
www.aging-us.com 1 AGING 

INTRODUCTION 
 

Osteoarthritis (OA) is a common senile degenerative 

disease that causes disability in the elderly [1]. 

Clinically, OA refers to a disease of the whole joint 

involving structural alterations in the articular carti-

lage, subchondral bone, ligaments, capsule, synovial 

membrane and periarticular muscles [2]. As the world 

ages and obesity increases, currently, more than 250 

million people worldwide are affected by joint injuries, 

placing a burden on health systems [3, 4]. Although 
clinical strategies of OA have improved greatly, the 

pathogenesis of OA remains unclear, joint replacement 

surgery remains the first choice for OA patients [5]. 

Previous opinions revealed that mechanical injury, 

inflammatory, innate immune deficiency and abnormal 

metabolism factors are involved in the pathogenesis 

process of OA, causing structural destruction of 

synovial joint [6–8]. Age is the most important risk 

factor for OA patients. Other risk factors include  

heavy work activities, obesity, joint injury and crystal 

deposition [9, 10]. Additionally, some available clinical 

evidence indicates an association between OA and 

abnormal metabolic diseases, such as cardiovascular 

diseases, diabetes and hypertension [11–13]. A system 
review showed that over half of the aged population 

with OA had hypertension, cardiovascular diseases, 

dyslipidemia and diabetes [14]. Those complications 

www.aging-us.com AGING 2024, Vol. 16, Advance 

Research Paper 

Identification of biomarkers and immune infiltration characterization 
of lipid metabolism-associated genes in osteoarthritis based on 
machine learning algorithms 
 

Yuanye Ma1,*, Yang Liu1,*, Dan Luo2, Zhu Guo1, Hongfei Xiang1, Bohua Chen1, Xiaolin Wu1,3 
 
1Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, 
China 
2Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China 
3Cancer Institute, Qingdao University, Qingdao 266071, China 
*Co-first authors 
 
Correspondence to: Hongfei Xiang, Bohua Chen, Xiaolin Wu; email: xianghf@qdu.edu.cn, bhchen@hotmail.com, 
https://orcid.org/0000-0002-5400-4352; fyqs01@qdu.edu.cn 
Keywords: osteoarthritis, lipid metabolism-associated gene, machine learning algorithms, immune infiltration, biomarkers 
Received: November 24, 2023 Accepted: March 18, 2024 Published: April 17, 2024 
 
Copyright: © 2024 Ma et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 

 

ABSTRACT 
 

Osteoarthritis (OA) is a prevalent degenerative condition commonly observed in the elderly, leading to 
consequential disability. Despite notable advancements made in clinical strategies for OA, its pathogenesis 
remains uncertain. The intricate association between OA and metabolic processes has yet to receive 
comprehensive exploration. In our investigation, we leveraged public databases and applied machine learning 
algorithms, including WGCNA, LASSO, RF, immune infiltration analysis, and pathway enrichment analysis, to 
scrutinize the role of lipid metabolism-associated genes (LAGs) in the OA. Our findings identified three distinct 
biomarkers, and evaluated their expression to assess their diagnostic value in the OA patients. The exploration 
of immune infiltration in these patients revealed an intricate relationship between immune cells and the 
identified biomarkers. In addition, in vitro experiments, including qRT-PCR, Western blot, chondrocyte lipid 
droplets detection and mitochondrial fatty acid oxidation measurement, further verified abnormal expressions 
of selected LAGs in OA cartilage and confirmed the correlation between lipid metabolism and OA. 
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may exacerbate the procession of OA. However, the 

relationship between OA and metabolic processes has 

not been thoroughly studied. 

 

There is evidence illustrating the clinical phenotype  

of abnormal metabolic syndrome-associated OA [15]. 

Emerging evidence also indicated that low-grade 

inflammation and lipid metabolism mediate the 

procession of OA and abnormal metabolic disease 

[16]. Abnormal lipid metabolism is associated with 

various diseases, such as NAFLD, diabetes, hyper-

tension and some kinds of malignancies [17–20]. In an 

earlier study, researcher has proposed a role for lipid 

in OA. Patients with OA had a significantly higher 

level of fatty acids and arachidonic acid [8]. Another 

research reported the relationship between chondrocyte 

lipid peroxidation and oxidative degradation of OA 

cartilage matrix proteins [21]. Although many reports 

suggest alterations in lipid metabolism are involved  

in the pathogenesis of OA, however, the specific 

mechanism still needs further study. 

 

It has been reported that infiltration of immune cells is 

a key factor in promoting the development of OA [22]. 

The significant infiltration of a variety of immune cells, 

including neutrophils and macrophages, in OA synovial 

tissue suggests its ability as a key characteristic marker 

of OA [23, 24]. However, the research on OA immune 

infiltration is not sufficient. Although there are clues 

to the possibility of involvement of the autophagy 

process [25], further research is needed on the immune 

infiltrating state of OA. 

 

Currently, the identification of disease feature 

biomarker based on bioinformatics and genome 

sequencing technologies has attracted increasing 

attention [26, 27]. In the present study, we explore  

the role of lipid metabolism-related genes in the 

procession of OA using multiple bioinformatics 

algorithms. Three feature biomarkers were identified, 

and the diagnostic value of OA patients based on the 

expression of biomarkers was evaluated. Moreover, we 

elucidated potential signaling pathways related to the 

procession of OA. In vitro experiments were also 

performed to further verify abnormal expressions of 

selected LAGs in OA cartilage and to confirm the 

correlation between lipid metabolism and OA. This 

study provides new perspectives for the association 

between lipid metabolism and OA. 

 

MATERIALS AND METHODS 
 

Dataset download 

 

Three microarray datasets comprising normal  

and osteoarthritis samples, namely GSE51588, 

GSE98918, and GSE117999, were obtained from  

GEO datasets. Notably, GSE117999 and GSE98918  

utilized the Agilent-072363 SurePrint G3 Human  

GE v3 8x60K Microarray 039494 platform, while 

GSE51588 was based on GPL13497 Agilent-026652 

Whole Human Genome Microarray 4x44K v2. A total 

of 34 normal samples and 64 osteoarthritis samples 

were extracted from GEO datasets, with the break- 

down as follows: GSE51588 (10 normal samples, 40  

osteoarthritis samples), GSE98918 (12 normal samples,  

12 osteoarthritis samples), and GSE117999 (12 normal 

samples, 12 osteoarthritis samples). All dataset probes 

were converted into corresponding gene symbols by 

using Perl scripts and the probe annotation files 

associated with the datasets. Subsequently, normalization 

of the matrices from the three distinct GEO datasets and 

the removal of batch effects were executed through the 

implementation of “sva” and “limma” scripts. 

 

Lipid metabolism-associated genes acquisition and 

difference analysis 

 

Lipid metabolism-associated genes (LAGs) were compiled 

from the Reactome databases (https://reactome.org/), a 

total of 1024 LAGs were identified to subsequent 

analysis (Supplementary Table 1) [28]. To investigate 

the differential expression of LAGs (DE-LAGs) 

between the Healthy Control (HC) and OA groups,  

the “limma” script was employed. The criteria for the 

identification of DE-LAGs were set at p.adjust < 0.05 

and |fold change| ≥ 2. 

 
WGCNA and machine learning model establishment 

 
The “WGCNA” script was employed to establish  

a weighted gene co-expression network analysis 

(WGCNA). Initially, the HC and OA samples were 

clustered to identify and eliminate outlier samples 

subsequently. Then, the remaining samples were 

included in subsequent analyses. Using a soft power 

parameter (β), a WGCNA network was constructed, 

and the association between clinical features and gene 

modules was explored. A significant gene module was 

selected based on correlation coefficients and p- 

values. To investigate diagnostic feature biomarkers, 

two distinct algorithms were applied utilizing the  

set of DE-LAGs. The Least Absolute Shrinkage  

and Selection Operator (LASSO) was conducted to 

identify the feature variables. Then, random forest (RF) 

algorithm was performed to calculate the importance 

of each variable. Support Vector Machine Recursive 

Feature Elimination (SVM-RFE) algorithms were 

subsequently employed to identify characteristic genes. 

The diagnostic feature biomarkers were determined by 

identifying overlapping genes from the LASSO, RF 

and SVM-RFE results. 
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Functional enrichment analysis 

 

To elucidate potential functional components and 

pathways, gene ontology (GO) and Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathway enrichment 

analyses were meticulously conducted employing the 

“clusterProfiler” R packages. The outcomes of these 

analyses were visually presented through a bubble plot, 

wherein a p.adjust value < 0.05 served as the criterion 

denoting statistical significance. Furthermore, the Gene 

Set Enrichment Analysis (GSEA) methodology was 

employed to enrich the pool of differentially expressed 

genes within the context of KEGG signaling pathways.  

 

Analysis of immune infiltration 

 

The assessment of immune cell infiltration levels  

was accomplished through Single Sample Gene  

Set Enrichment Analysis (ssGSEA) employing the 

“GSVA” R package. The intricate relationships among 

immune cell components were delineated using the 

“Corrplot” R package. Utilizing the “ggplot2” R 

package, distinctions in immune cell composition 

between HC and OA samples were meticulously 

ascertained. In addition, Spearman correlation analysis 

was employed to scrutinize the correlation between the 

three identified characteristic genes and the abundance 

of immune infiltrating cells. A p.adjust value < 0.05 

was established to signify statistical significance in 

these correlation analyses.  

 

Validation of biomarkers and diagnostic 

effectiveness analysis 

 

To assess the predictive capability and accuracy  

of the identified biomarkers, the expression profiles  

of the three feature genes were scrutinized in a  

training cohort comprising 34 HC samples and 64 OA 

samples. The Receiver Operating Characteristic Curve 

(ROC) was employed to thoroughly investigate the 

diagnostic effectiveness of the identified biomarkers 

within the training cohort. A nomogram was intricately 

constructed based on the feature variates, utilizing  

the “nomogram” tool to evaluate the diagnostic 

capabilities. The nomogram provided a quantitative and 

individualized assessment of the diagnostic potential 

of the identified genes. 

 

Real-time quantitative RT-PCR (qRT-PCR) analysis 

 

The OA and HC specimens utilized in this study  

were acquired with the explicit approval of the  

human ethics committee at the Affiliated Hospital of 
Qingdao University and the Ethics Office of Qingdao 

University, ensuring adherence to ethical standards. 

RNA extraction from both normal and OA tissues was 

accomplished using Trizol reagent (Cat# 15596018, 

Thermo Fisher Scientific, USA), and subsequent 

cDNA synthesis was conducted utilizing the RT kit 

with gDNA Eraser (Perfect Real Time). Real-time 

quantitative reverse transcription polymerase chain 

reaction (qRT-PCR) (Cat# RR047A, Takara, Japan) was 

employed for further analysis. The mRNA expression 

levels were discerned using SYBR Pre-mix Ex Taq  

II (TliRNaseH Plus) (Cat# RR820B, Takara). The 

assessment of relative RNA expression levels was 

conducted employing the 2−ΔΔCT method. The primer 

sequences utilized in this analysis are elucidated in 

Supplementary Table 2.  

 

Western blot analysis 

 

Total protein extraction from OA and HC samples  

was achieved using RIPA lysis buffer (Cat# R0010, 

Solarbio, China). Subsequently, the quantification of 

total protein was performed utilizing the BCA assay  

kit (Cat# PC0020, Solarbio). A 20 μL protein sample 

was combined with 200 μL of BCA working solution 

and incubated at 37°C for 30 minutes. The absorbance 

at 562 nm was measured using a spectrophotometer 

(CMax Plus, USA), and the protein concentration was 

determined through reference to the standard curve of 

BSA. Following quantification, protein samples were 

mixed with loading buffer at a ratio of 4:1 (v/v), boiled 

for 10 minutes, subjected to sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE), and 

subsequently transferred to a polyvinylidene fluoride 

(PVDF) membrane. The PVDF membrane underwent 

blocking with 5% skimmed milk powder for 1 hour at 

room temperature. Following this, the membrane was 

incubated overnight at 4°C with primary antibodies 

targeting β-actin (Cat# E-AB-40517, Elabscience, 

USA), JUN (Cat# ab31367, Abcam, UK), LTC4S (Cat# 

PA5-49613, Abcam), and NFKBIA (Cat# 10268-1-AP, 

Proteintech, China). After washing with TBST buffer 

solution three times, the transferred membrane was 

incubated with the secondary antibody (1:20000) at 

room temperature for 1 hour, followed by additional 

washes with TBST. Ultimately, the protein bands were 

visualized using an Odyssey Clx system (Li-Cor, USA). 

Blots were imaged and quantified utilizing ImageJ 

software, with β-actin serving as a loading control. 

 

Cartilage cell isolation and culture  

 

OA and normal cartilage tissues were obtained as 

discarded specimens from the hospital, and divided 

into superficial and middle layers within a 2-hour 

timeframe expeditiously. Subsequently, the collected 
cartilage was subjected to enzymatic digestion using 

0.2% type II collagenase (Cat# C8150, Solarbio) in 

DMEM (Cat# 31600034, Solarbio) at 37°C for 3 hours. 
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The resulting cells were then filtered through a 70-μm 

nylon cell strainer and harvested via centrifugation  

at 250 g for 5 minutes. The cells were resuspended  

in DMEM culture medium enriched with 10% FBS 

(Gibco, USA) and 1% penicillin/streptomycin (Gibco, 

USA). These cells were then seeded in 60 mm 

diameter culture dishes, with the culture medium being 

refreshed every 3 days to maintain optimal conditions 

for cell growth and viability. 

 

Detection of lipid droplets in chondrocytes  

 

For the visualization of lipid droplets (LD), 

chondrocytes were cultured in DMEM at 37°C with  

the addition of 10 μM BODIPY 493/503 (Cat#  

HY-W090090, MedChemExpress, USA) for a duration 

of 30 minutes. Following this incubation period,  

the cells underwent three washes before imaging.  

The fluorescence emanating from BODIPY 493/503 

was excited at 488 nm, and the emitted fluorescence 

was collected within the range of 500–550 nm.  

This method facilitated the specific and efficient 

visualization of lipid droplets within the chondrocytes, 

providing valuable insights into lipid metabolism and 

distribution in the cellular context. 

 

Measurement of mitochondrial fatty acid oxidation 

 

Isolated chondrocytes were meticulously seeded at a 

density of 300 cells per well within XF24 Cell Culture 

Microplates. The culture medium was subsequently 

replaced with PBS buffer, and chondrocytes underwent 

an incubation period at 37°C for 1 hour before 

commencing measurements. In preparation for the XF 

BSA-Palmitate FAO assay, a 1 mM BSA-Palmitate 

solution and a 0.17 mM BSA solution were precisely 

prepared following the guidelines provided in the  

XF BSA-Palmitate FAO assay kit (Cat# 102720- 

100, Agilent, USA). At specific time points, BSA-

Palmitate ester or BSA was introduced through 

injection. The quantification of mitochondrial fatty 

acid oxidation was derived by subtracting the Oxygen 

Consumption Rate (OCR) in the presence of BSA-

Palmitate ester from the OCR observed in the presence 

of BSA. This assay offers a comprehensive assessment 

of cellular metabolic activity, specifically focusing  

on mitochondrial fatty acid oxidation dynamics in 

chondrocytes. 

 
Statistical analysis 

 
The statistical analyses were conducted using R 

(version 4.1.0) and Perl software. The disparity 

between two groups was assessed utilizing the 

Wilcoxon Test, with a p.adjust value < 0.05 deemed  

as the threshold denoting statistical significance. 

RESULTS 
 

Characteristics gene screening by WGCNA analysis 

 

We gathered a total of 34 HC and 64 OA samples from 

three GEO datasets (GSE117999, GSE98918, and 

GSE51588). After performing sample clustering, all 

data underwent normalization and were consolidated 

into a matrix for subsequent analysis (Figure 1A). To 

identify potential regulatory genes associated with OA, 

we conducted WGCNA based on the expression of 

differentially expressed lipid-associated genes, resulting 

in the construction of a gene co-expression network. A 

soft thresholding power (β) of 7 was selected to achieve 

a scale-free network (Figure 1B) with a scale-free R2 

greater than 0.85. The cluster dendrogram depicted  

the height of each module, which was further refined 

using dynamic tree cutting to yield distinct modules 

(Figure 1C). By setting the clustering height of module 

eigengenes at 0.25, 25 gene modules were obtained  

for subsequent analysis (Figure 1D). The correlation 

heatmap indicated no discernible correlation between 

each module (Figure 1E). The association between gene 

modules and clinical features revealed that the light 

green module was negatively correlated with HC (r = 

−0.68, p = 5e-08), while positively correlated with OA 

(r = 0.68, p = 5e-08). Conversely, the brown module 

showed a positive correlation with HC (r = 0.86, p =  

1e-15) and a negative correlation with OA (r = −0.86,  

p = 1e-15). Similarly, the light-yellow module displayed 

a positive correlation with HC (r = 0.72, p = 3e-09) and 

a negative correlation with OA (r = −0.72, p = 3e-09, 

Figure 1F). Given the highest correlation coefficient, the 

brown module was identified as the most characteristic 

module. The subsequent scatter plot demonstrated a 

high correlation (r = 0.92, p < 1e-200) between module 

brown membership and gene significance. The genes 

within the brown module were selected for further 

analysis (Figure 1G). 

 

Identification of diagnostic feature biomarkers  

 

In the pursuit of identifying DE-LAGs between HC and 

OA samples, we applied stringent screening conditions, 

setting |fold change| ≥ 2 and a p.adjust value < 0.05 

threshold. This analysis resulted in the identification  

of a total of 291 DE-LAGs, comprising 90 genes that 

were significantly up-regulated and 201 genes that were 

significantly down-regulated (Figure 2A). The heatmap 

diagram vividly displayed the expression profiles of  

the top 25 regulated DEGs in both directions for HC 

and OA (Figure 2B). Through an integrated analysis 

involving the WGCNA specifically focusing on the 

brown module, and the aforementioned DE-LAGs,  

we identified 12 pivotal genes at the intersection by 

employing a Venn diagram (Figure 2C). Subsequently, 
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a Protein-Protein Interaction (PPI) network analysis  

was conducted, revealing potential interactions among 

these identified genes (Figure 2D). This comprehensive 

approach enhances our understanding of the key 

regulatory genes associated with lipid metabolism in the 

context of OA. 

Functional enrichment analysis of pivotal module 

genes  

 

We employed functional enrichment analysis to delve 

into the potential molecular biological functions of  

the pivotal DE-LAGs in the context of OA. The Gene 

 

 
 

Figure 1. WGCNA analysis to select characteristics gene module for OA. (A) Clustering of mod. (B) Scale free topology model fit 

and mean connectivity. (B) Clustering of module genes. (C) Cluster dendrogram for selecting gene modules. (D) Clustering of module genes. 
(E) Association between the gene modules. (F) Heatmap analysis of 18 modules and clinical features (HC, OA). (G) Module membership vs. 
gene significance in brown module. 
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Ontology (GO) enrichment analysis unveiled that 

these pivotal DE-LAGs were notably associated  

with the response to lipopolysaccharide and the 

response to molecules of bacterial origin (Figure 3A). 

Further exploration through Gene Set Enrichment 

Analysis (GSEA) revealed that the differentially 

expressed genes in the OA group exhibited signi-

ficant enrichment in pathways such as lysosome,  

allograft rejection, and autoimmune thyroid disease. 

Conversely, DEGs in the HC group were prominently 

enriched in immune-related signaling pathways, 

including lipid and atherosclerosis, fluid shear stress 

and atherosclerosis, microRNAs in cancer, and non-

alcoholic fatty liver disease (Figure 3B). The Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 

analysis of the pivotal DE-LAGs demonstrated 

associations with lipid and atherosclerosis, as well  

as the IL-17 and TNF signaling pathways (Figure  

3C). This comprehensive analysis sheds light on the 

diverse molecular functions and pathways implicated 

by the identified DE-LAGs, providing valuable 

insights into the intricate mechanisms underlying OA. 

 

Feature biomarkers selection via machine learning 

algorithms 

 

We proceeded with the application of several machine 

learning algorithms to discern the feature DE-LAGs 

 

 
 

Figure 2. DE-LAGs screening. (A) Volcano plot of DEGs in HC and OA groups. The threshold of screening DEGs is set at |fold change| ≥ 2 

and p.adjust < 0.05. Turquoise dots represent down-regulated genes and red dots represents up-regulated genes. (B) Analysis of top 25 up- 
and down-regulated genes in HC and OA group. (C) Identification of pivotal DE-LAGs in brown module. (D) Protein-protein interaction (PPI) 
network analysis among screened genes. 
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associated with OA. LASSO algorithm revealed  

the minimum lambda of DE-LAGs, identifying 4 

characteristic variates (Figure 4A). Simultaneously, the 

RF algorithm yielded 7 feature DE-LAGs for subsequent 

analysis (Figure 4B). The SVM-RFE algorithm results 

indicated 6 DE-LAGs as feature variables (Figure 4C). 

Upon integration of results from SVM-RFE, LASSO 

and RF algorithms, three DE-LAGs (NFKBIA, LTC4S, 

and JUN) were ultimately determined as the feature 

variables (Figure 4D). 

 

Evaluation of the diagnostic validity of biomarkers 

for LAGs 

 

To validate the expression levels and diagnostic 

efficacy of the feature biomarkers, the expressions  

of the three selected biomarkers were analyzed.  

The HC group exhibited higher expression levels of 

JUN and NFKB1A, and lower expression of LTC4S 

(Figure 5A–5C). Furthermore, a nomogram model  

was meticulously constructed to assess the diagnostic 

efficacy based on the three-gene signatures. The results 

of the nomogram illustrated a satisfactory diagnostic 

ability of JUN, NFKB1A, and LTC4S for OA  

(Figure 5D). Additionally, as depicted in Figure 5E,  

a significant association was observed among the  

three feature biomarkers. This comprehensive analysis 

validates both the differential expression patterns and 

the diagnostic potential of the selected biomarkers in 

the context of OA. 

 

Immune infiltration landscape analysis 

 

A prior study has highlighted the association of OA 

with the immune system. Consequently, we explored 

the composition of 23 immune cells utilizing the 

ssGSEA algorithm. The ssGSEA results indicated that 

OA exhibited significantly higher fractions of activated 

B cells, activated CD8 T cells, γδT cells, immature  

B cells, immature dendritic cells, Myeloid-Derived 

Suppressor Cells (MDSCs), macrophages, Natural 

Killer (NK) cells, regulatory T cells, and type 1 T helper 

cells. Conversely, the HC group demonstrated higher 

fractions of activated CD4 T cells, eosinophils, and type 

2 T helper cells (Figure 6A). A Principal Components 

Analysis (PCA) plot further illustrated a distinct

 

 
 

Figure 3. Function enrichment analysis of DE-LAGs. (A) Gene ontology (GO) analysis of DE-LAGs in HC and OA. (B) GSEA analysis of 
DEGs in HC and OA group. (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DE-LAGs in HC and OA. 
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distribution pattern between the HC and OA groups 

(Figure 6B). Additionally, correlation analysis was 

conducted to examine the individual effects of the 

three screened diagnostic biomarkers (JUN, NFKB1A, 

and LTC4S) on immune infiltration (Figure 6C– 

6E). This comprehensive analysis provides valuable 

insights into the differential immune cell composition 

and distribution patterns between HC and OA, as well 

as the potential correlation between the diagnostic 

biomarkers and the immune microenvironment. 

 

qRT-PCR and Western blot validation in clinical 

samples 

 

In our further exploration of the mRNA and protein 

expressions of selected biomarkers using clinical 

samples, the quantitative real-time PCR (qRT-PCR) 

results (Figure 7A–7C) elucidated that the mRNA 

expressions of JUN and NFKB1A were distinctly 

lower in OA patients compared to healthy donors. 

Conversely, the mRNA expression of LTC4S was 

markedly higher in OA patients than in the normal 

control group. Subsequent Western blot analysis 

(Figure 7D–7G) further affirmed that the trends of 

these three biomarkers were consistent at the protein 

level. These findings provide a partial validation of  

our bioinformatics results, reinforcing the evidence of 

altered expression patterns of the identified biomarkers 

in the context of OA when assessed at both the mRNA 

and protein levels. 

 

Impaired fatty acid oxidation in OA leads to the 

accumulation of lipid droplets within the cells  

 

In utilizing isolated chondrocytes to investigate 

alterations in fatty acid metabolism, the visual 

assessment of lipid droplets (LD) reveals a conspicuous 

increase in LD accumulation within isolated OA 

chondrocytes as compared to the negative control  

(HC) group. This is evident in both a higher average 

 

 
 

Figure 4. Feature biomarkers selection via machine language algorithms. (A) Key LAGs screening by LASSO analysis. (B) RF analysis 

of key DE-LAGs, the filter condition for screening feature variates was set at: importance > 3. (C) SVM-RFE algorithm for selecting the 
feature DE-LAGs. (D) Venn network plot showed the three diagnostic feature biomarkers based on LASSO, SVM-RF and RF algorithm.  
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fluorescence intensity and a greater quantity of LD  

in each OA chondrocyte (Figure 8A–8C). Furthermore, 

the Fatty Acid Oxidation (FAO) in the BSA-Palmitate 

ester group within the OA group is significantly  

lower than in the HC group (Figure 8D). These  

results collectively indicate a marked inhibition of fatty 

acid oxidation (FAO) in OA chondrocytes, signifying 

disrupted lipid metabolism within the cartilage tissue  

of OA patients. This disruption contributes to the 

accumulation of lipid droplets within the chondrocytes, 

providing valuable insights into the aberrations in lipid 

metabolism associated with OA. 

 

DISCUSSION 
 

OA is one of the main causes of disability in the elderly 

and has become a source of social burden. Prevention 

and disease modification has suggested great potential 

in the treatment of OA. Recently, researchers are 

increasingly finding novel feature biomarkers of disease 

which provide contribution to the clinical benefit. For 

example, ADAMTS-5 and IL-1β could predict the 

prognosis of OA [29]. PRKACB could serve as a 

biomarker to access the risk and indicate the immune 

infiltration of OA [30]. However, few studies reported 

the role of LAGs in OA. Therefore, we aimed to 

investigate the diagnostic feature biomarkers for OA 

and explore the association of LAGs and immune 

infiltration in OA. 

 
We focus on the role of lipid metabolism in OA. Lipid 

metabolism was considered an important mechanism 

involved in disease regulation. In the past decades, 

studies have indicated that abnormal lipid metabolites 

 

 
 

Figure 5. Immune cell infiltration analysis of HC and OA based on CIBERSORT algorithm. (A–C) The expression of JUN, NFKB1A 

and LTC4S in OA and HC groups. (D) Nomogram construction and ROC curve of three gene signatures. (E) Correlation heatmap of BCKDHB, 
LETMD1, and NDUFB3. Green color represents negative correlation, red color represents positive correlation. 
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Figure 6. Immune cell infiltration analysis of HC and OA based on ssGSEA algorithm. (A) Immune infiltration analysis of 23 type 
immune cells by ssGSEA. (B) Principal components analysis (PCA) between HC and OA groups. (C–E) Correlation analysis of three diagnostic 
biomarkers (JUN, NFKB1A and LTC4S) and immune microenvironment. 

 

 
 

Figure 7. The expression profile of relevant genes and proteins in OA. (A–C) Changes in mRNA expression levels of JUN, LTC4S, and 

NFKBIA in the OA and HC groups. (D–G) Western blotting (WB) analysis of the protein expression levels of JUN, LTC4S, and NFKBIA in OA 
and HC. *p < 0.05, **p < 0.01, ***p < 0.001. 
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associated with cancer, non-alcohol fatty liver  

disease (NAFLD), diabetes and Alzheimer’s disease. 

Abnormal lipid metabolism is associated with immune 

microenvironment status [31]. Reversing excessive fat 

accumulation can effectively reverse NAFLD process 

[32], indicating targeting lipid metabolism process may 

be an effective strategy for disease treatment. 

 

Metabolic disorders such as obesity and diabetes  

have been identified as risk factors for OA. Evidence 

further suggests that lipid metabolism, as a common 

pathway of metabolic disease and OA, may have direct 

systemic effects on the joints [8]. There are two modes 

of lipid transport: synovial diffusion and subchondral 

bone exchange [33]. As the main source of molecules  

in articular cartilage metabolism, synovial fluid can 

provide sufficient nutrients to maintain the structure and 

function of mature articular cartilage [33]. Lipid transport 

is facilitated by uncalcified cartilage. However, calcified 

cartilage is found at the bone-cartilage interface in 

mature joints. This natural barrier greatly limits the 

passage of lipids from calcified cartilage to non-

calcified cartilage [34]. Therefore, abnormal lipid 

accumulation in OA chondrocytes is detrimental to 

cartilage nutrition and contributes to the occurrence and 

progression of OA [35]. In addition, as the second 

messenger between cells, lipids play an important role 

in OA signal transduction, which also indicates that 

lipids play an important role in the occurrence and 

development of OA [36]. The rationalization of daily 

dietary lipids has also been shown to have a slowing 

effect on the course of OA [37]. Therefore, further 

investigation of the influence of lipid metabolism  

would be a promising direction for the treatment of OA 

in the internal joint disease [38]. To help achieve this 

goal, we preliminarily explored the OA associated LAGs 

and identified three diagnostic feature biomarkers.  

The results showed that three feature biomarkers have  

a diagnostic value and could indicate the immune 

microenvironment of OA. 

 

 
 

Figure 8. The changes in intracellular lipid metabolism in OA. (A) Representative images of intracellular lipid droplets stained with 

BODIPY 493/503. The left side shows normal chondrocytes, and the right side shows OA chondrocytes; Scale bar: 100 μm. (B) Multiplicative 
changes in the average fluorescence intensity of intracellular lipid droplets stained with BODIPY 493/503. (C) Multiplicative changes in the 
number of lipid droplets stained with BODIPY 493/503. (D) Measurement of changes in fatty acid oxidation (FAO) in cells from the Normal 
and OA groups. Dashed lines represent the time points of adding BSA (0.17 mM) or BSA-Palmitate ester (1 mM). *p < 0.05, **p < 0.01, 
***p < 0.001. 
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The functional enrichment analysis of de-lag  

showed that IL-17, TNF, NOD-like receptor and  

other pathways may be involved in the formation  

of OA. In OA patients, IL-17 not only affects the 

inflammatory response, angiogenesis and glycolytic 

pathways of chondrocytes and synovial fibroblasts,  

but also is closely related to the degree of joint pain in 

OA patients [39, 40]. The TNF pathway has also been 

reported to be associated with inflammatory responses 

in articular chondrocytes and as a potential therapeutic 

target [41, 42]. Rheumatoid arthritis (RA), also a 

disease affecting joints, shares certain proteins with 

OA and has been shown to affect disease progression 

[43, 44]. NOD-like receptor related pathways have 

been poorly studied in OA, but there is also evidence 

that Nod-like receptor protein-3 can inhibit chondro-

cyte pyroptosis and alleviate cartilage damage in 

osteoarthritis [45]. Our results once again confirm the 

important role of the above signaling pathways in the 

development of OA. 

 

JUN-related pathway is one of the key signaling 

pathways in autoimmune diseases and is closely 

related to physiological processes such as cell 

proliferation, cell differentiation, cell survival, cell 

death and immune response [46]. In OA, continuous 

inflammatory stimulation can cause the constitutive 

expression of JUN, and may act as a signal transmitter 

to further activate the inflammatory response, thus 

forming the intrinsic activation mechanism of OA 

[47]. Multiple pathways have been shown to be  

related to JUN’s promoting effect on OA [48–50],  

and inhibition of JUN transcription can prevent 

osteoarthritic cartilage destruction [51, 52]. Our results 

further confirm the potential role of JUN in OA and its 

potential application as an intervention target. 

 
LTC4S is believed to be a mediator in the development 

of allergic reactions and inflammatory diseases such  

as bronchial asthma [53]. It has been reported that 

LTC4S expression is up-regulated in OA synovium 

[54]. However, beyond that, we could not find more 

evidence for its role in OA development. As another 

key gene we screened, NFKBIA, has not been studied 

in OA. In the only study that showed a systematic 

review based on a Han population, NFKBIA was 

significantly associated with hip OA [55]. NFKBIA 

encodes IκBα, which binds to NF-κB proteins p65  

and p50, and acts as one of the inhibitors of NF-κB 

activation [56]. The activated NF-κB signaling pathway 

can induce joint destruction, leading to the occurrence 

and development of OA [57]. In addition, NFKBIA has 

been reported to play an integral role in macrophage-

mediated inflammatory responses [58]. Combined with 

the important role of macrophages in OA development 

and their great potential as therapeutic targets [59], the 

value of NFKBIA in OA development and therapeutic 

intervention deserves further attention. 
 

Lipid metabolism has shown its critical role in bone 

metabolism [38]. In this study, the comparison of normal 

and OA samples showed that DE-LAGs were involved 

in a variety of lipid biological functions and lipase 

activity, glycolide metabolism, phospholipid metabo-

lism, and lipid and atherosclerosis signaling pathways. 

The activity of lipase also suggested the role of lipid 

metabolism in OA. Although limited by conditions, no 

in vivo experiment was conducted, this study provides  

a new idea for further experimental verification and a 

few potential targets for OA risk stratification. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Identification of lipid metabolism-associated genes. 
 

Supplementary Table 2. The primers used for qPCR detection. 

Gene name Primer sequences (5′–3′) 

GAPDH 
Forward (F) 5′-ATGCCGCCTGGAGAAACC-3′ 

Reverse (R) 5′-GCATCAAAGGTGGAAGAATGG-3′ 

JUN 
Forward (F) 5′-CAGCCAGGTCGGCAGTATAG-3′ 

Reverse (R) 5′-GGACTCTGCCACTTGTCTCC-3′ 

LTC4S 
Forward (F) 5′-CCGACGGTACCATGAAGGAC-3′ 

Reverse (R) 5′-GCAGGGAGAAGTAGGCTTGC-3′ 

NFKBIA 
Forward (F) 5′-ATGTCAATGCTCAGGAGCCC-3′ 

Reverse (R) 5′-GGTCAGTCACTCGAAGCACA-3′ 
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