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ABSTRACT 
 

Colon adenocarcinoma (COAD), a frequently encountered and highly lethal malignancy of the digestive system, 
has been the focus of intensive research regarding its prognosis. The intricate immune microenvironment plays 
a pivotal role in the pathological progression of COAD; nevertheless, the underlying molecular mechanisms 
remain incompletely understood. This study aims to explore the immune gene expression patterns in COAD, 
construct a robust prognostic model, and delve into the molecular mechanisms and potential therapeutic 
targets for COAD liver metastasis, thereby providing critical support for individualized treatment strategies and 
prognostic evaluation. Initially, we curated a comprehensive dataset by screening 2600 immune-related genes 
(IRGs) from the ImmPort and InnateDB databases, successfully obtaining a rich data resource. Subsequently, 
the COAD patient cohort was classified using the non-negative matrix factorization (NMF) algorithm, enabling 
accurate categorization. Continuing on, utilizing the weighted gene co-expression network analysis (WGCNA) 
method, we analyzed the top 5000 genes with the smallest p-values among the differentially expressed genes 
(DEGs) between immune subtypes. Through this rigorous screening process, we identified the gene modules 
with the strongest correlation to the COAD subpopulation, and the intersection of genes in these modules with 
DEGs (COAD vs COAD vs Normal colon tissue) is referred to as Differentially Expressed Immune Genes 
Associated with COAD (DEIGRC). Employing diverse bioinformatics methodologies, we successfully developed a 
prognostic model (DPM) consisting of six genes derived from the DEIGRC, which was further validated across 
multiple independent datasets. Not only does this predictive model accurately forecast the prognosis of COAD 
patients, but it also provides valuable insights for formulating personalized treatment regimens. Within the 
constructed DPM, we observed a downregulation of CALB2 expression levels in COAD tissues, whereas NOXA1, 
KDF1, LARS2, GSR, and TIMP1 exhibited upregulated expression levels. These genes likely play indispensable 
roles in the initiation and progression of COAD and thus represent potential therapeutic targets for patient 
management. Furthermore, our investigation into the molecular mechanisms and therapeutic targets for COAD 
liver metastasis revealed associations with relevant processes such as fat digestion and absorption, cancer gene 
protein polysaccharides, and nitrogen metabolism. Consequently, genes including CAV1, ANXA1, CPS1, EDNRA, 
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INTRODUCTION 
 

Colon adenocarcinoma (COAD), one of the most 

common malignancies, is among the top five in terms of 

morbidity and death from tumor-related illnesses [1–4]. 

Predictions indicate that in 2022, colorectal cancer 

(CRC) diagnoses will number 600,000 in China and 

160,000 in the US, with 300,000 and 55,000 cases of 

CRC-related deaths in each country, respectively [5]. 

The colon is anatomically more positioned inside than 

the rectum, which complicates diagnosis and therapy. 

The lack of accurate COAD indicators, which shows that 

most colon cancer patients have missed the opportunity 

for dramatic surgery by the time they are officially 

diagnosed, is one of the main reasons for the poor 

prognosis of COAD [6]. CRC is a disease that is well 

suited for screening since early detection of precancerous 

lesions greatly reduces the disease’s morbidity and death 

[7–10]. The overall survival of patients with COAD  

has not increased significantly despite significant break-

throughs in treatment [11]. Therefore, it is necessary to 

find prognostic biomarkers with high specificity or to 

create prognostic models with high predictive effect in 

order to oversee and guide the tailored treatment of 

COAD patients. 

 

A variety of cytokines secreted during tumorigenesis 

and progression lead to the reprogramming of its 

surrounding stromal cells, which in turn promotes  

the proliferation and survival of tumor cells [12]. A 

significant factor in the formation, progression, and 

management of COAD is the interplay among immune 

cells, stromal cells, and cytokines within the tumor 

microenvironment [13]. In the tumor microenvironment, 

cytokines can be secreted by immune cells such as  

T cells, macrophages, and other immune cells, or 

produced by the tumor itself or stromal cells. These 

cytokines influence tumor growth, proliferation, and 

response to therapy by activating or inhibiting immune 

cells and controlling the tumor microenvironment [14, 

15]. In addition to providing structural support, stromal 

cells, which include fibroblasts and vascular endothelial 

cells, control the recruitment and activation of immune 

cells through the secretion of cytokines [16]. In COAD, 

regulatory interactions between cytokines and immune 

cells may lead to the occurrence of immune escape, 

which promotes tumor cell proliferation and metastasis 

[17]. In the microenvironment of CRC, IL6 generated 

by CD163+ tumor-associated macrophages stimulate 

epithelial mesenchymal transition by controlling the 

STAT3/miR-506-3p/FoxQ1 pathway, which in turn 

promotes CRC cell invasion and migration [18]. 

Meanwhile, the accumulation of cytokine IL-6 can also 

promote the proliferation of CRC cells [19, 20]. 

Immunogenetic traits are associated with a better 

prognosis or greater effectiveness of immunotherapy  

for malignancies [21, 22]. Clinical research indicates 

that immune checkpoint inhibition combined with 

divalizumab and trimethoprim may increase overall 

survival in patients with advanced refractory CRC [23]. 

Not all colon cancer patients respond to immunotherapy 

[24]. The specific mechanism of action of the tumor 

microenvironment remains unclear, despite its major 

impact on immune efficacy [25, 26]. Therefore, it is an 

urgent requirement to screen for novel indicators to 

forecast the effectiveness and post-treatment response 

of immunotherapy to enhance the individualization of 

immunotherapy.  

 
In this study, COAD samples were immune clustered 

using the non-negative matrix clustering (NMF) method 

based on genes relevant to immunity. Immunological 

clustering-related gene modules were found using  

the weighted correlation network analysis (WGCNA) 

algorithm. The intersection of the gene modules with 

the differentially expressed genes (DEGs) (COAD vs 

Normal colon tissue) was defined as differentially 

expressed immune genes related with COAD (DEIGRC). 

The DEIGRC prognosis model (DPM) was constructed 

using a variety of bioinformatics tools, and the expected 

accuracy of the DPM was confirmed using data from 

the Gene Expression Omnibus (GEO) database. The 

capability of the model to forecast treatment outcomes 

for cancer patients was evaluated, and the distinct 

KDF1, LARS2, GSR, and TIMP1 exhibited upregulated expression levels. These genes likely play indispensable 
roles in the initiation and progression of COAD and thus represent potential therapeutic targets for patient 
management. Furthermore, our investigation into the molecular mechanisms and therapeutic targets for COAD 
liver metastasis revealed associations with relevant processes such as fat digestion and absorption, cancer gene 
protein polysaccharides, and nitrogen metabolism. Consequently, genes including CAV1, ANXA1, CPS1, EDNRA, 
and GC emerge as promising candidates as therapeutic targets for COAD liver metastasis, thereby providing 
crucial insights for future clinical practices and drug development. In summary, this study uncovers the immune 
gene expression patterns in COAD, establishes a robust prognostic model, and elucidates the molecular 
mechanisms and potential therapeutic targets for COAD liver metastasis, thereby possessing significant 
theoretical and clinical implications. These findings are anticipated to offer substantial support for both the 
treatment and prognosis management of COAD patients. 
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immunological profiles among subgroups were 

characterized. The development of liver metastases in 

COAD patients was examined, along with possible 

processes and important therapeutic genes, using 

bioinformatics methods. 

 

MATERIALS AND METHODS 
 

Obtaining and processing IRGs and transcriptome 

sequencing data 

 

The ImmPort database (https://www.immport.org/home) 

and InnateDB databases (https://www.innatedb.com/) 

provided the IRGs [27, 28]. Transcriptome sequencing 

data of 349 healthy colon and 471 COAD tissues were 

retrieved for this research work using UCSC Xena 

database (https://xena.ucsc.edu/). The “limma” package in 

R is used to obtain DEGs (|log (fold change)| > 1, p<0.05). 

The GEO database (https://www.ncbi.nlm.nih.gov/gds) 

was used to obtain the GSE17536, GSE39582, and 

GSE109211 datasets to verify prognostic models’ 

accuracy in predicting outcomes. The development and 

validation of prognostic models did not include samples 

that lacked clinical prognostic information. The GSE6988 

dataset was used to explore putative biological processes 

that might underlie the growth of liver metastases in 

COAD patients. 

 

Immunophenotyping based on IRGs 

 

We retrieved the expression data of IRGs from UCSC 

Xena database, which consisted of 471 samples from 

COAD patients. NMF analysis was performed on the 

screened data utilizing the ‘brunet’ criterion with the 

“NMF” package in R [29]. The ideal number of clusters 

was produced based on the results of the consensus 

clustering graph and residual sum of squares (rss), 

dispersion, and cophenetic graphs. 

 

WGCNA analysis 

 

We used the “limma” package of R to compare the 

expression differences of genes between the immune 

subtypes, and then used the 5000 genes with the smallest 

p-value for WGCNA by ''WGCNA'' package in R [30]. 

The p-value of different genes between different immune 

subtypes was calculated through “limma” and 5000 genes 

with the smallest p-value were used for WGCNA. The 

steps were as follows: (1) In the data preprocessing stage, 

genes with standard deviation less than 0.5 were excluded 

to reduce noise interference and improve the reliability of 

the subsequent analysis. (2) By calculating the Pearson 

correlation coefficient between genes, the degree of linear 

correlation between genes was assessed, thus laying the 

foundation for the establishment of co-expression network. 

(3) Construct similarity matrix and neighboring matrix 

according to Pearson correlation coefficient to measure 

the correlation and connection strength between genes.  

(4) Determine the optimal soft threshold using the “sft” 

function in R, thus determining the topology and module 

division of the network. (5) Construct a topological 

overlap matrix (TOM) using the adjacency matrix  

and cluster genes into different modules. Clarify gene 

clusters with intrinsic relatedness by 1-TOM similarity 

transformation. (6) Evaluate the correlation between gene 

modules and immune subtypes, and obtain gene modules 

with strong correlation with immune subtypes. (7) 

Intersect genes from gene modules highly correlated with 

immune subtypes with DEGs (COAD with normal colon 

tissue) and define these intersected genes as DEIGRC. 
 

Bioinformatics analysis of DEIGRC 
 

The “clusterProfiler” package and “enrichplot” package 

in R were employed to perform Gene Ontology (GO) 

and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) enrichment analysis and enrich the potential 

relationships between the analysis results. 
 

Construction and validation of the DPM 
 

The steps for the construction and validation of DPM 

were as follows by “survival” and “glmnet” package in 

R: (1) screen for DEIGRC associated with patient 

prognosis by univariate Cox regression; (2) reduce the 

number of genes to solve the multicollinearity problem 

by least absolute shrinkage and selection operator 

(LASSO) analysis; (3) construct DPM by multi-factor 

Cox regression; (4) calculate risk scores for patients with 

COAD in the UCSC Xena, GSE17536, and GSE39582 

datasets; (5) demonstrate the relationship between risk 

scores and patient prognosis using Kaplan-Meier (KM) 

survival curves; (6) compare the predictive efficacy of 

prognostic models with that of constructing prognostic 

model genes using receiver operating characteristic 

(ROC) curves and concordance index (C-index). 
 

Construction of nomogram 
 

To verify that DPM was a risk factor independent  

of the patient's clinical traits, we performed multiple 

bioinformatics algorithms on risk scores and clinical traits 

in that order. The C-index was then applied to compare 

predictive efficacy. Finally, the DPM and clinical features 

nomogram was produced using the “rms” package in R. 
 

Comparing differences in clinical characteristics 

between subgroups 
 

The clinical data from the downloaded UCSC Xena 

database were compiled, and those lacking certain clinical 

features were eliminated. The distribution and differences 

in clinical traits between subgroups were visualized. 
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Comprehensive analysis of immunological profiles 

between subgroups 

 

The “CIBERSORTx” package in R was used to 

calculate the proportions of 22 immune cell types in 

patients with COAD and to analyze the differences in 

the proportions of immune cells between subgroups. 

The best “cutoff” values for different immune cell 

proportions were then obtained using the surv_cutpoint 

and surv_categorize functions of the “survminer” 

package in R. The patients were categorized into 

subgroups with high proportions based on these values. 

The optimal “cutoff” values for different immune cell 

ratios were obtained by using the surv_cutpoint and 

surv_categorize functions in the “survminer” package, 

based on which the patients were categorized into  

high- and low-proportions subgroups, and the survival 

differences between the groups were compared by 

means of the Kaplan-Meier (KM) survival curve. In 

addition, the immune cell function scores of COAD 

patients were estimated with the help of the R software 

packages “GAVA” and “GSEABase”, and patients  

were categorized into high- and low-scoring sub- 

groups based on the optimal “cutoff” values, and  

the survival differences between the subgroups were 

further evaluated. Finally, the immunomarker expression 

differences were compared between the subgroups. 

 

Comparison of differences in immunotherapy and 

targeted therapy between subgroups 

 

Tumor immune dysfunction and rejection (TIDE) scores 

can be utilized to predict the efficacy of immunotherapy. 

High TIDE scores predict high immune evasion 

potential, indicating that patients with tumors may not  

be suitable for immunotherapy. Transcriptomic data  

from COAD patients were uploaded to the TIDE 

database to calculate patients' T-cell-related scores. 

Compare the predictive efficacy of DPM, TIDE, and 

tumor inflammatory signature (TIS) models via ROC 

curves. 

 

Bioinformatics analysis of molecular mechanisms for 

the development of liver metastases in COAD 

 

Regarding metastasis, the liver is one of the most 

susceptible organs in COAD patients, and liver metastasis 

is one of the main causes of the high mortality rate among 

COAD patients. In this work, we sought to forecast the 

occurrence of liver metastases in COAD patients using  

the DPM. However, we could not do so with adequate 

accuracy. The GSE6988 dataset was employed to explore 

mechanisms of liver metastases in COAD. We screened 
DEGs in COAD samples with liver metastases and 

COAD samples without liver metastases. Build protein-

protein interaction (PPI) network and find core genes 

through the GeneMANIA database and Cytoscape 

software. Perform GO and KEGG enrichment analysis of 

DEGs by R. 

 

Acquisition of clinical tumor tissue 

 

The First Affiliated Hospital of Hebei North University 

provided the COAD tissues and adjacent noncancerous 

tissue for this research. The tissues were collected within 

30 minutes of the surgical specimens being separated. 

Connective and fatty tissue were removed on the edges  

of the fresh surgical specimens. Before being covered in 

RNA protective solution and kept at -80° C, the tissue 

surface was immediately cleaned of blood and grime 

with pre-cooled PBS solution or normal saline. 

 

RT-qPCR 

 

A sterile, enzyme-free EP tube with 300 μl of Solution  

R1 was filled with about 30 mg of tissue, which was  

then ground for 1-2 min. Centrifuge at 13,000 rpm for  

15 seconds once there were no longer any visible tissue 

fragments. The supernatant was transferred to a new  

EP tube and mixed thoroughly with 500 μl of Solution 

R2. Centrifuge at 13,000 rpm for 30 seconds after  

adding the mixed liquid to the adsorption column to 

remove the waste product. Add 500 μl of RNA Wash 

Buffer to the adsorbent column, centrifuge at 13,000  

rpm for 15 seconds, and repeat once. The cDNA Reverse 

Transcription Kit's instructions were followed to build  

the reverse transcription system, and reverse transcription 

was performed at 37° C for 15 min and then at 85° C  

for 5 seconds. Set up the reaction schedule after preparing 

the amplification system following the amplification  

kit's instructions. Cyclic reaction: 95° C, 10 s, then 60° C, 

30 s, 40 cycles; pre-denaturation: 95° C, 30 s, 1 cycle. 

 

Availability of data and material 
 

The data sets used and/or analyzed during the current 

study are available from the corresponding author upon 

reasonable request. 

 

RESULTS 
 

Download results of IRGs and transcriptome 

datasets 
 

1793 and 1226 IRGs were obtained from the ImmPort 

database (Supplementary Table 1) and InnateDB database 

(Supplementary Table 2), respectively, and 2660 IRGs 

were obtained after merging (Figure 1A). We obtained 

sequencing data from 349 normal samples and 471 
COAD tissue samples from the UCSC Xena database 

and identified DEGs using this dataset. Furthermore,  

we acquired two COAD datasets, GSE17536 and
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Figure 1. Results of NMF clustering analysis. (A) Venn diagram of IRGs in ImmPort database and InnateDB database; (B) Rss, dispersion, 
and cophenetic plots of the number of screened NMF clusters; (C) Consensus diagram of NMF clustering of IRGs; (D) Distribution of IRGs and 
clinical traits in immune subgroups; (E) KM survival curves for immune subgroups. 
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GSE39582, from the GEO database, consisting of chip 

data for 177 and 573 COAD samples, respectively. 

These datasets were utilized to validate the prognostic 

impact of the DEIGRC Prognostic Model (DPM)  

across different datasets. Additionally, we curated  

the GSE109211 dataset from the GEO database, 

encompassing chip data for 67 tumor samples subjected 

to targeted therapy. This dataset served to authenticate 

the accuracy and efficacy of our developed DPM in 

forecasting clinical benefits of targeted therapy. 

 

Identification of immune subtypes in COAD  

 

The NFM technique was employed to cluster the 

expression data of IRG from the COAD sample (UCSC 

Xena database). Cluster consensus maps from 2 to 10 

(Supplementary Figure 1), rss maps, dispersion maps, and 

cophenetic maps (Figure 1B) were used to determine the 

optimal number of clusters 2 (Figure 1C), which resulted 

in the division of patients into cluster 1 (C1) and cluster 2 

subgroups (C2). Heat maps were applied to display the 

expression and clinical traits of IRGs in the subgroups 

(Figure 1D). The KM survival analysis revealed that 

subgroup C1 had a better prognosis (Figure 1E). 

 

Detection of important gene modules in subtypes 
 

The DEGs (C1 vs. C2) obtained with the top  

5000 p-values were then used for WGCNA. The “sft” 

function in R helped to obtain the best soft threshold  

7 measurements (Figure 2A). Seven gene modules were 

created by calculating correlations between gene modules 

and subgroups and merging substantially identical gene 

modules (Figure 2B). With correlation coefficients above 

0.6, the brown and green gene modules had the strongest 

connection with immunophenotyping. Volcano and heat 

maps demonstrate DEGs (normal colon tissues vs. COAD 

tissues) in the COAD patients from UCSC Xena database 

(Supplementary Figure 2A, 2B). Intersecting genes of 

gene modules with the highest subgroup correlation 

(green and brown) and DEGs (COAD) were defined as 

DEIGRC (Figure 2C). 

 

Functional and pathway enrichment analysis of 

DEIGRC  

 

Figure 3A–3D illustrates the enrichment results for GO 

and KEGG. Results of KEGG enrichment analysis 

demonstrated that DEIGRC was mainly enriched in  

the Calcium signaling pathway, Glutathione signaling 

pathway, cGMP-PKG signaling pathway, etc. 

 

Construction and validation of DPM  

 

58 DEIGRC associated with prognosis in COAD 

patients were obtained by univariate Cox regression 

analysis (Figure 4A, p<0.05). LASSO and multi-factor 

Cox regression analyses were performed sequentially on 

the 58 DEIGRC, resulting in the construction of the 

DPM consisting of 6 genes (Figure 4B–4D). CALB2, 

NOXA1, and TIMP1 were positively related to great 

poor prognosis, whereas KDF1, LARS2, and GSR were 

positively related to excellent prognosis (Supplementary 

Figure 3A–3F). In the COAD patients from UCSC 

Xena database, GSE17536 and GSE39582 datasets, the 

DEIGRC model displayed a strong ability to predict 

prognosis (Figure 4E–4G). The DEIGRC model had a 

greater prediction performance than the genes used to 

build it, according to the ROC curve and the C-index 

(Figure 4H, 4I). 

 

Construction of nomogram  

 

The results of KM survival curves indicated that  

Age was not associated with patient prognosis 

(Supplementary Figure 4A, P=0.089), while tumor (T), 

metastasis (M), node (N), and Stage were associated 

with patient prognosis (Supplementary Figure 4B–4E, 

p<0.001). DPM and clinical traits were sequentially 

analyzed by bioinformatics algorithms, and results 

revealed that DPM could be used as a prognostic 

indicator independent of clinical traits (Figure 5A– 

5D). Results of the C-index demonstrated that risk  

score had better predictive efficacy than clinical features 

in COAD patients (Figure 5E). DPM and clinical  

traits were further used to construct a nomogram for 

forecasting prognosis (Figure 5F).  

 

Clinical characteristics of different subgroups of 

patients 

 

After collecting and filtering the clinical information of 

COAD patients from the UCSC Xena database, heat 

maps were created to show the clinical traits of the 

subgroups. The distribution of T, M, N, and Stage 

between subgroups was substantially different (Figure 

6A, p<0.01). Using the “ComplexHeatmap” package in 

R, it is possible to more clearly demonstrate the 

distribution of T, M, N, and Stage between subgroups 

(Figure 6B–6E). 

 

Immunologic characteristics and therapeutic 

treatments of patients between different subgroups  

 

Results of the 22 immune cell type ratios are displayed in 

Supplementary Figure 5A. The immune cell proportions 

and immune cell function scores for the various 

subgroups are shown in Figure 7A, 7B. The relationship 

between immune cell ratios and the prognosis of COAD 
patients was demonstrated through KM survival curves 

(Figure 7C–7I). The prognosis of high-score and low-

score subgroups was connected with functional scores of 
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aDCs, APC co-inhibition, APC co-stimulation, and other 

immune cell function (Supplementary Figure 5B–5P). 

According to box plots of immunological marker 

expression, HLA-B, HLA-C, HLA-F, CD70, and TGFB1 

were strongly upregulated and CD160, HAVCR-1, and 

ICOS were strongly downregulated in the high-risk 

subgroup (Figure 8A–8D).  

 

Low-risk subgroup had larger microsatellite instability 

(MSI) scores, while the high-risk subgroup had larger 

TIDE, T-cell rejection, and T-cell dysfunction scores 

(Figure 9A–9D). We, therefore, considered that the 

DEIGRC model may be used to forecast which patients 

might benefit from immunotherapy. ROC curve results 

showed DPM had higher predictive efficacy than the 

TIDE and TIS models (Figure 9E). Patients who 

responded to sorafenib had lower risk scores than those 

who did not, so the DEIGRC model might be able to be 

used to predict the effectiveness of sorafenib treatment 

(Figure 9F). 

 

 
 

Figure 2. WGCNA results for immune subgroups. (A) Results of screening for soft threshold power; (B) correlation analysis of gene 

modules with immune subgroups; (C) Venn diagram of gene modules with high correlation to immunophenotyping and DEGs. 
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Figure 3. Bioinformatics analysis of DEIGRC. (A–D) Bar charts of BP, CC, MF, and KEGG enrichment analysis results; (E–H) Correlation 
analysis of the results from BP, CC, MF, and KEGG enrichment analysis.  
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Potential mechanisms for the development of liver 

metastases from COAD 

 

DEGs in COAD samples with liver metastasis and 

COAD samples without liver metastasis were presented 

in Figure 10A. The heat map demonstrated expression 

distribution for the 25 most highly expressed genes and 

the 25 most lowly expressed genes in COAD with liver 

metastases samples (Figure 10B). The DEGs were 

applied to construct a PPI network, and core genes were 

further screened based on the degree of nodes using 

Cytoscape software (Figure 10C, 10D). The main genes 

contributing to the development of liver metastases  

in COAD patients include CAV1, ANXA1, CPS1, 

 

 
 

Figure 4. Construction of DPM. (A–D) Results of univariate Cox, LASSO, and multivariate Cox analyses of DEIGRC; (E–G) KM survival curves 

for the COAD patients from UCSC Xena database, GSE17536 and GSE39582 datasets; (H, I) ROC curves and C-indexes compare predictive 
efficacy of DPM with those of the genes used to construct the model. 
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EDNRA, and GC. Figure 10E, 10F show the findings of 

the GO and KEGG enrichment analyses, respectively. 

According to KEGG enrichment analysis, potential 

mechanisms underlying the development of liver 

metastases in COAD patients may be Fat digestion and 

absorption, Proteoglycans in cancer and Nitrogen 

metabolism. 

 

Expression levels of 6 DPM genes in clinical tissue 

samples 

 

This study obtained surgical samples from 10 pairs  

of colon cancer patients. Using bar graphs to depict  

the individual mRNA expression from each of the 6 

genes in the COAD dataset (TCGA and GTEx), we 

discovered that CALB2 was only lowly expressed in 

COAD tissues, whereas the other 5 genes were highly 

expressed (Figure 11A–11F). The mRNA expression of 

these 6 genes was then further investigated by reverse 

transcription quantitative polymerase chain reaction 

(RT-qPCR) in the collected adjacent and COAD tissues 

(Table 1), and the outcomes were found to agree with 

the gene expression in database (Figure 11G–11L). 

The Human Protein Atlas database 

(https://www.proteinatlas.org/) was used to retrieve the 

expression of the 6 genes at the protein level in healthy 

colon tissues and colon cancer tissues, and the results 

were consistent with RT-qPCR (Figure 11M–11X). 
 

DISCUSSION 
 

COAD accounts for approximately 70% of patients  

with CRC [31]. The highly heterogeneous features  

of COAD make its clinical treatment more complex  

and difficult. Immunotherapy, as one of the most  

likely therapeutic cures for tumors, is classified into two 

main categories: immune cell therapy and immune 

checkpoint therapy, and has been applied in the clinical 

treatment of a variety of tumors with encouraging 

therapeutic results [32–35]. For treating COAD patients, 

the immune checkpoint-related medications nabolutumab 

and pablizumab are now being used in clinical trials 

[36]. Nevertheless, due to a lack of biomarkers and 

models to predict patient response and prognosis to 

immunotherapy, low response rates to immunotherapy, 

and the fact that only some patients indicate treatment, 

 

 
 

Figure 5. Construction of the COAD nomogram. (A–D) Results of univariate Cox, LASSO, and multi-factor Cox analyses of prognostic 

models and clinical traits; (E) C-index comparing the predictive efficacy of the prognostic model with that of clinical traits; (F) The COAD 
nomogram was constructed using prognostic models and clinical traits. 
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immunotherapy has experienced several challenges in 

clinical practice [37, 38]. IRG model has been built to 

evaluate the prognosis of patients with tumors based  

on transcriptome sequencing data [39, 40]. However, 

the potential mechanisms between IRGs, COAD, and 

immune features remain underdeveloped. In the current 

investigation, NFM and WGCNA algorithms were 

employed to filter DEIGRC, and prognostic models 

were constructed using one-factor Cox, LASSO, and 

multi-factor Cox algorithms. The DPM demonstrated 

superior predictive efficacy as a prognostic factor 

independent of clinical features and could be employed 

for predicting clinical outcomes, according to a further 

bioinformatics investigation.  

 

 
 

Figure 6. Results of differential analysis of clinical traits between subgroups. (A) Distribution of clinical traits between subgroups; 

(B–E) Results of differential analysis of T-stage, M-stage, N-stage, and stage between subgroups. 
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Using the NFM and WGCNA algorithms, we finally 

identified 511 DEIGRCs. The prognostic model 

constructed in this study consisted of 6 DEIGRCs, of 

which CALB2, NOXA1, and TIMP1 were risk factors 

for COAD patients, while KDF1, LARS2, and GSR 

were protective factors for COAD patients. GSE17536 

and GSE39582 datasets also validated the model's 

prognostic value. A calcium receptor protein called 

CALB2 has the ability to bind Ca2+ [41, 42]. In colon 

cancer tissues, the expression level of CALB2 was 

significantly higher than that of normal colon epithelial 

cells, and at the same time, the expression level of 

CALB2 was positively correlated with the metastasis  

of local lymph nodes and other organs [43, 44]. Zhang 

et al. discovered that CALB2 up-regulated MMM9 and 

down-regulated E-cadherin, which in turn encouraged 

colon cancer cells to invade and migrate [45]. NoxA1,  

a homolog of p67phox, is thought to be an activator  

of Nox1 [46, 47]. Nox1 and its regulators NoxO1 and 

NoxA1 are expressed greater in human gastric and 

intestinal adenocarcinomas than in normal gastric 

mucosa, suggesting that Nox protein activation could be 

a sign of tumor transformation [48]. In COAD cells, 

NoxA1 is crucial for the functional and reactive oxygen 

species-dependent development of endocryptal fossas 

[49]. TIMP1, as a soluble protein, is a member of the 

 

 
 

Figure 7. Differences in immune characteristics between subgroups. (A, B) Differences in the proportion of immune cells and 

Immune cell function scores between high- and low-risk subgroups; (C–I) KM survival curves for the proportion of 7 immune cells in high- and 
low-risk subgroups. 

7607



www.aging-us.com 13 AGING 

 
 

Figure 8. Differences in immune-related markers between subgroups. (A–D) Differences in expression of multiple types of immune 
marker genes between subgroups. 

 

 
 

Figure 9. Value of the DPM in predicting immunotherapy outcomes. (A–D) Differences in TIDE, MSI, and T-cell dysfunction and 

exclusion scores between subgroups; (E) ROC curves comparing prognostic efficacy of prognostic models with those of TIDE and TIS;  
(F) Differences in risk scores between immune responsive and non-responsive patients (GSE109211 dataset). 
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Figure 10. Results of bioinformatics analysis of potential mechanisms for developing liver metastasis in COAD. (A) Volcano 
map; (B) Heat map (only the top 25 highly and lowly expressed genes are shown); (C, D) PPI networks were constructed from the 
GeneMANIA database and Cytoscape software, respectively; (E, F) Results of GO and KEGG enrichment analysis, respectively. 
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tissue inhibitor family of metalloproteinases [50]. 

TIMP1 is secreted by cancer cells, fibroblasts, and 

endometrial cells, and has been associated with a  

poor prognosis in a variety of malignancies [51–53]. 

TIMP1 is regarded as a novel predictive biomarker for 

colon cancer due to its close relationships to processes 

and functions pertaining to the metastasis, proliferation, 

and apoptosis of cancer cells [54]. TIMP1 is also 

thought to be a viable target for the treatment of  

colon cancer since it was shown that it stimulates the 

growth and invasiveness of right-sided colon cancer 

cells via the FAK/Akt signaling pathway [55]. By 

encoding a precursor to mitochondrial leucine-tRNA 

synthetase, amino-tRNA synthetase LARS2 regulates 

the translation of mitochondria-encoded genes [56]. 

Breast cancer tumor growth and proliferative capacity 

were increased in mouse mammary glands with single 

allele LARS gene deletion [57]. LARS2-secreting B-

cell subsets are highly correlated with the prognosis of 

CRC patients and promote immune escape of colorectal 

cells [58]. KDF1 is a crucial regulator of epidermal 

differentiation and an inhibitor of cell proliferation [59]. 

For tissue homeostasis and cancer prevention, KDF1 

plays a crucial function in preserving the right balance 

between cell division and differentiation. Reduced 

KDF1 expression has been discovered in cancer cells, 

and it has been demonstrated to correlate with patient 

survival positively and negatively correlate with tumor 

grade [60]. Chromosome 8p12, where GSR is located, 

is frequently deleted in CRC [61]. There is growing 

evidence that the deletion of chromosome 8p lowers  

the survival rates of cancer patients and enhances  

the aggressiveness and metastatic potential of CRC  

[62–64]. Glutathione peroxidase utilizes the reducing 

capacity of GSR to scavenge excess reactive oxygen 

species in the cytoplasm, thereby preventing oxidative 

 

 
 

Figure 11. (A–F) mRNA expression levels of the 6 genes modeled in the databases (TCGA and GTEx); (G–L) RT-qPCR results of the 6 genes 
modeled in the collected clinical samples; (M–R) and (S–X) immunohistochemical results of the 6 genes modeled in normal colon tissue and 
COAD tissue. 
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Table 1. Primer sequences for the 6 genes of DMP. 

Primer name Specific sequence Length 

CALB2 
Forward 5’-TTCCATCCACCACCTTGCCAATG-3’ 24 

Reverse 5’-AAAGGAGCACGCCGAGTAAAGAAG-3’ 23 

NOXA1 
Forward 5’-CCGCCAGGCTGTGCTTCAAC-3’ 22 

Reverse 5’-TGGTCACGGCTTGGTCAAATGC-3’ 20 

KDF1 
Forward 5’-CAGCAGCATCACGCAGGACTAC-3’ 21 

Reverse 5’-CAGCAGCCCGAGTTGAACGAC-3’ 22 

LARS2 
Forward 5’-CTACACCATCAGCGACACCATAGC-3’ 22 

Reverse 5’-GCGGCATTTTCAGCAGGCAATC-3’ 24 

GSR 
Forward 5’-CTGGAGTGCGGTGGTGCTATTTC-3’ 23 

Reverse 5’-ATGGTGGTGCGTGCCTGTAATTC-3’ 23 

TIMP1 
Forward 5’-ATCCTGTTGTTGCTGTGGCTGATAG-3’ 24 

Reverse5’-CGCTGGTATAAGGTGGTCTGGTTG-3’ 25 

 

stress-driven cancer progression [65]. The mechanism 

of COAD cell differentiation and proliferation is 

intimately linked to GSR [66]. 

 
We discovered statistically significant variations in  

the proportion of B cells naive, T cells regulatory, 

Macrophages M2, and T cells CD4 memory activated 

between subgroups. B cells play an important role in  

the tumor microenvironment. By secreting cytokines,  

B cells naive can prevent lung cancer cells from 

proliferating, and the presence of B cells naive is 

favorably correlated with a positive prognosis for lung 

cancer patients [67]. Through cell interaction and bodily 

fluids, T cells govern various immune cells, including 

macrophages [68]. Eliminating T cell regulation 

increases T cells’ capacity to attack tumor cells and 

boosts the patient’s immunological response to tumors 

[69, 70]. Macrophages are part of the immune system 

and contain M0 macrophages, M1 macrophages, and 

M2 macrophages, with MO macrophages polarized  

into M1 or M2 types. M1 macrophages can boost  

the inflammatory response and destroy tumor cells, 

while M2 macrophages have the efficacy to suppress 

the inflammatory response and promote tumor cell 

proliferation and metastasis [71]. T cells CD4 memory 

activated was positively correlated with good prognosis 

in breast and bladder cancer [72, 73]. 

 
KM survival curve indicated low-risk subgroup  

had a better prognosis. The TIEDE database, which  

was created to score the T-cell function of the  

samples by computing the transcriptome sequencing 

data of the samples, could be applied to forecast  

the immunotherapeutic outcome of patients [74]. In  
the high-risk subgroup, TIDE, T-cell Dysfunction and 

Exclusion scores were higher than in the low-risk 

subgroup. The higher these scores, the greater the 

likelihood of immunological escape and the worse the 

patient’s immunotherapeutic outcome. Additionally, the 

ROC curve’s predictions of patient survival time were 

more accurate than those of the TIDE and TIS models. 

Additionally, since the DEIGRC model only includes  

6 genes, it is easier for clinical prediction in COAD 

patients. 

 

CONCLUSIONS 
 

We constructed DPM consisting of an immune-related 

model that can predict the prognosis for COAD 

patients. Further studies revealed that this model may be 

used to predict the suitability of immunotherapy and 

targeted therapy for oncology patients, which may help 

in the clinical management of oncology patients. We 

also identified potential molecular mechanisms and 

therapeutic targets for developing liver metastases in 

COAD patients, which may contribute to fundamental 

research related to liver metastases in COAD and the 

development of related new drugs. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Results of NFM analysis for classification numbers from 2 to 10. 
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Supplementary Figure 2. DEGs in COAD patients. (A) Volcano plot; (B) Heat map (only the top 50 highly and lowly expressed genes are 

shown). 

 

 
 

Supplementary Figure 3. KM curves for genes used in the construction of DPM. (A–F) KM survival curves for CALB2, NOXA1, KDF1, 
LARS2, GSR, and TIMP1. 
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Supplementary Figure 4. Relationship between clinical traits and prognosis of patients with COAD. (A–E) KM survival curves for 

Age, T-stage, M-stage, N-stage, and stage. 
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Supplementary Figure 5. Relationship between immune cell function scores and the prognosis of patients with COAD. (A) The 

proportion of immune cell distribution between subgroups; (B–P) KM survival curves for 15 immune cell function scores significantly 
associated with prognosis in COAD patients (p<0.05).  
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2. 

 

Supplementary Table 1. Immune-related genes obtained from ImmPort. 

 

Supplementary Table 2. Immune-related genes obtained from InnateDB. 
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