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INTRODUCTION 
 

Ischemic stroke (IS), a cerebrovascular disease  

with significant implications for human health, is a 

leading cause of mortality and long-term disability [1]. 

According to 2019 statistics, there were an estimated 12.2 

million incident strokes globally (95% UI 11.0 million  

to 13.6 million), of which 62.4% were ischemic strokes 

(IS) [2]. The occurrence of IS at a younger age, along 

with associated complications, presents a substantial 

medical burden on society [3]. IS typically results from 

cellular death due to reduced local cerebral blood flow 

(CBF), leading to the development of an infarct core in 

ischemic brain tissue and distinct penumbral regions [4]. 

Despite advancements in research, the precise molecular 

mechanisms underlying IS remain poorly understood. 

www.aging-us.com AGING 2024, Vol. 16, Advance 

Research Paper 

ITGAM is a critical gene in ischemic stroke 
 

Lei Hou1,2,*, Zhongchen Li2,*, Xiaoli Guo3, Jiatao Lv2, Zonglei Chong2, Yilei Xiao2, Liyong Zhang2, 
Zefu Li1,4 
 
1Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, P.R. China 
2Department of Neurosurgery, Liaocheng People’s Hospital, Shandong Provincial Hospital, Cheeloo College of 
Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China 
3Department of Pediatrics, Liaocheng People’s Hospital, Shandong Provincial Hospital, Cheeloo College of 
Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China 
4Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, 
Shandong Province, P.R. China 
*Equal contribution 
 
Correspondence to: Zefu Li; email: lizefu163@163.com, https://orcid.org/0000-0001-5007-4444 
Keywords: enrichment analysis, hub gene, bioinformatics analysis, ROC 
Received: November 22, 2023 Accepted: March 4, 2024  Published: April 17, 2024 
 
Copyright: © 2024 Hou et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 

 

ABSTRACT 
 

Background: Globally, ischemic stroke (IS) is ranked as the second most prevailing cause of mortality and is 
considered lethal to human health. This study aimed to identify genes and pathways involved in the onset and 
progression of IS. 
Methods: GSE16561 and GSE22255 were downloaded from the Gene Expression Omnibus (GEO) database, 
merged, and subjected to batch effect removal using the ComBat method. The limma package was employed to 
identify the differentially expressed genes (DEGs), followed by enrichment analysis and protein-protein 
interaction (PPI) network construction. Afterward, the cytoHubba plugin was utilized to screen the hub genes. 
Finally, a ROC curve was generated to investigate the diagnostic value of hub genes. Validation analysis through 
a series of experiments including qPCR, Western blotting, TUNEL, and flow cytometry was performed. 
Results: The analysis incorporated 59 IS samples and 44 control samples, revealing 226 DEGs, of which 152 were 
up-regulated and 74 were down-regulated. These DEGs were revealed to be linked with the inflammatory and 
immune responses through enrichment analyses. Overall, the ROC analysis revealed the remarkable diagnostic 
potential of ITGAM and MMP9 for IS. Quantitative assessment of these genes showed significant 
overexpression in IS patients. ITGAM modulation influenced the secretion of critical inflammatory cytokines, 
such as IL-1β, IL-6, and TNF-α, and had a distinct impact on neuronal apoptosis. 
Conclusions: The inflammation and immune response were identified as potential pathological mechanisms of IS 
by bioinformatics and experiments. In addition, ITGAM may be considered a potential therapeutic target for IS. 
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The previously published studies on the screening  

of genetic alterations at the genomic level have been 

further extended using microarray and bioinformatics 

analyses [5]. The molecular complexity of non-small 

cell lung cancer (NSCLC) has been illustrated utilizing 

microarray analysis, particularly the resistance to 

tyrosine kinase inhibitors, through the identification  

of biological processes, potential NSCLC targets, and 

gene expression signatures [6]. Furthermore, integrated 

transcriptomic and proteomic analyses and a thorough 

examination of biological networks detected the 

toxicological targets and networks utilized for the 

regulation of CCl4 in liver fibrosis [7]. Therefore, for 

the efficient treatment and accurate diagnosis of IS, it is 

necessary to explore a bioinformatics-based approach to 

elucidate the mechanisms of IS and study the prognosis-

linked indicators as well as potential biomarkers. 

 

This study conducted a comparative analysis of  

blood samples from individuals with ischemic stroke 

(IS) and normal individuals to identify differentially 

expressed genes (DEGs), which were subsequently 

analyzed by integrating two mRNA microarray datasets. 

Additionally, functional clustering analysis of DEGs 

was conducted, and a protein-protein interaction (PPI) 

network was constructed to identify hub genes. The 

potential drugs that could interact with these hub genes 

were predicted. Finally, the hub genes were validated 

through a series of experimental analyses including 

TUNEL, flow cytometry, quantitative polymerase chain 

reaction (qPCR), and Western blotting. Overall, the 

findings of this research add to the existing knowledge 

about the pathological mechanisms of IS at the 

fundamental molecular level. 

 

RESULTS 
 

Batch effect removal 

 

The box plot shows the large difference in sample 

distribution between the GSE22255 and GSE16561 

datasets before batch effect removal (Figure 1A), 

suggesting a significant batch effect. However, the data 

distribution became consistent between the datasets, 

with their median in one line after removing the batch 

effect (Figure 1B). In addition, the density plot suggests 

a large difference in the sample distribution between  

the data sets before batch effect removal (Figure 1C). 

After removing the batch effect, the data distribution 

among the data sets tends to be consistent, and the  

mean and variance are similar (Figure 1D). In addition, 

the uniform manifold approximation and projection 

(UMAP) plot highlights the clustered distribution 

pattern of samples within each dataset before batch 

effect removal (Figure 1E). However, the samples from 

each dataset cluster intertwined with each other after the 

removal of the batch effect, suggesting a good removal 

(Figure 1F). 

 

DEG screening 

 

The DEGs were identified from the merged dataset of 

GSE22255 and GSE16561 using fold change > 1.3, and 

the adjusted P-value < 0.05 was utilized as the criteria 

for the screening of these genes. Finally, 226 DEGs 

comprising 152 up-regulated and 74 down-regulated 

genes were obtained (Figure 2A and Supplementary 

Table 1), and the identified up-regulated and down-

regulated genes placed at the top twenty positions were 

visualized by the heat map (Figure 2B). 

 

Enrichment analyses 

 

The associated biological functions of the DEGs  

were analyzed through enrichment analysis of the  

GO and KEGG. The enriched GO terms included 

immune system process, immune response, cytoplasmic 

vesicle, intracellular vesicle, identical protein binding, 

protein dimerization activity, and other terms (Figure 

3A, 3C, 3E). In addition, the enriched genes for  

specific GO terms are displayed by cnetplots (Figure 

3B, 3D, 3F). The enriched KEGG pathway included 

hematopoietic cell lineage, NOD-like receptor signaling 

pathway, TNFA signaling via NFKB, inflammatory 

response, cytokine–cytokine receptor interaction, and 

other functions (Figure 4A, 4C). Afterward, the 

enriched genes for specific KEGG pathways were 

mapped (Figure 4B, 4D). 

 
PPI network construction and hub gene screening 

 

The interactions between DEGs were examined and 

studied by fabricating and then optimizing a PPI 

network through the STRING database (Figure 5A)  

and the Cytoscape (Figure 5B), respectively. Afterward, 

ten hub genes were filtered out per the degree method 

utilizing Cytoscape’s cytoHubba plugin (Figure 5C) 

whose enrichment analyses depicted their enrichment 

mainly in interleukin-4 and interleukin-13 signaling, 

Th17 cell differentiation pathway, cell activation, and 

other processes (Figure 5D). 

 
ROC analysis for diagnosis 

 

The box plot illustrated the expression profile of 

identified hub genes in IS and normal samples.  

The majority of hub genes were upregulated in IS 

tissues compared to normal tissues in the GSE16561+ 

GSE22255 dataset, except for CD19 and CD2, which 

were downregulated (Figure 6A). In the GSE58294 

dataset, half of the hub genes were found to be 

differentially expressed (Figure 6C). Our analysis 
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Figure 1. Merging of GSE16561 and GSE22255 datasets and batch effect removal. (A) Gene expression levels of the datasets before 

batch effect removal; (B) Gene expression levels of the merged dataset after batch effect removal; (C) Density plot of the datasets before batch 
effect removal; (D) Density plot of the merged dataset after batch effect removal; (E) UMAP plot of the datasets before batch effect removal; 
(F) UMAP plot of the merged dataset after batch effect removal. Abbreviations: UMAP, uniform manifold approximation and projection. 
 

 
 

Figure 2. DEGs screening. (A) Volcano plot of IS-related DEGs, where the horizontal coordinate is log2FoldChange, the vertical coordinate 

is -log10(FDR), red triangles indicate up-regulated DEGs, green triangles indicate down-regulated DEGs and gray nodes indicate genes with no 
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significant differential expression; (B) Heat map of 40 DEGs, where light-red represents disease samples, light-blue represents normal control 
samples, red represents high gene expression, and blue represents low gene expression. Abbreviations: IS, ischemic stroke; DEGs, 
differentially expressed genes; FDR, false discovery rate. 

 

 
 

Figure 3. GO enrichment analysis of DEGs. GO-BP analysis for DEGs revealing significant terms via bubble plot (A) and linked genes by 

cnetplot (B). GO-CC analysis for DEGs revealing significant terms via bubble plot (C) and linked genes by cnetplot (D). GO-MF analysis for DEGs 
revealing significant terms via bubble plot (E) and linked genes by cnetplot (F). Abbreviations: DEGs, differentially expressed gene; GO, Gene 
Ontology; BP, biological process; CC, cellular component; MF, molecular function. 
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revealed that the expression levels of the majority  

of hub genes were comparable among IS patients  

of different ages and genders, with insignificant 

differences observed (Supplementary Figure 1). 

 

Our ROC analysis of the GSE16561+GSE22255 dataset 

demonstrated a remarkable diagnostic potential for 

ITGAM (AUC = 0.812), HIST2H2BE (AUC = 0.795), 

CD2 (AUC = 0.767) and MMP9 (AUC = 0.740) in 

distinguishing between normal and IS groups (Figure 

6B). Our analysis of the GSE58294 dataset revealed 

remarkable diagnostic potential for ITGAM (AUC 

=0.930), CD19 (AUC=0.908) and MMP9 (AUC=0.820) 

in accurately differentiating between normal and IS 

groups, as indicated by the ROC curves (Figure 6D). 

TF, miRNA, and drug predictions 

 

The TFs, miRNAs, and drugs acting on ten hub  

genes were predicted by the Enrichr platform. The 

TRRUST database transcriptional predictions suggested 

that the key TFs were NFKBIA, ARNT, and STAT3 

(Table 1). In addition, the miRTarBase predictions 

identified the key miRNAs to be hsa-miR-338- 

3p, hsa-miR-5089-3p, and hsa-miR-155-5p (Table  

2). According to the DSigDB database search, the  

key drugs were SB202190, 1,9-Pyrazoloanthrone, and 

chitosamine (Table 3). These TFs and miRNAs may 

have a potentially crucial role in the progression of  

IS, and the predicted drugs could potentially be used  

as drugs for the treatment of IS. 

 

 
 

Figure 4. Enrichment analysis of pathways for DEGs. KEGG analysis for DEGs revealing significant pathways via bubble plot (A) and 

linked genes by cnetplot (B). Hallmark analysis for DEGs revealing significant pathways via bubble plot (C) and linked genes by cnetplot (D). 
Abbreviations: DEGs, differentially expressed gene; KEGG, Kyoto Encyclopedia of Genes and Genomes. 
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Figure 5. Hub gene analysis. (A) Construction of PPI network for DEGs through STRING database. (B) The PPI network was optimized by 

Cytoscape software. (C) Ten hub genes were filtered out per the degree method utilizing the Cytoscape’s cytoHubba plugin. (D) Enrichment 
analysis of 10 hub genes was performed by Metascape database. Abbreviations: PPI, protein-protein interaction; DEGs, differentially 
expressed genes. 
 

 
 

Figure 6. ROC analysis. In both GSE16561+GSE22255 (A) and GSE58294 (C) datasets, box plots were used to illustrate the expression 

patterns of hub genes between IS and normal samples. To determine the diagnostic performance of hub genes, we conducted ROC analysis 
for the GSE16561+GSE22255 (B) and GSE58294 (D) datasets. ROC, receiver operating characteristic; AUC, area under curve; FPR, false 
positive rate; TPR, true positive rate. 
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Table 1. Prediction of transcription factors regulating hub genes. 

Term P-value Combined score Genes 

NFKBIA 8.68E-08 8698.922199 CXCL8;IL1B;MMP9 

ARNT 1.02E-07 8105.110307 JUN;FOS;HIF1A 

STAT3 4.95E-07 1392.434933 CXCL8;FOS;MMP9;HIF1A 

JUN 6.00E-07 1307.154489 JUN;CXCL8;IL1B;MMP9 

SIRT1 1.54E-06 2542.462924 IL1B;MMP9;HIF1A 

FOS 2.60E-06 2034.951617 CXCL8;FOS;MMP9 

IKBKB 3.37E-06 15739.23473 CXCL8;MMP9 

HSF2 4.72E-06 12254.80045 FOS;HIF1A 

HDAC1 5.05E-06 1531.250017 CXCL8;FOS;MMP9 

ZFP36 6.29E-06 9972.498783 CXCL8;HIF1A 

 

Table 2. Prediction of miRNAs regulating hub gene. 

Term P-value Combined score Genes 

hsa-miR-338-3p 4.05E-05 618.9836824 FOS;MMP9;HIF1A 

hsa-miR-5089-3p 2.10E-04 1005.249888 FOS;HIF1A 

hsa-miR-155-5p 6.97E-04 102.9123975 JUN;CXCL8;FOS;HIF1A 

hsa-miR-204-5p 8.52E-04 149.8799815 CXCL8;IL1B;MMP9 

hsa-miR-139-5p 0.001195235 324.8248081 JUN;FOS 

hsa-miR-429 0.002448892 200.1450746 JUN;HIF1A 

hsa-miR-21-5p 0.002899587 79.83034502 IL1B;MMP9;HIF1A 

hsa-miR-3622b-5p 0.003126287 169.1208984 CD19;FOS 

hsa-miR-146a-5p 0.004288773 135.5473298 CXCL8;FOS 

hsa-miR-106a-5p 0.004505057 62.78231133 CXCL8;IL1B;HIF1A 

 

Table 3. Prediction of drugs acting on hub genes. 

Term P-value Combined score Genes 

SB 202190 CTD 00003161 3.78E-15 18362.12229 JUN;ITGAM;CXCL8;IL1B;FOS;MMP9;HIF1A 

1,9-Pyrazoloanthrone CTD 00003948 5.19E-13 7516.793025 JUN;ITGAM;CXCL8;IL1B;FOS;MMP9;HIF1A 

chitosamine CTD 00006030 1.10E-12 10280.78243 JUN;CXCL8;IL1B;FOS;MMP9;HIF1A 

TPEN CTD 00001994 5.54E-12 4853.883587 JUN;ITGAM;CXCL8;IL1B;MMP9;HIF1A;HIST2H2BE 

PD 98059 CTD 00003206 7.09E-12 4635.940789 JUN;ITGAM;CXCL8;IL1B;FOS;MMP9;HIF1A 

STYRENE CTD 00001125 1.02E-11 12947.91105 JUN;ITGAM;CXCL8;IL1B;FOS 

Acetovanillone CTD 00002374 1.02E-11 12947.91105 JUN;ITGAM;CXCL8;IL1B;HIF1A 

6401-97-4 CTD 00000925 1.04E-11 48133.11297 JUN;CXCL8;FOS;MMP9 

139890-68-9 CTD 00002746 1.15E-11 12564.93891 JUN;CXCL8;IL1B;FOS;MMP9 

sulfasalazine CTD 00006719 4.68E-11 8781.190432 ITGAM;CXCL8;IL1B;MMP9;HIF1A 

 

Differential expression of MMP9 and ITGAM in 

ischemic stroke 

 

The expression levels of both MMP9 and ITGAM  

were quantitatively assessed in the ischemic stroke (IS) 

and control groups. Comparative analysis revealed that 

the relative expression level of ITGAM was notably 

higher than that of MMP9 in the IS group, compared  

to controls (Figure 7A, 7B). Given the substantial 

upregulation of ITGAM, we chose to focus on this gene 

for subsequent targeted interventions. 

 

Subsequently, the feasibility of modulating ITGAM 

levels was assessed through targeted interventions, 

6858



www.aging-us.com 8 AGING 

specifically employing siRNA for gene silencing  

(si-ITGAM) and a specific construct for gene over-

expression (ITGAM). The findings revealed that the 

interference efficiency of si-ITGAM was quantified  

as 0.325 and the overexpression efficiency as 10.019 

through qPCR. The control interventions (NC and Vector 

groups) showed no significant alterations, demonstrating 

the specificity of the interventions (Figure 7C). 

 
Western blot analysis substantiated these findings, with 

protein expression levels of ITGAM relative to GAPDH 

being consistent with the qPCR data. These experiments 

unequivocally verify that ITGAM can be selectively 

silenced or overexpressed, offering a viable path for 

targeted therapeutic intervention (Figure 7D). 

 
We further investigated the influence of ITGAM  

on the release of inflammatory cytokines. Interfering  

with ITGAM was found to stimulate the secretion of 

critical inflammatory markers, including IL-1β, IL-6, 

and TNF-α. In contrast, the overexpression of ITGAM 

led to the suppression of these inflammatory mediators 

(Figure 7E–7G). 

Impact of ITGAM modulation on neuronal apoptosis: 

TUNEL and flow cytometry analyses 

 

TUNEL analysis was performed to investigate the impact 

of ITGAM on neuronal apoptosis. These findings 

revealed that inhibiting ITGAM with siRNA (si-ITGAM) 

led to a discernible decrease in neuronal apoptosis. In 

contrast, overexpression of ITGAM accelerated neuronal 

apoptotic processes. The specificity of these effects was 

further affirmed as neither the negative control (NC) nor 

the Vector groups showed any substantial alterations  

in neuronal apoptosis (Figure 8A). The above findings 

were confirmed by flow cytometry analysis to assess  

the apoptotic cells (Figure 8B). The findings of flow 

cytometry supported the evidence that ITGAM plays a 

multifaceted role in ischemic stroke pathophysiology. 

 

DISCUSSION 
 

Stroke can be divided into IS and hemorrhagic stroke, of 

which IS accounts for the highest proportion [8]. The 

procedure of stroke onset has not been explained fully 

yet and may be associated with age and gender, and is 

 

 
 

Figure 7. qPCR and Western blot. Relative expression analysis of MMP9 and ITGAM in IS and normal patients. (A, B) represent the 

relative expression of MMP9 and ITGAM mRNA in control and IS patients by qPCR. (C) q-PCR relative expression of ITGAM in different 
settings. (D) Western blot of ITGAM and GAPDH in different groups. (E–G) Relative expression of mRNA of TNF-α, IL-1β, and IL-6 when 
interfering with ITGAM in ischemic stroke. *P < 0.05, **P < 0.01 (n = 4 experiments, Student’s t-test). 
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closely linked to hypertension [9]. The IS, as a common 

clinical disease, can lead to sequelae that pose a huge 

financial burden and economic stress to patients and 

their families. Surgical treatment and chemotherapy  

are common treatment methods for ischemic stroke  

[10, 11]. Therefore, it is crucial to explore the etiology  

of IS and its treatment, thus alleviating the suffering  

of patients. The molecular mechanisms that contribute to 

the occurrence of the disease, as well as its development,  

are examined efficiently through microarray and bio-

informatics analyses. This knowledge is helpful in  

the detection of biomarkers that may have potential 

diagnostic functions and for detecting genetic alterations. 

 

However, in the case of analysis of data as a single 

microarray dataset, increased rates of false positives  

and one-sided results were detected. Therefore, two 

mRNA microarray datasets (GSE16561 and GSE22255) 

containing 59 IS samples and 44 normal controls  

were merged. In total, 226 DEGs were screened  

using the limma package, including 152 up-regulated 

DEGs and 74 down-regulated DEGs. These DEGs  

may be potential biomarkers and therapeutic targets  

for IS. PGAM5 is likely to be a target for the therapy  

of ischemic stroke [12]. 

 

In addition, enrichment analyses showed that  

changes in the level of expression of these DEGs 

affect inflammatory immune response-related signal 

transduction pathways, such as the immune system 

process, IL-17 signaling pathway, TNFA signaling via 

NFKB and inflammatory response. The inflammatory 

immune response has been confirmed to be involved in 

every stage of IS-related pathological progression  

[13]. The brain infiltration of T cells is an important 

process that promotes inflammatory tissue damage 

after stroke [14]. The T cells play a major immune role 

in IS, as depicted in an animal model of IS, wherein 

brain infarct size was decreased in T cell knockout 

mice but increased after administration of the T cell 

gene. The T cells adversely affect stroke by promoting 

the adhesion of leukocytes to the cerebrovascular 

system and triggering thrombotic inflammation in 

animals [15]. Furthermore, the AGE/RAGE and 

MAPK/ERK signaling pathways also play important 

roles in ischemic stroke [16, 17]. In the present study, 

ten DEGs were screened as hub genes, and the 

enrichment analysis results of these hub genes were 

similar to the enrichment analysis results of all DEGs. 

Therefore, inflammation and immune response are 

crucial in IS progression [18]. The process of designing 

inflammation- and immune response-based targeted 

interventions may provide novel insights into the 

treatment of IS. Moreover, our ROC analysis revealed 

remarkable diagnostic potential for ITGAM, and MMP9 

in distinguishing between normal and IS groups. 

 

Finally, multiple key TFs acting on hub genes were 

predicted by TRRUST database search, including 

NFKBIA (NF-κB), ARNT, and STAT3. Curcumin 

significantly reduced the inflammatory response and 

attenuated brain injury after IS by inhibiting NF-κB 

phosphorylation [19]. In addition, miRTarBase database 

search yielded the key miRNAs acting on hub genes, 

 

 
 

Figure 8. TUNEL and flow cytometry analysis. TUNEL analysis of ITGAM in different settings including si-ITGAM, NC, Vector, ITGAM and 

control. (A) TUNEL analysis of ITGAM. (B) Flow cytometry analysis. 
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including hsa-miR-338-3p, hsa-miR-5089-3p, and hsa- 

miR-155-5p, whose down-regulation could attenuate 

ischemic brain injury [20]. Furthermore, the key drugs 

acting on hub genes were predicted by the DSigDB 

database as SB202190, 1,9-Pyrazoloanthrone, and 

chitosamine (glucosamine). According to a research 

report, glucosamine acts as a post-ischemic immuno-

modulator in a sex-dependent manner and may have 

therapeutic potential in men after stroke [21]. Therefore, 

these TFs and miRNAs may have an important role in 

the progression of IS, and the predicted drugs could 

function as potential agents for the treatment of IS. 

 

To validate the findings of the pharmacological 

analysis, we performed a series of experiments to 

determine the MMP9 and ITGAM expression in IS  

and normal patient groups. The qPCR results revealed 

that both MMP9 and ITGAM are upregulated in IS 

samples. This is consistent with existing literature that 

describes the pro-inflammatory roles of MMP9 and 

ITGAM in neuroinflammatory diseases [22, 23]. MMP9 

is known to degrade extracellular matrix proteins, 

facilitating the infiltration of inflammatory cells into the 

brain, a critical step in the exacerbation of IS [22]. 

Similarly, ITGAM has been implicated in mediating  

the adhesion and transmigration of leukocytes, which 

plays a significant role in the inflammatory response to 

IS [23]. 

 

Manipulation of ITGAM expression was also found  

to regulate the release of key inflammatory cytokines 

IL-1β, IL-6, and TNF-α, echoing earlier findings on the 

gene’s role in mediating inflammatory responses [24]. 

This is particularly interesting given the established role 

of these cytokines in stroke pathology [25]. Furthermore, 

ITGAM not only influences inflammation but also 

affects neuronal apoptosis. Interference with ITGAM 

inhibited apoptosis, while its overexpression promoted 

it. These results corroborate the dual role of ITGAM  

in inflammation and apoptosis. The interplay between 

ITGAM, inflammation, and apoptosis thus offers a 

complex yet promising avenue for targeted therapy  

in IS, requiring a nuanced approach for therapeutic 

modulation. 

 

The present study also had some limitations as only two 

IS cohorts were included in this study. Consequently, 

the small sample size may lead to biased results. In 

addition, animal models that can validate the underlying 

mechanisms of IS pathogenesis and the efficacy of 

potential therapeutic agents are lacking. 

 

CONCLUSIONS 
 

In conclusion, this study investigated the pathogenesis of 

IS using bioinformatics and experiments. Inflammation 

and immune responses are associated with the onset and 

progression of IS. In addition, ten hub genes and three 

candidate drugs for IS treatment were identified. The 

data unearthed in this research provide further insight 

into the pathogenesis of IS and provide further treatment 

options and efficient clinical diagnosis for IS. 

 

MATERIALS AND METHODS 
 

Data acquisition 

 

The Gene Expression Omnibus (GEO) 

(http://www.ncbi.nlm.nih.gov/geo/) [26] was utilized to 

access all the relevant information. The dataset 

GSE16561 [27], based on the GPL6883 platform, 

contains peripheral whole blood mRNA expression 

profiles of 39 IS patients and 24 controls. The 

GSE22255 [28], per the GPL570 platform, contains 

peripheral blood mRNA expression profiles from 20 IS 

patients and 20 healthy controls. The dataset GSE58294 

[29], based on the GPL570 platform, contains peripheral 

whole blood mRNA expression profiles of 69 IS 

patients and 23 controls. Table 4 displays the specific 

information of datasets. Subsequently, their gene probes 

were annotated as gene symbols by their respective 

platform files. In addition, the gene symbols detected in 

multiple probes were calculated using their average 

expression levels. The raw data were log2-transformed 

and quantile-normalized and batch effects were removed 

by the ComBat method [30]. Finally, 59 IS samples and 

44 healthy control samples were obtained after merging 

GSE16561 and GSE22255. GSE58294 was used as a 

validation set. 

 

Differential expression analysis 

 

The microarray data were screened for differential 

expression utilizing the linear models constructed per 

the generalized linear model. This research utilized the 

R package limma 3.40.6 [31] for the analysis of DEGs 

in the experimental and control groups. Additionally, 

we performed multiple linear regression using the lmFit 

function on the merged dataset and further used the 

eBays function to compute moderated t-statistics, 

moderated F-statistic, and log-odds of differential 

expression by empirical Bayes moderation of the 

standard errors towards a common value. Afterward, the 

differential significance of every gene was obtained. 

 

Enrichment analyses 

 

Gene Ontology (GO) annotation of genes from the  

R package org.Hs.eg.db [32] (version 3.1.0), gene 

annotation of the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) Pathway, and h.all.v7.4.symbols.gmt 

subset downloaded from the Molecular Signatures 
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Table 4. Specific information of the dataset. 

Accession Study type Platform Organism Tissue Samples (total, patient/healthy) 

GSE16561 microarray GPL6883 Homo sapiens blood 63 (39/24) 

GSE22255 microarray GPL570 Homo sapiens blood 40 (20/20) 

GSE58294 microarray GPL570 Homo sapiens blood 92 (69/23) 

 

Database [33] was used for gene set functional 

enrichment analyses. Subsequently, genes were mapped 

to the background set, and the enrichment of gene  

sets was analyzed through the R package clusterProfiler 

3.14.3 [34]. Additionally, the gene sets ranged from 5 to 

5000, and the statistically significant values were taken 

as P < 0.05 and FDR < 0.05. 

 

Protein-protein interaction network construction 

 

The database STRING (https://string-db.org/) was 

utilized for constructing a PPI network for DEGs  

[35], wherein significant interactions were considered 

to be ones with a combined score greater than 0.7,  

and the software Cytoscape v.3.7.1 was utilized to 

identify the hub genes by employing the cytoHubba 

plugin [36]. Furthermore, functional enrichment 

analyses of hub genes were carried out by Metascape 

(http://metascape.org/gp/index.html#/main/step1) [37]. 

P-value< 0.05 was utilized as a cutoff value. 

 

Bioinformatics analysis of hub genes 

 

To investigate the relationship between hub genes and 

clinical characteristics of IS patients, Wilcoxon rank 

sum tests were utilized. Furthermore, the ROC curve 

was produced using the ‘pROC’ package and depicted 

with the ‘ggplot2’ package for better visualization. 

 

The transcription factors (TFs), miRNAs, and  

small-molecule drugs acting on hub genes were 

predicted by searching for TRRUST, miRTarBase, and 

DSigDB databases, respectively, in the Enrichr platform 

(http://amp.pharm.mssm.edu/Enrichr/) [38]. 

 

Cell culture and treatments 

 

Cortical neuronal cells were retrieved from liquid 

nitrogen storage and rapidly placed in a 37°C water bath. 

The cryopreservation tube was gently shaken to dissolve 

the cryoprotective solution. After complete dissolution, 

the cells were transferred to a 15 mL centrifuge tube 

containing 5 mL of DMEM medium enriched with  

10% fetal bovine serum (Procell, China). The tube was 

centrifuged at room temperature at 1000 rpm for 5 
minutes. The supernatant was carefully discarded, and 

the cell pellet was resuspended in a complete culture 

medium. On reaching the confluence, sub-culturing was 

performed. The cells were seeded into the culture plates 

at a density of 5×105 cells per well and incubated 

overnight at 37°C in a 5% CO2 incubator. Additional 

experiments involved transfection with siRNA targeting 

ITGAM (si-ITGAM) to specifically knock down ITGAM 

gene expression. An empty vector served as a control for 

these experiments to account for any off-target effects or 

alterations due to the transfection process itself. 

 

TUNEL analysis 

 

TUNEL assay was performed by using Cell Apoptosis 

Detection Kit (Vazyme, China). The neuronal cortical 

cells were fixed, placed within paraffin, and mounted on 

glass slides. Immerse slides with adherent cells in 4% 

paraformaldehyde (pH 7.4) solution at room temperature 

for 15 minutes, followed by washing three times with 

PBS, each for 5 minutes. In a succinct overview, the  

3’-OH termini of fragmented DNA were enzymatically 

labeled with digoxigenin-dUTP utilizing Terminal 

Deoxynucleotidyl Transferase (TdT) as the catalyzing 

agent. Visualization of apoptotic nuclei was achieved 

through the application of a rhodamine-conjugated anti-

digoxigenin antibody. For nuclear contrast, sections were 

subsequently counterstained with DAPI. Rinsed the 

excess DAPI with PBST four times, each for 5 minutes. 

Slides with a mounting medium containing an anti-fading 

agent were sealed and observed under a fluorescence 

microscope. 

 

Flow cytometry analysis 

 

The cultured cortical neuron cells in the logarithmic 

growth phase were seeded at 5×105 cells per well in a  

6-well culture plate and incubated overnight at 37°C and 

5% CO2. To assess apoptotic cells, cells were collected 

and resuspended in binding buffer. Subsequently, 100 μL 

of the resulting cell suspension was combined with 5 μL 

of Annexin-V–FITC (Nanjing KeyGen Biotech, China) 

and 5 μL of Propidium Iodide (PI). After 15 minutes of 

incubation period, the cell mixture was further diluted 

with 300 μL of binding buffer and analyzed using the 

CytoFLEX Flow cytometer (Beckman, USA). 

 

RT-PCR 

 

Total RNA from the cortical neurons was isolated using a 

TRIzol reagent kit (Invitrogen, USA). RNA purity was 
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tested using Nanodrop 2000. Total RNA was reverse 

transcribed into cDNA using RevertAid First Strand 

cDNA Synthesis Kit (Thermo Fisher Scientific, USA). 

Gene expression levels were quantified by Real-Time 

PCR System (Applied Biosystems, USA). GAPDH was 

used as a positive internal control, and the mRNA 

expression levels were calculated according to the 2 −  

ΔΔCT method. Each sample was analyzed in triplicate. 

The primer sequences used in this study were as follows: 

Homo GAPDH (forward: 5’- TCAAGAAGGTGGTGA 

AGCAGG-3’; reverse: 5’-TCAAAGGTGGAGGAGTG 

GGT-3’); Homo MMP9 (forward: 5’-AGATGCGTG 

GAGAGTCGAAA-3’; reverse: 5’-GGTGATGTTGTG 

GTGGTGC-3’); Homo ITGAM (forward: 5’-GGGA 

AGTGGCAAGGAATGTA-3’; reverse: 5’-GTCTGTC 

TGCGTGTGCTGTT-3’); Homo IL-1β (forward: 5’-CG 

AATCTCCGACCACCACTA-3’; reverse: 5’- AGCCT 

CGTTATCCCATGTGT -3’); Homo IL-6 (forward: 5’-

AGGAGACTTGCCTGGTGAAA-3’; reverse: 5’-CAGG 

GGTGGTTATTGCATCT-3’); Homo TNF-α (forward: 

5’-TCAGAGGGCCTGTACCTCAT-3’; reverse: 5’-GG 

AAGACCCCTCCCAGATAG -3’. 

 

Western blot 

 

The harvested cells were subjected to lysis using RIPA 

buffer fortified with protease and phosphatase inhibitors 

(G2002, Servicebio, China). Protein concentration was 

assessed utilizing a bicinchoninic acid (BCA) assay kit 

(Gbs, G3522-3). Subsequently, protein samples were 

electrophoresed on 12% SDS-PAGE gels and electro-

transferred onto PVDF membranes (Millipore, USA). 

Blocking was performed with 5% non-fat milk in TBST 

for two hours at ambient temperature. The membranes 

were then probed with primary antibodies including  

si-ITGAM (1:2000, Abcam, UK), ITGAM (1:2000, 

Sanying Biotechnology, China) and GAPDH (1:1000, 

Xianzhi Biological, China) and incubated overnight at 

4°C. Following primary incubation, membranes were 

exposed to horseradish peroxidase-conjugated secondary 

antibodies (Goat Anti-Mouse IgG, Goat Anti-Rabbit  

IgG, 1:10000, Sanying Biotechnology, China) for an 

additional hour at room temperature. Protein bands were 

made visible using ECL detection systems (Servicebio) 

and were normalized to GAPDH as an internal standard. 

Densitometric quantification of band intensities was 

conducted using ImageJ software. 

 

Statistical analysis 

 

The statistical analyses of the data were performed 

automatically on the online databases. The code 

processing of the analysis was done using the R 
package. All the cell culture analyses were performed 

using GraphPad prism. The data were expressed as the 

mean ± standard deviation (SD). Statistical significance 

in changes between groups was determined using 

Student’s t-test. The value of p<0.05 designated an 

outcome that could be considered significant. All 

experiments were performed at least three times. 

 

Availability of data and materials 

 

The data that support the findings of this work are 

obtainable from GEO (https://www.ncbi.nlm.nih.gov/ 
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query/acc.cgi?acc=GSE22255. GSE16561: https://www. 

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16561. 

GSE58294: https://www.ncbi.nlm.nih.gov/geo/query/ 

acc.cgi?acc=GSE58294. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 

 
 

Supplementary Figure 1. Clinical correlation analysis of hub genes. Box plot showing the expression pattern of the hub genes in 
different genders (male and female, A) and ages (≤70 and >70, B) of patients in the GSE16561+GSE22255 dataset. 
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Supplementary Table 
 

 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. 226 differentially expressed genes. 

6867


