction models in septic patients. (A, B) ROCs of the model only including 

clinical parameters, and the model including clinical parameters and the PLS index respectively. (C, D) Decision curves for the model with 
only clinical parameters, and the model with clinical parameters and the PLS index respectively. 
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maintain the stability of the immune state of the body 

through correlation and interaction [27]. In addition, 

phenotypic changes of CD8+T cells in septic patients 

can reduce the efficacy of CD8+T cells in fighting 

infection [28], further leading to immunosuppression. 

Like CD4+T cells, the increased apoptosis of CD8+T 

cells during sepsis is another main mechanism of 

immunosuppression in sepsis, and is correlated with 

mortality. Yang et al. found that the absolute values of 

lymphocytes, CD3+, CD3+CD4+, and CD19+ in non-

survivors were lower than those in survivors [29]. Tang 

et al. reported the CD8+ T cell count was predictive  

of sepsis progression. Depletion of lymphopenia and 

CD8+ T cells was associated with the clinical outcomes 

of sepsis, suggesting that CD8+ T cells are a potential 

predictive biomarker and therapeutic target for septic 

patients [30]. Our results also showed the counts of 

lymphocytes, CD3+ T cells, CD4+ T cells, and NK cells 

on day 3 declined significantly in the dying group 

compared to the surviving group. This result also proves 

that early immunosuppression of sepsis has begun. As 

reported, the absolute counts of CD3+ T cells, CD4+ T 

cells, CD8+ T cells, B cells, and natural killer cells were 

associated with clinical prognosis in septic patients. 

Especially, the CD8+ T cell count was predictive of 

sepsis progression, and lymphopenia and CD8+ T cell 

depletion was associated with the clinical outcomes of 

sepsis [30–32]. Here, we did not analyze the association 

between each lymphocyte subset and clinical outcomes. 

We constructed a PLS index based on lymphocyte 

subsets, including lymphocytes, CD3, CD4, and NK 

cells. Multivariate logistic regression revealed that the 

PLS index was an independent risk factor for 28-day 

death in septic patients. 

 
The current research on sepsis-induced death prediction 

can be broadly divided into two categories: regression-

based scoring systems and machine learning-based 

predictive models. Several scoring systems have been 

used to assess the severity of illness and risk of death  

in critically ill patients. APACHE-II, SAPS II, SOFA, 

and MODS scores are mostly used. Due to large clinical 

heterogeneity, the prediction of death risk in septic 

patients by these systems is not reliable [33–35]. To 

better predict sepsis death, many machine learning 

models have been applied to establish prognostic models 

of sepsis death and development [36, 37]. In some 

research, the MIME-III database was used to build a  

tool for predicting the risk of death in septic patients, 

which indicates the machine learning prediction models 

superior over the SOFA score in discrimination [38].  

Zhi et al. established an in-hospital death prediction 

model in septic patients based on MIME-ⅲ database 

using random forest method and logistic regression,  

and found that the random forest model had good 

discriminant ability, especially in the population with 

SOFA value of 13–15 [39]. Rodriguez et al. used  

four machine learning methods to establish a model  

for predicting in-hospital death of septic patients, and 

reported that support vector machine (SVM) and artificial 

neural network (ANN) were the best performing models, 

with an AUC of 0.690 [40]. Li et al. compared five 

machine learning models in predicting hospitalization 

death, and found that the gradient lifting decision tree 

model performed the best, with an AUC of 0.992 [41]. 

The gradient lifting machine model with an AUC of 

0.845 outperformed LASSO, random forest, logistic 

regression, and SAPS II models in predicting in-hospital 

death [42]. In conclusion, the AUC of the existing sepsis 

death prediction models ranges from 0.690 to 0.992,  

but there is a lack of model prediction studies based  

on lymphocyte subsets. We constructed a 28-day death 

prediction model for sepsis based on clinical parameters 

and the PLS index. In comparison with the model 

containing only clinical parameters (AUC: 0.817), and 

the predictive power of the model was greatly improved 

after adding PLS index (AUC: 0.912), which had 

relatively high ability in predicting the 28-day mortality 

of septic patients. 

 

Our study has several limitations. First, this study 

focused on changes in the levels of lymphocyte  

subsets at the early stage of sepsis, which was a shorter 

time span compared to the length of hospitalization  

of septic patients. Second, we did not detect other 

immunological indicators, inflammatory mediators,  

or lymphocyte functions, such as antigen presenting 

cells, human leukocyte DR antigen, interleukin, tumor 

necrosis factor, and C-reactive protein, so this study 

may not be accurate in judging the immune status of the 

body. In addition, this study only covered a survival 

group and a non-survivor group divided according to 

the outcome of septic patients, but did not involve ICU 

patients with non-sepsis or healthy volunteers. Finally, 

as this is a single-center study with a small sample size, 

multicenter studies are needed to further evaluate the 

value of lymphocyte subset changes predicting the  

28-day prognosis of septic patients. 

 

In conclusion, the decline of PLS occurred in the  

early stage of sepsis. A new novel PLS index can be 

used as an independent predictor of 28-day mortality in 

septic patients. The prediction model based on clinical 

parameters and the PLS index has higher predicting 

ability. Our study provides new insights for evaluating 

the prognosis of septic patients and carrying out risk 

management in clinical practice. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Table 
 

Supplementary Table 1. Univariate logistic regression for 28-day mortality in patients with sepsis. 

Variable Beta SE Wald P OR 95% CI 

Sex 0.346  0.230  2.262  0.133  1.41  0.90  2.22  

Age 0.001  0.006  0.065  0.800  1.00  0.99  1.01  

Body mass index 0.019  0.017  1.343  0.247  1.02  0.99  1.05  

Pulmonary  0.047  0.217  0.047  0.828  1.05  0.69  1.60  

Cardiovascular  0.346  0.232  2.221  0.136  1.41  0.90  2.23  

Infectious diseases −0.300  0.264  1.288  0.257  0.74  0.44  1.24  

Polytrauma  0.463  0.319  2.101  0.147  1.59  0.85  2.97  

Gastrointestinal bleeding  0.127  0.407  0.098  0.754  1.14  0.51  2.52  

White blood cells −0.060  0.036  2.666  0.103 0.94  0.88  1.01  

Red blood cells −0.153  0.082  3.507  0.061  0.86  0.73  1.01  

Hemoglobin −0.397  0.173  5.276  0.022  0.67  0.48  0.94  

Red cell distribution width 0.680  0.120  32.008  <0.001 1.97  1.56  2.50  

Platelets −0.009  0.004  5.712  0.017  0.99  0.98  1.00  

Neutrophil 0.060  0.020  9.188  0.002  1.06  1.02  1.10  

Blood glucose 0.018  0.006  10.249  0.001  1.02  1.01  1.03  

Blood urea nitrogen 0.020  0.015  1.807  0.179  1.02  0.99  1.05  

Creatinine 0.007  0.003  4.937  0.026  1.01  1.00  1.01  

Uric acid  0.002  0.002  1.832  0.176  1.00  1.00  1.01  

Total bilirubin 0.899  0.329  7.476  0.006  2.46  1.29  4.68  

Direct bilirubin 0.331  0.193  2.945  0.086  1.39  0.95  2.03  

Albumin 0.798  0.347  5.297  0.021  2.22  1.13  4.38  

Lactate 0.733  0.278  6.929  0.009  2.08  1.21  3.59  

Serum sodium 0.023  0.028  0.706  0.401  1.02  0.97  1.08  

Serum potassium 0.541  0.329  2.704  0.100  1.72  0.90  3.27  

Serum phosphorus 0.955  0.223  18.359  <0.001 2.60  1.68  4.02  

SOFA −0.006  0.059  0.010  0.920  0.99  0.89  1.12  

SOFA3 0.233  0.071  10.705  0.001  1.26  1.10  1.45  

SOFA7 0.267  0.062  18.757  <0.001 1.31  1.16  1.47  

Hypertension 0.184  0.231  0.632  0.427  1.20  0.76  1.89  

Diabetic mellitus 0.351  0.223  2.493  0.114  1.42  0.92  2.20  

Infection 0.288  0.272  1.121  0.290  1.33  0.78  2.27  

Chronic renal failure 0.035  0.262  0.018  0.895  1.04  0.62  1.73  

Respiratory disease 0.124  0.223  0.307  0.580  1.13  0.73  1.75  

Organ dysfunction 

Kidney 0.506  0.218  5.412  0.020  1.66  1.08  2.54  

Liver 0.743  0.273  7.395  0.007  2.10  1.23  3.59  

Heart 0.131  0.219  0.358  0.550  1.14  0.74  1.75  

Lung 0.127  0.362  0.124  0.725  1.14  0.56  2.31  

Shock 1.570  0.230  46.444  <0.001 4.80  3.06  7.55  

Lymphocyte subsets at day 1 

Lymphocytes 0.000  0.001  0.041  0.841  1.00  1.00  1.00  

CD3+ T cells −0.009  0.008  1.090  0.297  0.99  0.98  1.01  

7472



www.aging-us.com 14 AGING 

CD4+ T cells −0.002  0.001  1.867  0.172  1.00  1.00  1.00  

CD8+ T cells −0.002  0.002  0.417  0.518  1.00  0.99  1.00  

CD19+ T cells 0.002  0.003  0.275  0.600  1.00  1.00  1.01  

NK cells −0.001  0.003  0.109  0.741  1.00  0.99  1.00  

Lymphocyte subsets at day 3 

Lymphocytes −0.006  0.001  25.523  <0.001 0.99  0.99  1.00  

CD3+ T cells −0.186  0.020  89.150  <0.001 0.83  0.80  0.86  

CD4+ T cells −0.004  0.001  18.456  <0.001 1.00  0.99  1.00  

CD8+ T cells −0.006  0.004  2.266  0.132  0.99  0.99  1.00  

CD19+ B cells −0.001  0.002  0.155  0.694  1.00  1.00  1.00  

NK cells −0.032  0.004  53.369  <0.001 0.97  0.96  0.98  
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